Recent Developments in Chen’s Biharmonic Conjecture and Some Related Topics
Abstract
:1. Introduction
2. Basics on Submanifolds
3. Submanifolds of Finite Type and of Null 2 Type
4. Biharmonic Map and Bitension
- Generalized Chen Biharmonic Conjecture: Every biharmonic submanifold in a Riemannian manifold of non-positive sectional curvature is minimal.
- (Modified) Generalized Chen Biharmonic Conjecture: Any biharmonic submanifold of a Riemannian manifold of non-positive constant sectional curvature is always minimal.
5. Recent Advances in Chen’s Biharmonic Conjecture
5.1. Biharmonic Hypersurfaces in
5.2. Properly Immersed and Weakly Convex Biharmonic Submanifolds
5.3. Biharmonic Hypersurface with a Recurrent Ricci Operator in
5.4. Holonomic Biharmonic Hypersurfaces in Euclidean Spaces
5.5. Stability and the Index of Biharmonic Hypersurfaces in Euclidean Spaces
6. PNMCV Biharmonic Submanifolds in Euclidean Spaces
7. -Ideal Biharmonic Hypersurfaces in
8. -Harmonic Hypersurfaces in Euclidean Space
8.1. -Harmonic Maps, -Harmonic Submanifolds, and Null 2-Type Submanifolds
8.2. -Harmonic Submanifolds in Euclidean Spaces
9. Biharmonic Hypersurfaces in Pseudo-Euclidean Spaces
- (1)
- M is congruent to a surface in defined by
- (2)
- M is congruent to a surface in defined by
- (1)
- A surface defined by
- (2)
- A surface defined by
10. Biharmonic Submanifolds in Real Space Forms
10.1. Biharmonic Submanifolds with, at Most, Three Distinct Principal Curvatures
10.2. Biharmonic Hypersurfaces with Constant Scalar Curvature
10.3. Biharmonic Submanifolds with Constant Mean Curvature
- (1)
- and ;
- (2)
- , and holds if and only if .
10.4. Biharmonic Submanifolds with Constant Mean and Scalar Curvatures
11. PNMCV Biharmonic Submanifolds in Space Forms
11.1. PNMCV Biharmonic Submanifolds in Spheres
11.2. PNMCV Biharmonic Submanifolds in Pseudo-Riemannian Space Forms
- (a)
- If , then is time-like and . The equality holds if and only if is pseudo-umbilical;
- (b)
- If , then is space-like and . The equality holds if and only if is pseudo-umbilical.
12. Biharmonic Hypersurfaces in Einstein Spaces
- (i)
- for some .
- (ii)
- and the Ricci curvature of is bounded from below by , where denotes the distance function on M.
13. -Biharmonic Hypersurfaces
13.1. -Biharmonic Hypersurfaces and Conjecture
- -conjecture ([71]). Every Euclidean hypersurface satisfying the condition of
13.2. -Biharmonic Hypersurfaces in
13.3. -biharmonic Time-like Hypersurfaces in
13.4. -Biharmonic Lorentzian Hypersurfaces in
14. -Biharmonic Hypersurfaces
14.1. -Biharmonic Hypersurfaces in Euclidean Spaces
14.2. -Biharmonic Hypersurfaces in Hyperbolic Spaces
14.3. -Biharmonic Hypersurfaces in Real Space Forms
14.4. -Biharmonic Hypersurfaces in
15. Chen’s Biharmonic Conjecture and Chen’s Flow
16. -Hypersurfaces and Biconservative Submanifolds
16.1. H-Hypersurfaces in Euclidean Spaces
- (a)
- A hypersurface with constant mean curvature (i.e., CMC);
- (b)
- A rotational hypersurface with constant mean curvature generated by a unit speed plane curve (, where f satisfies second-order ordinary differential equation );
- (c)
- A generalized cylinder on a surface of revolution in with non-constant mean curvature parameterized by
- (d)
- A -invariant hypersurface of defined by
16.2. Biconservative Submanifolds and H-Submanifolds
17. Biconservative Submanifolds in Euclidean and Lorentzian Spaces
17.1. Biconservative Hypersurfaces in
17.2. Ideal Biconservative Hypersurfaces in Euclidean Spaces
17.3. Holonomic Biconservative Hypersurfaces of Euclidean Space
17.4. PNMCV Biconservative Submanifold of Codimension Two in
17.5. Biconservative Lorentzian Hypersurfaces in
17.6. PNMCV Biconservative Hypersurfaces in
18. Biconservative Hypersurfaces in Real and Lorentzian Space Forms
18.1. Biconservative Hypersurfaces in and with Three Distinct Principal Curvatures
- (1)
- (2)
- A hypersurface in defined by
- (3)
- A hypersurface in defined by
- (4)
- A hypersurface in is defined by
18.2. Biconservative Hypersurfaces in with 3 or 4 Distinct Principal Curvatures
18.3. Biconservative CMC Surfaces in 4D Lorentzian Space Forms
- (a)
- A surface with a parallel mean curvature vector.
- (b)
- A ruled surface parameterized by that has constant curvature (c) and is proper biconservative if β and γ satisfy
- (c)
- A cylinder parameterized by for a unit speed curve () in with a non-null normal vector field.
- (d)
- A cylinder parameterized by for a unit speed curve () in .
19. Biconservative Submanifolds in Complex Space Forms
- (1)
- For , is a biconservative submanifold.
- (2)
- For , is a biconservative submanifold if and only if .
- (1)
- For , is a biconservative surface.
- (2)
- For , is a biconservative surface if and only if is a totally real surface.
20. -Biconservative Hypersurfaces in Lorentzian Spaces
20.1. -Biconservative, Time-like Hypersurface in
20.2. -Biconservative Lorentzian Hypersurface in
21. Triharmonic Hypersurfaces
- k-Harmonic Conjecture: For any integer (), k-harmonic submanifolds in are minimal.
21.1. Triharmonic CMC Hypersurfaces in Space Forms
- (1)
- and is locally , or
- (2)
- , and holds if and only if M is locally , where r is given by (48) and is the unique real root in of the polynomial
- (1)
- ;
- (2)
- , where is the unique real root of .
21.2. Triharmonic Hypersurfaces in Space Forms Without Restrictions on Principal Curvatures
21.3. Stability of Triharmonic Hypersurfaces in Space Forms
21.4. Triharmonic Submanifolds of Riemannian Manifolds of Non-Positive Constant Curvature
- (1)
- For , if is triharmonic and the extended 4-energy () and the norm () are both finite, then ϕ is minimal.
- (2)
- For , the same conclusion holds if we also assume that or .
21.5. Triharmonic CMC Hypersurfaces in Pseudo-Riemannian Space Forms
- (a)
- If , then the mean curvature vector of is space-like, and τ satisfies
- (b)
- If , then the mean curvature vector is time-like, and τ satisfies
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, G.-Y. Some non-existence theorems of 2-harmonic isometric immersions into Euclidean spaces. Chin. Ann. Math. Ser. A 1987, 8, 377–383. [Google Scholar]
- Chen, B.-Y. Some open problems and conjectures on submanifolds of finite type. Soochow J. Math. 1991, 17, 169–188. [Google Scholar]
- Dimitric, I. Quadric Representation and Submanifolds of Finite Type. Ph.D. Thesis, Michigan State University, East Lansing, MI, USA, 1989. [Google Scholar]
- Dimitric, I. Submanifolds of 𝔼n with harmonic mean curvature vector. Bull. Inst. Math. Acad. Sin. 1992, 20, 53–65. [Google Scholar]
- Ou, Y.-L.; Chen, B.-Y. Biharmonic Submanifolds and Biharmonic Maps in Riemannian Geometry; World Scientific Publishing: Hackensack, NJ, USA, 2020; ISBN 978-981-121-237-6. [Google Scholar]
- Chen, B.-Y. A report of submanifolds of finite type. Soochow J. Math. 1996, 22, 117–337. [Google Scholar]
- Chen, B.-Y. Some open problems and conjectures on submanifolds of finite type: Recent development. Tamkang J. Math. 2014, 45, 87–108. [Google Scholar] [CrossRef]
- Hasanis, T.; Vlachos, T. Hypersurfaces in 𝔼4 with harmonic mean curvature vector field. Math. Nachr. 1995, 172, 145–169. [Google Scholar] [CrossRef]
- Defever, F. Hypersurfaces of 𝔼4 with harmonic mean curvature vector. Math. Nachr. 1998, 196, 61–69. [Google Scholar]
- Fu, Y. Biharmonic hypersurfaces with three distinct principal curvatures in 𝔼5. J. Geom. Phys. 2014, 75, 113–119. [Google Scholar] [CrossRef]
- Fu, Y. Biharmonic hypersurfaces with three distinct principal curvatures in Euclidean space. Tohoku Math. J. 2015, 67, 465–479. [Google Scholar] [CrossRef]
- Montaldo, S.; Oniciuc, C.; Ratto, A. On cohomogeneity one biharmonic hypersurfaces into the Euclidean space. J. Geom. Phys. 2016, 106, 305–313. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Ishikawa, S. Biharmonic surfaces in pseudo-Euclidean spaces. Kyushu J. Math. 1991, 45, 323–347. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Ishikawa, S. Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces. Kyushu J. Math. 1998, 52, 1–18. [Google Scholar] [CrossRef]
- Arvanitoyeorgos, A.; Defever, F.; Kaimakamis, G.; Papantoniou, V. Biharmonic Lorentz hypersurfaces in . Pac. J. Math. 2007, 229, 293–305. [Google Scholar] [CrossRef]
- Eells, J.; Lemaire, L. Selected Topics in Harmonic Maps; CBMS; American Mathematical Society: Providence, RI, USA, 1983; Volume 50. [Google Scholar]
- Jiang, G.Y. 2-Harmonic maps and their first and second variational formulas. Chin. Ann. Math. Ser. A 1986, 7, 389–402. [Google Scholar]
- Caddeo, R.; Montaldo, S.; Oniciuc, C. Biharmonic submanifolds in spheres. Isr. J. Math. 2002, 130, 109–123. [Google Scholar] [CrossRef]
- Alías, L.J.; García-Martínez, S.C.; Rigoli, M. Biharmonic hypersurfaces in complete Riemannian manifolds. Pac. J. Math. 2013, 263, 1–12. [Google Scholar] [CrossRef]
- Balmus, A.; Montaldo, S.; Oniciuc, C. Classification results for biharmonic submanifolds in spheres. Isr. J. Math. 2008, 168, 201–220. [Google Scholar] [CrossRef]
- Balmus, A.; Montaldo, S.; Oniciuc, C. Biharmonic hypersurfaces in 4-dimensional space forms. Math. Nachr. 2010, 283, 1696–1705. [Google Scholar] [CrossRef]
- Ou, Y.-L. Biharmonic hypersurfaces in Riemannian manifolds. Pac. J. Math. 2010, 248, 217–232. [Google Scholar] [CrossRef]
- Ou, Y.-L. Some constructions of biharmonic maps and Chen’s conjecture on biharmonic hypersurfaces. J. Geom. Phys. 2012, 62, 751–762. [Google Scholar] [CrossRef]
- Chen, B.-Y. Recent developments of biharmonic conjecture and modified biharmonic conjectures. In Pure and Applied Differential Geometry PADGE 2012; Shaker Verlag: Düren, Germany, 2013; pp. 81–90. [Google Scholar]
- Chen, B.-Y. Pseudo-Riemannian Geometry, δ-invariants and Applications; World Scientific Publ.: Hackensack, NJ, USA, 2011; ISBN 978-981-4329-63-7. [Google Scholar]
- Chen, B.-Y. On the surface with parallel mean curvature vector. Indiana Univ. Math. J. 1973, 22, 655–666. [Google Scholar] [CrossRef]
- Chen, B.-Y. Total Mean Curvature and Submanifolds of Finite Type, 2nd ed.; World Scientific Publishing: Hackensack, NJ, USA, 2015; ISBN 978-981-4616-68-3. [Google Scholar]
- Chen, B.-Y. On submanifolds of finite type. Soochow J. Math. 1983, 9, 17–33. [Google Scholar]
- Chen, B.-Y. On the total curvature of immersed manifolds. VI: Submanifolds of finite type and their applications. Bull. Inst. Math. Acad. Sin. 1983, 11, 309–328. [Google Scholar]
- Chen, B.-Y. Null 2-type surfaces in Euclidean space. In Algebra, Analysis and Geometry, Proceedings of the Symposium in Honor of Chen-Jung Hsu and Kung-Sing Shih, Taipei, Taiwan, 27–29 June 1988; World Scientific Publishing Co., Inc.: Teaneck, NJ, USA, 1989; pp. 1–18. ISBN 9971-50-898-2. [Google Scholar]
- Eells, J.; Sampson, J.H. Harmonic mappings of Riemannian manifolds. Am. J. Math. 1964, 86, 109–160. [Google Scholar] [CrossRef]
- Caddeo, R.; Montaldo, S.; Oniciuc, C. Biharmonic submanifolds of S3. Int. J. Math. 2001, 12, 867–876. [Google Scholar] [CrossRef]
- Ou, Y.-L.; Tang, L. On the generalized Chen’s conjecture on biharmonic submanifolds. Mich. Math. J. 2012, 61, 531–542. [Google Scholar] [CrossRef]
- Akutagawa, K.; Maeta, S. Biharmonic properly immersed submanifolds in Euclidean spaces. Geom. Dedicata 2013, 164, 351–355. [Google Scholar] [CrossRef]
- Luo, Y. Weakly convex biharmonic hypersurfaces in nonpositive curvature space forms are minimal. Results Math. 2014, 65, 49–56. [Google Scholar] [CrossRef]
- Ou, Y.-L. Some recent progress of biharmonic submanifolds. Contemp. Math. 2016, 674, 127–140. [Google Scholar]
- Fu, Y.; Yang, D.; Zhan, X. Recent progress of biharmonic hypersurfaces in space forms. Contemp. Math. 2022, 777, 91–101. [Google Scholar]
- Fu, Y.; Hong, M.-C.; Zhan, X. On Chen’s biharmonic conjecture for hypersurfaces in ℝ5. Adv. Math. 2021, 383, 107697. [Google Scholar] [CrossRef]
- Fu, Y.; Hong, M.-C.; Zhan, X. Biharmonic conjectures on hypersurfaces in a space form. Trans. Am. Math. Soc 2023, 376, 8411–8445. [Google Scholar] [CrossRef]
- Abedi, E.; Mosadegh, N. Biharmonic hypersurfaces with recurrent operators in the Euclidean space. Bull. Korean Math. Soc. 2022, 59, 1595–1603. [Google Scholar]
- Reinhart, B.L. Foliated manifolds with bundle-like metrics. Ann. Math. 1959, 69, 119–132. [Google Scholar] [CrossRef]
- Bibi, H.; Soret, M.; Ville, M. Biharmonic hypersurfaces in Euclidean spaces. arXiv 2025, arXiv:2410.13546v2. [Google Scholar]
- Ou, Y.-L. Stability and the index of biharmonic hypersurfaces in a Riemannian manifold. Ann. Mat. Pura Appl. 2022, 201, 733–742. [Google Scholar] [CrossRef]
- Chen, B.-Y. Surfaces with parallel normalized mean curvature vector. Monatsh. Math. 1980, 90, 185–194. [Google Scholar] [CrossRef]
- Chen, B.-Y. Chen’s Biharmonic conjecture and submanifolds with parallel normalized mean curvature vector. Mathematics 2019, 7, 710. [Google Scholar] [CrossRef]
- Şen, R.Y.; Turgay, N.C. On biconservative surfaces in 4-dimensional Euclidean space. J. Math. Anal. Appl. 2018, 460, 565–581. [Google Scholar]
- Şen, R.; Turgay, N.C. Biharmonic PNMCV submanifolds in Euclidean 5-space. Turk. J. Math. 2023, 47, 296–316. [Google Scholar] [CrossRef]
- Chen, B.-Y. Some pinching and classification theorems for minimal submanifolds. Arch. Math. 1993, 60, 568–578. [Google Scholar] [CrossRef]
- Chen, B.-Y. Some new obstructions to minimal and Lagrangian isometric immersions. Jpn. J. Math. 2000, 26, 105–127. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Munteanu, M.I. Biharmonic ideal hypersurfaces in Euclidean spaces. Differ. Geom. Appl. 2013, 31, 1–16. [Google Scholar] [CrossRef]
- Deepika; Arvanitoyeorgos, A. Biharmonic δ(r)-ideal hypersurfaces in Euclidean spaces are minimal. Differ. Geom. Appl. 2020, 72, 101665. [Google Scholar] [CrossRef]
- Chen, B.-Y. Null two-type surfaces in 𝔼3 are circular cylinders. Kodai Math. J. 1988, 11, 295–299. [Google Scholar] [CrossRef]
- Yang, D.; Zhan, X. On α-biharmonic hypersurfaces in ℝ6. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 2025, 119, 46. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, J.; Fu, Y. Linear Weingarten λ-biharmonic hypersurfaces in Euclidean space. Ann. Mat. Pura Appl. 2020, 199, 1533–1546. [Google Scholar] [CrossRef]
- Rosca, R. On null hypersurfaces of a Lorentzian manifold. Tensor 1972, 23, 66–74. [Google Scholar]
- Penrose, R. Gravitational collapse and space-time singularities. Phys. Rev. Lett. 1965, 14, 57–59. [Google Scholar] [CrossRef]
- Chen, B.-Y. Classification of marginally trapped Lorentzian flat surfaces in and its application to biharmonic surfaces. J. Math. Anal. Appl. 2008, 340, 861–875. [Google Scholar] [CrossRef]
- Du, L.; Yuan, X. The minimality of biharmonic hypersurfaces in pseudo-Euclidean spaces. AIMS Electron. Res. Arch. 2023, 31, 1587–1595. [Google Scholar] [CrossRef]
- Balmuş, A.; Montaldo, S.; Oniciuc, C. New results toward the classification of biharmonic submanifolds in Sn. An. Stiint. Univ. Ovidius Constanta Ser. Mat. 2012, 20, 89–114. [Google Scholar]
- Fu, Y. Biharmonic hypersurfaces with three distinct principal curvatures in spheres. Math. Nachr. 2015, 288, 763–774. [Google Scholar] [CrossRef]
- Andronic, S.; Fu, Y.; Oniciuc, C. On the biharmonic hypersurfaces with three distinct principal curvatures in space forms. arXiv 2023, arXiv:2301.09354. [Google Scholar]
- Fu, Y.; Hong, M.-C. Biharmonic hypersurfaces with constant scalar curvature in space forms. Pac. J. Math. 2018, 294, 329–350. [Google Scholar] [CrossRef]
- Maeta, S.; Ou, Y.-L. Some classifications of biharmonic hypersurfaces with constant scalar curvature. Pac. J. Math. 2020, 306, 281–290. [Google Scholar] [CrossRef]
- Guan, Z.; Li, H.; Vrancken, L. Four dimensional biharmonic hypersurfaces in nonzero space forms have constant mean curvature. J. Geom. Phys. 2021, 160, 103984. [Google Scholar] [CrossRef]
- Wang, X.; Wu, L. Proper biharmonic submanifolds in a sphere. Acta Math. Sin. (Engl. Ser.) 2012, 28, 205–218. [Google Scholar] [CrossRef]
- Gupta, R.S. On biharmonic hypersurfaces in 6-dimensional space forms. Afr. Mat. 2019, 30, 1205–1221. [Google Scholar] [CrossRef]
- Balmus, A.; Montaldo, S.; Oniciuc, C. Biharmonic PNMC submanifolds in spheres. Ark. Mat. 2013, 51, 197–221. [Google Scholar] [CrossRef]
- Du, L.; Zhang, J. Biharmonic submanifolds with parallel normalized mean curvature vector field in pseudo-Riemannian space forms. Bull. Malays. Math. Sci. Soc. 2019, 42, 1469–1484. [Google Scholar] [CrossRef]
- Al’ias, L.J.; Gürbüz, N. An extension of Takahashi theorem for the linearized operators of the higher order mean curvatures. Geom. Dedicata 2006, 121, 113–127. [Google Scholar] [CrossRef]
- Reilly, R.C. Variational properties of functions of the mean curvatures for hypersurfaces in space forms. J. Diff. Geom. 1973, 8, 465–477. [Google Scholar] [CrossRef]
- Aminian, M.; Kashani, S.M.B. Lk-biharmonic hypersurfaces in the Euclidean space. Taiwan. J. Math. 2015, 19, 861–874. [Google Scholar] [CrossRef]
- Mohammadpouri, A.; Pashaie, F.; Tajbakhsh, S. L1-biharmonic hypersurfaces in Euclidean spaces with three distinct principal curvatures. Iran. J. Math. Sci. Inform. 2018, 13, 59–70. [Google Scholar]
- Mohammadpouri, A.; Pashaie, F. Lr-biharmonic hypersurfaces in 𝔼4. Bol. Soc. Parana. Mat. 2020, 38, 9–18. [Google Scholar]
- Pashaie, F. On L1-biharmonic timelike hypersurfaces in pseudo-Euclidean space. Tamkang J. Math. 2020, 51, 313–332. [Google Scholar] [CrossRef]
- Pashaie, F.; Tanoomand-Khooshmehr, N.; Rahimi, A.; Shahbaz, L. On extended biharmonic hypersurfaces with three curvatures. Proyecciones 2023, 42, 125–144. [Google Scholar] [CrossRef]
- O’Neill, B. Semi-Riemannian Geometry with Applications to Relativity; Academic Press Inc.: New York, NY, USA, 1983. [Google Scholar]
- Petrov, A.Z. Einstein Spaces; Pergamon Press: Oxford, UK, 1969. [Google Scholar]
- Pashaie, F. On proper L1-biharmonic timelike hypersurfaces with at most two distinct principal curvatures in Lorentz-Minkowski 5-space. Afr. Mat. 2023, 34, 51. [Google Scholar] [CrossRef]
- Aminian, M.; Kashani, S.M.B. Lk-biharmonic hypersurfaces in space forms. Acta Math. Vietnam. 2017, 42, 471–490. [Google Scholar] [CrossRef]
- Aminian, M. Lk-biharmonic hypersurfaces in space forms with three distinct principal curvatures. Commun. Korean Math. Soc. 2020, 35, 1221–1244. [Google Scholar]
- Pashaie, F. On Lk-biharmonic Lorentzian hypersurfaces in Einstein spaces. An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. 2020, 66, 1–23. [Google Scholar]
- Bernard, Y.; Wheeler, G.; Wheeler, V.-M. Concentration-compactness and finite time singularities for Chen’s flow. J. Math. Sci. Univ. Tokyo 2019, 26, 55–139. [Google Scholar]
- Cooper, M.K.; Wheeler, G.; Wheeler, V.-M. Theory and numerics for Chen’s flow of curves. J. Differ. Equ. 2023, 25, 1–51. [Google Scholar] [CrossRef]
- Wheeler, G.; Wheeler, V.-M. Curve diffusion and straightening flows on parallel lines. Comm. Anal. Geom. 2024, 32, 1979–2034. [Google Scholar] [CrossRef]
- Caddeo, R.; Montaldo, S.; Oniciuc, C.; Piu, P. Surfaces in three-dimensional space forms with divergence-free stress-bi-energy tensor. Ann. Mat. Pura Appl. 2014, 193, 529–550. [Google Scholar] [CrossRef]
- Hilbert, D. Die grundlagen der physik. Math. Ann. 1924, 92, 1–32. [Google Scholar]
- Baird, P.; Eells, J. A conservation law for harmonic maps. In Proceedings of the Symposium, Utrecht, The Netherlands, 27–29 August 1980; Lecture Notes in Mathematics. Volume 894, pp. 1–25. [Google Scholar]
- Sanini, A. Applicazioni tra varietà riemanniane con energia critica rispetto a deformazioni di metriche. Rend. Mat. 1983, 3, 53–63. [Google Scholar]
- Loubeau, E.; Montaldo, S.; Oniciuc, C. The stress-energy tensor for biharmonic maps. Math. Z. 2008, 259, 503–524. [Google Scholar] [CrossRef]
- Gupta, R.S. Biconservative hypersurfaces in Euclidean 5-space. Bull. Iran. Math. Soc. 2019, 45, 1117–1133. [Google Scholar] [CrossRef]
- Deepika; Arvanitoyeorgos, A. Biconservative ideal hypersurfaces in Euclidean spaces. J. Math. Anal. Appl. 2018, 458, 1147–1165. [Google Scholar] [CrossRef]
- Şen, R.Y. Biconservative submanifolds with parallel normalized mean curvature vector field in Euclidean spaces. Bull. Iran. Math. Soc. 2022, 48, 318–3194. [Google Scholar] [CrossRef]
- Gupta, R.S.; Sharfuddin, A. Biconservative Lorentz hypersurfaces in with complex eigenvalues. Rev. Un. Mat. Argent. 2019, 60, 595–610. [Google Scholar] [CrossRef]
- Şen, R.Y. Biconservative Riemannian submanifolds in Minkowski 5-space. Int. Electron. J. Geom. 2024, 17, 137–145. [Google Scholar]
- Nostor, S.; Oniciuc, C. On the uniqueness of complete biconservative surfaces in 3-dimensional space forms. Ann. Sc. Norm. Super. Pisa Cl. Sci. 2022, 23, 1565–1587. [Google Scholar] [CrossRef]
- Chen, B.-Y. Recent development in biconservative submanifolds. In Geometrical Spaces and Related Topics; Chahal, S.S., Güler, V., Kaur, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2025; 51p. [Google Scholar]
- Turgay, N.C.; Upadhyay, A. On biconservative hypersurfaces in 4-dimensional Riemannian space forms. Math. Nachr. 2019, 292, 905–921. [Google Scholar] [CrossRef]
- Fu, Y.; Zhan, X. Biconservative hypersurfaces with three distinct principal curvatures in a space form. Lect. Notes Semin. Interdiscip. Mat. 2023, 16, 57–70. [Google Scholar]
- Gupta, R.S.; Arvanitoyeorgos, A. Biconservative hypersurfaces in space forms (c). Mediterr. J. Math. 2022, 19, 256. [Google Scholar] [CrossRef]
- Andronic, Ş.; Kayhan, A. Rigidity results for compact biconservative hypersurfaces in space forms. J. Geom. Phys. 2025, 212, 105460. [Google Scholar] [CrossRef]
- Fetcu, D.; Loubeau, E.; Oniciuc, C. Bochner-Simons formulas and the rigidity of biharmonic submanifolds. J. Geom. Anal. 2021, 31, 1732–1755. [Google Scholar] [CrossRef]
- Fetcu, D.; Oniciuc, C. Biharmonic and biconservative hypersurfaces in space forms. Contemp. Math. 2022, 777, 65–90. [Google Scholar]
- Kayhan, A.; Turgay, N.C. Biconservative surfaces with constant mean curvature in Lorentzian space forms. Abh. Math. Semin. Univ. Hambg. 2024, 94, 19–31. [Google Scholar] [CrossRef]
- Bibi, H.; Chen, B.-Y.; Fetcu, D.; Oniciuc, C. Parallel mean curvature biconservative surfaces in complex space forms. Math. Nachr. 2023, 296, 3192–3221. [Google Scholar] [CrossRef]
- Pashaie, F. An extension of biconservative timelike hypersurfaces in Einstein space. Proyecciones 2022, 41, 335–351. [Google Scholar] [CrossRef]
- Pashaie, F. Some Lk-biconservative Lorentzian hypersurfaces in Minkowski 5-space. An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. 2023, 69, 1–16. [Google Scholar] [CrossRef]
- Pashaie, F. Biconservative Lorentz hypersurfaces with at least three principal curvatures. Tamkang J. Math. 2023, 54, 221–236. [Google Scholar]
- Pashaie, F. Some L1-biconservative Lorentzian hypersurfaces in the Lorentz-Minkowski spaces. Kragujevac J. Math. 2023, 47, 229–243. [Google Scholar] [CrossRef]
- Wang, S.B. The first variation formula for k-harmonic mapping. J. Nanchang Univ. 1989, 13, 1989. [Google Scholar]
- Maeta, S. The second variational formula of the k-energy and k-harmonic. Osaka J. Math. 2012, 49, 1035–1063. [Google Scholar]
- Baird, P.; Gudmundsson, P. p-harmonic maps and minimal submanifolds. Math. Ann. 1992, 294, 611–624. [Google Scholar] [CrossRef]
- Burel, J.-M.; Loubeau, E. p-harmonic morphisms: The 1 < p < 2 case and some non-trivial examples. In Proceedings of the Differential Geometry and Integrable Systems, Tokyo, Japan, 17–21 July 2000; Contemporary Mathematics. Volume 308, pp. 21–37. [Google Scholar]
- Maeta, S. Construction of triharmonic maps. Houst. J. Math. 2015, 41, 433–444. [Google Scholar]
- Nakauchi, N.; Urakawa, H. Polyharmonic maps into the Euclidean space. Note Mat. 2018, 38, 89–100. [Google Scholar]
- Ou, Y.-L. p-harmonic morphisms, biharmonic morphisms, and nonharmonic biharmonic maps. J. Geom. Phys. 2006, 56, 358–374. [Google Scholar] [CrossRef]
- Maeta, S. k-harmonic maps into a Riemannian manifold with constant sectional curvature. Proc. Am. Math. Soc. 2012, 140, 1835–1847. [Google Scholar] [CrossRef]
- Chen, H.; Guan, Z. Triharmonic CMC hypersurfaces in space forms with at most 3 distinct principal curvatures. Results Math. 2022, 77, 155. [Google Scholar] [CrossRef]
- Chen, H.; Guan, Z. Triharmonic CMC hypersurfaces in R5(c). Manuscripta Math. 2023, 172, 209–220. [Google Scholar] [CrossRef]
- Montaldo, S.; Oniciuc, C.; Ratto, A. Polyharmonic hypersurfaces into space forms. Isr. J. Math. 2022, 249, 343–374. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, D. On triharmonic hypersurfaces in space forms. J. Geom. Anal. 2023, 33, 263. [Google Scholar] [CrossRef]
- Branding, V. On the normal stability of triharmonic hypersurfaces in space forms. J. Geom. Anal. 2023, 33, 355. [Google Scholar] [CrossRef]
- Maeta, S.; Nakauchi, N.; Urakawa, H. Triharmonic isometric immersions into a manifold of non-positively constant curvature. Monatsh. Math. 2015, 177, 551–567. [Google Scholar] [CrossRef]
- Branding, V.; Montaldo, S.; Oniciuc, C.; Ratto, A. Polyharmonic hypersurfaces into pseudo-Riemannian space forms. Ann. Mat. Pura Appl. 2023, 202, 877–899. [Google Scholar] [CrossRef] [PubMed]
- Du, L. Triharmonic hypersurfaces with constant mean curvature in 6-dimensional pseudo-Riemannian space forms. Preprint 2023. [Google Scholar]
- Du, L. Triharmonic hypersurfaces with constant mean curvature in pseudo-Riemannian space forms. J. Geom. Phys. 2023, 190, 104859. [Google Scholar] [CrossRef]
- Sun, W.; Yang, D.; Zhu, H. A classification of triharmonic hypersurfaces in a pseudo-Riemannian space form. J. Geom. Phys. 2023, 194, 105022. [Google Scholar] [CrossRef]
- Du, L.; Luo, Y. On minimality and scalar curvature of CMC triharmonic hypersurfaces in pseudo-Riemannian space forms. Ann. Mat. Pura Appl. 2024, 203, 1793–1808. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.-Y. Recent Developments in Chen’s Biharmonic Conjecture and Some Related Topics. Mathematics 2025, 13, 1417. https://doi.org/10.3390/math13091417
Chen B-Y. Recent Developments in Chen’s Biharmonic Conjecture and Some Related Topics. Mathematics. 2025; 13(9):1417. https://doi.org/10.3390/math13091417
Chicago/Turabian StyleChen, Bang-Yen. 2025. "Recent Developments in Chen’s Biharmonic Conjecture and Some Related Topics" Mathematics 13, no. 9: 1417. https://doi.org/10.3390/math13091417
APA StyleChen, B.-Y. (2025). Recent Developments in Chen’s Biharmonic Conjecture and Some Related Topics. Mathematics, 13(9), 1417. https://doi.org/10.3390/math13091417