Semi-Supervised Attribute Selection Algorithms for Partially Labeled Multiset-Valued Data
Abstract
:1. Introduction
1.1. Research Background
1.2. Motivation and Contributions
- (1)
- Merely substituting a missing attribute value with the set of all potential values is overly simplistic and risks losing valuable information. This study advocates for the utilization of multisets to address missing attribute values. Furthermore, it demonstrates the conversion of multisets into probability distribution sets, enabling the calculation of the Hellinger distance based on these distributions to measure the dissimilarity between attribute values in an MSVDIS.
- (2)
- This explains that p-MSVDIS can induce two MSVDISs: one of which is a l-MSVDIS, and the other is a u-MSVDIS.
- (3)
- Considering indistinguishable relations, distinguishable relations, and dependence functions, this study introduces two types of importance measures for each attribute subset within a p-MSVDIS. These measures are derived from the weighted sum of importance assigned to the induced l-MSVDIS and u-MSVDIS. This combined measure, termed UM, provides a comprehensive reflection of the importance or classification capability of the attribute subset within the given p-MSVDIS.
- (4)
- The performance of the defined importance on real datasets is examined. This study uses the datasets to construct two heuristic algorithms for semi-supervised attribute selection in a p-MSVDIS.
1.3. Organization
2. Preliminaries
2.1. Multisets and Probability Distribution Sets
2.2. Multiset-Valued Decision Information Systems
3. A Partially Labeled Multiset-Valued Information System
3.1. The Definition of a p-MSVDIS
3.2. A Novel Distance Function in a p-MSVDIS
4. Importance in a p-MSVDIS
4.1. Type 1 Importance in a p-MSVDIS
4.2. Type 2 Importance in a p-MSVDIS
5. Semi-Supervised Attribute Selection in a p-MSVDIS
5.1. The Definition of Semi-Supervised Attribute Selection in a p-MSVDIS
5.2. Semi-Supervised Attribute Selection Algorithms in a p-MSVDIS
6. Experimental Analysis
6.1. Numerical Experiment
6.2. Statistical Analysis
- (a)
- The classification accuracy of SARM1 is significantly superior to SADA, Semi2MNR, FSRS, and FSDIS;
- (b)
- In terms of statistics, there is no significant difference among SARM1, SARM2, and FSFS;
- (c)
- There is no obvious difference among SARM2, FSFS, SADA, Semi2MNR, FSRS, and FSDIS.
- (a)
- The classification accuracy of SARM1 is better than that of FSDIS, SADA, and FSRS;
- (b)
- SARM2 is significantly better than SADA and FSRS;
- (c)
- In terms of statistics, there is no significant difference among SARM1, SARM2, Semi2MNR, FSFS, and FSDIS.
- (a)
- The classification accuracy of SARM1 is better than that of SADA, FSRS, Semi2MNR, and FSDIS;
- (b)
- In terms of statistics, there is no significant difference among SARM1, SARM2, and FSFS;
- (c)
- There is no significant difference among SARM2, FSFS, SADA, FSRS, Semi2MNR, and FSDIS.
6.3. Parameter Analysis
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, J.H.; Xu, Q.; Wang, W.T.; Tian, H.W. Conditional entropy for incomplete decision systems and its application in data mining. Int. J. Gen. Syst. 2012, 41, 713–728. [Google Scholar] [CrossRef]
- Hempelmann, C.F.; Sakoglu, U.; Gurupur, V.P.; Jampana, S. An entropy-based evaluation method for knowledge bases of medical information systems. Expert Syst. Appl. 2016, 46, 262–273. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, P.F.; Li, Z.W. A three-way decision method based on Gaussian kernel in a hybrid information system with images: An application in medical diagnosis. Appl. Soft Comput. 2019, 77, 734–749. [Google Scholar] [CrossRef]
- Navarrete, J.; Viejo, D.; Cazorla, M. Color smoothing for RGB-D data using entropy information. Appl. Soft Comput. 2016, 46, 361–380. [Google Scholar] [CrossRef]
- Cament, L.A.; Castillo, L.E.; Perez, J.P.; Galdames, F.J.; Perez, C.A. Fusion of local normalization and Gabor entropy weighted features for face identification. Pattern Recognit. 2014, 47, 568–577. [Google Scholar] [CrossRef]
- Swiniarski, R.W.; Skowron, A. Rough set methods in feature selection and recognition. Pattern Recognit. Lett. 2003, 24, 833–849. [Google Scholar] [CrossRef]
- Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356. [Google Scholar] [CrossRef]
- Guan, Y.Y.; Wang, H.K. Set-valued information systems. Inf. Sci. 2006, 176, 2507–2525. [Google Scholar] [CrossRef]
- Liang, J.Y.; Qian, Y.H. Information granules and entropy theory in information systems. Sci. China (Ser. F) 2008, 51, 1427–1444. [Google Scholar] [CrossRef]
- Qian, Y.H.; Liang, J.Y.; Wu, W.Z.; Dang, C.Y. Information granularity in fuzzy binary GrC model. IEEE Trans. Fuzzy Syst. 2011, 19, 253–264. [Google Scholar] [CrossRef]
- Dai, J.H.; Wang, W.T.; Xu, Q. An uncertainty measure for incomplete decision tables and its applications. IEEE Trans. Cybern. 2013, 43, 1277–1289. [Google Scholar] [CrossRef]
- Zhang, P.; Li, T.; Wang, G.; Luo, C.; Chen, H. Multi-source information fusion based on rough set theory: A review. Inf. Fusion 2021, 68, 85–117. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, X.; Xu, W.; Sang, B. Multi-granulation rough sets and uncertainty measurement for multi-source fuzzy information system. Int. J. Fuzzy Syst. 2019, 21, 1919–1937. [Google Scholar] [CrossRef]
- Hu, Q.H.; Yu, D.R.; Liu, J.; Wu, C. Neighborhood rough set based heterogeneous feature subset selection. Inf. Sci. 2008, 178, 3577–3594. [Google Scholar] [CrossRef]
- Singh, S.; Shreevastava, S.; Som, T.; Somani, G. A fuzzy similarity-based rough set approach for attribute selection in set-valued information systems. Soft Comput. 2020, 24, 4675–4691. [Google Scholar] [CrossRef]
- Wang, Y.B.; Chen, X.J.; Dong, K. Attribute reduction via local conditional entropy. Int. J. Mach. Learn. Cybern. 2019, 10, 3619–3634. [Google Scholar] [CrossRef]
- Dai, J.H.; Hu, H.; Zheng, G.J.; Hu, Q.H.; Han, H.F.; Shi, H. Attribute reduction in interval-valued information systems based on information entropies. Front. Inf. Technol. Electron. Eng. 2016, 17, 919–928. [Google Scholar] [CrossRef]
- Wang, C.Z.; Huang, Y.; Shao, M.W.; Hu, Q.H.; Chen, D.G. Feature selection based on neighborhood self-information. IEEE Trans. Cybern. 2020, 50, 4031–4042. [Google Scholar] [CrossRef]
- Dai, J.H.; Liu, Q. Semi-supervised attribute reduction for interval data based on misclassification cost. Int. J. Mach. Learn. Cybern. 2022, 13, 1739–1750. [Google Scholar] [CrossRef]
- Liu, K.Y.; Yang, X.B.; Yu, H.L.; Mi, J.S.; Wang, P.X. Rough set based semi-supervised feature selection via ensemble selector. Knowl.-Based Syst. 2019, 165, 282–296. [Google Scholar] [CrossRef]
- Kim, K. An improved semi-supervised dimensionality reduction using feature weighting: Application to sentiment analysis. Expert Syst. Appl. 2018, 109, 49–65. [Google Scholar] [CrossRef]
- Li, Z.; Tang, J. Semi-supervised local feature selection for data classification. Sci. China (Ser. F) 2021, 64, 192108. [Google Scholar] [CrossRef]
- Zhang, W.; Miao, D.Q.; Gao, C.; Li, F. Semi-supervised attribute reduction based on rough-subspace ensemble learning. J. Chin. Comput. Syst. 2016, 37, 2727–2732. [Google Scholar]
- Ma, M.H.; Deng, T.Q.; Wang, N.; Chen, Y.M. Semi-supervised rough fuzzy Laplacian Eigenmaps for dimensionality reduction. Int. J. Mach. Learn. Cybern. 2019, 10, 397–411. [Google Scholar] [CrossRef]
- Han, Y.H.; Yang, Y.; Yan, Y.; Ma, Z.G.; Zhou, X.F. Semisupervised feature selection via spline regression for video semantic recognition. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 252–264. [Google Scholar]
- Moslemi, A.; Ahmadian, A. Subspace learning for feature selection via rank revealing QR factorization: Fast feature selection. Expert Syst. Appl. 2024, 256, 124919. [Google Scholar] [CrossRef]
- Bohrer, J.D.S.; Dorn, M. Enhancing classification with hybrid feature selection: A multi-objective genetic algorithm for high-dimensional data. Expert Syst. Appl. 2024, 255, 124518. [Google Scholar] [CrossRef]
- Sheikhpour, R.; Mohammadi, M.; Berahmand, K.; Movahed, F.S.; Khosravi, H. Robust semi-supervised multi-label feature selection based on shared subspace and manifold learning. Inf. Sci. 2025, 699, 121800. [Google Scholar] [CrossRef]
- Sheikhpour, R.; Berahmand, K.; Mohammadi, M.; Khosravi, H. Sparse feature selection using hypergraph Laplacian-based semi-supervised discriminant analysis. Pattern Recognit. 2025, 157, 110882. [Google Scholar] [CrossRef]
- Liu, K.Y.; Yang, X.B.; Ding, W.P.; Ju, H.R.; Li, T.R.; Wang, J.; Yin, T.Y. A survey on rough feature selection: Recent advances and challenges. IEEE/CAA J. Autom. Sin. 2025, 12, 125231. [Google Scholar]
- Saberi-Movahed, F.; Berahman, K.; Sheikhpour, R.; Li, Y.F.; Pan, S. Nonnegative matrix factorization in dimensionality reduction: A survey. arXiv 2024, arXiv:2405.03615. [Google Scholar]
- Yao, Y.Y. Information granulation and rough set approximation. Int. J. Intell. Syst. 2001, 16, 87–104. [Google Scholar] [CrossRef]
- Miyamoto, S. Information clustering based on fuzzy multisets. Inf. Process. Manag. 2003, 39, 195–213. [Google Scholar] [CrossRef]
- Zhao, X.R.; Hu, B.Q. Three-way decisions with decision-theoretic rough sets in multiset-valued information tables. Inf. Sci. 2020, 507, 684–699. [Google Scholar] [CrossRef]
- Jena, S.P.; Ghosh, S.K.; Tripathy, B.K. On the theory of bags and lists. Inf. Sci. 2001, 132, 241–254. [Google Scholar] [CrossRef]
- Nikulin, M.S. Hellinger distance, in Hazewinkel, Michiel, Encyclopedia of Mathematics; Springer Science: Berlin/Heidelberg, Germany, 2001; ISBN 978–1-55608-010-4. [Google Scholar]
- Huang, D.; Lin, H.; Li, Z.W. Information structures in a multiset-valued information system with application to uncertainty measurement. J. Intell. Fuzzy Syst. 2022, 43, 7447–7469. [Google Scholar] [CrossRef]
- Kryszkiewicz, M. Rules in incomplete information systems. Inf. Sci. 1999, 113, 271–292. [Google Scholar] [CrossRef]
- UCI Machine Learning Repository. Available online: http://archive.ics.uci.edu/datasets (accessed on 20 January 2024).
- Ahmed, W.; Sufyan, M.M.B.; Ahmad, T. Entropy based feature selection for fuzzy set-valued information systems. 3D Res. 2018, 9, 1–17. [Google Scholar] [CrossRef]
- Zhong, W.C.; Chen, X.J.; Nie, F.P.; Huang, J.Z. Adaptive discriminant analysis for semi-supervised feature selection. Inf. Sci. 2021, 566, 178–194. [Google Scholar] [CrossRef]
- Qian, D.; Liu, K.; Zhang, S.; Yang, X. Semi-supervised feature selection by minimum neighborhood redundancy and maximum neighborhood relevancy. Appl. Intell. 2024, 54, 7750–7764. [Google Scholar] [CrossRef]
- Narkhede, S. Understanding auc-roc curve. Towards Data Sci. 2018, 26, 220–227. [Google Scholar]
T | d | |||
---|---|---|---|---|
Sick | True | High | Flu | |
Sick | True | Low | Flu | |
Middle | ∗ | Normal | Flu | |
No | True | Normal | Flu | |
∗ | True | Normal | Rhinitis | |
Middle | False | ∗ | Rhinitis | |
No | False | Low | Health | |
No | ∗ | ∗ | Health | |
∗ | True | Low | Health |
T | d | |||
---|---|---|---|---|
Flu | ||||
Flu | ||||
Flu | ||||
Flu | ||||
Rhinitis | ||||
Rhinitis | ||||
Flu | ||||
Health | ||||
Health |
T | d | |||
---|---|---|---|---|
Flu | ||||
Flu | ||||
⋄ | ||||
Flu | ||||
Rhinitis | ||||
Rhinitis | ||||
Flu | ||||
Health | ||||
⋄ |
ID | Dataset | Logogram | Sample | Attribute | Class |
---|---|---|---|---|---|
1 | Arrhythmia | Arr | 452 | 279 | 16 |
2 | Audit risk | Aud | 776 | 26 | 2 |
3 | Australian Credit Approval | ACA | 690 | 14 | 2 |
4 | Diabetic Retinopathy Debrecen | DRD | 1151 | 19 | 2 |
5 | Ozone-Level Detection | OLD | 2534 | 73 | 2 |
6 | Parkinson Speech | PS | 1040 | 26 | 2 |
7 | Phishing Websites | PW | 2456 | 30 | 2 |
8 | Image Segmentation | IS | 2310 | 19 | 7 |
9 | Spambase | Spa | 4601 | 57 | 2 |
10 | Molecular Biology | MB | 3910 | 61 | 3 |
11 | Connect-4 | Con | 67,557 | 42 | 3 |
Dataset | Raw | FSRS | FSDIS | SADA | FSFS | Semi2MNR | SARM1 | SARM2 |
---|---|---|---|---|---|---|---|---|
Arr | 279 | 3 | 3 | 5 | 5 | 5 | 4 | 2 |
Aud | 26 | 1 | 5 | 6 | 5 | 6 | 4 | 4 |
ACA | 14 | 3 | 6 | 6 | 5 | 4 | 3 | 5 |
DRD | 19 | 3 | 6 | 6 | 4 | 8 | 4 | 3 |
OLD | 73 | 4 | 5 | 6 | 6 | 9 | 5 | 5 |
PS | 26 | 1 | 6 | 5 | 6 | 5 | 5 | 6 |
PW | 30 | 30 | 20 | 18 | 17 | 10 | 17 | 17 |
IS | 19 | 4 | 7 | 8 | 7 | 8 | 6 | 7 |
Spa | 57 | – | 7 | 9 | 8 | 9 | 15 | 16 |
MB | 61 | 14 | 10 | 9 | 9 | 11 | 10 | 16 |
Con | 42 | – | 15 | 9 | 7 | 6 | 11 | 10 |
Average | 58.73 | 7 | 7.73 | 7.91 | 7.18 | 7.36 | 7.64 | 8.27 |
Dataset | Raw Data | FSRS | FSDIS | SADA | FSFS | Semi2MNR | SARM1 | SARM2 |
---|---|---|---|---|---|---|---|---|
Arr | 0.6925 | 0.4115 | 0.4270 | 0.5819 | 0.5509 | 0.5420 | 0.5819 | 0.5941 |
Aud | 0.9936 | 0.9948 | 0.7513 | 0.9601 | 0.9803 | 0.9510 | 0.9987 | 0.9472 |
ACA | 0.8014 | 0.6232 | 0.7014 | 0.8414 | 0.8406 | 0.6362 | 0.7188 | 0.7667 |
DRD | 0.4961 | 0.5169 | 0.3970 | 0.5222 | 0.5291 | 0.5613 | 0.6655 | 0.6299 |
OLD | 0.9428 | 0.9140 | 0.8327 | 0.9238 | 0.9219 | 0.9183 | 0.9388 | 0.9357 |
PS | 1 | 0.9825 | 0.9888 | 0.6587 | 0.9908 | 0.9721 | 1 | 0.9998 |
PW | 0.9507 | 0.9552 | 0.9572 | 0.8583 | 0.9002 | 0.9507 | 0.9617 | 0.9581 |
IS | 0.9623 | 0.9316 | 0.5442 | 0.9355 | 0.9272 | 0.9368 | 0.9606 | 0.9195 |
Spa | 0.9211 | 0 | 0.8439 | 0.8213 | 0.8205 | 0.9144 | 0.9344 | 0.8496 |
MB | 0.8398 | 0.8210 | 0.7721 | 0.6793 | 0.9194 | 0.7705 | 0.8903 | 0.9075 |
Con | 0.7105 | 0 | 0.6757 | 0.7033 | 0.6750 | 0.6917 | 0.7190 | 0.7163 |
Average | 0.8464 | 0.6501 | 0.7174 | 0.7714 | 0.8233 | 0.8041 | 0.8518 | 0.8386 |
Dataset | Raw Data | FSRS | FSDIS | SADA | FSFS | Semi2MNR | SARM1 | SARM2 |
---|---|---|---|---|---|---|---|---|
Arr | 0.5420 | 0.4823 | 0.5398 | 0.5398 | 0.5225 | 0.5398 | 0.5730 | 0.5420 |
Aud | 0.9704 | 0.6997 | 0.5979 | 0.7796 | 0.8453 | 0.8827 | 0.9088 | 0.8557 |
ACA | 0.8565 | 0.6043 | 0.6725 | 0.8565 | 0.8536 | 0.6493 | 0.7478 | 0.7507 |
DRD | 0.5256 | 0.5248 | 0.4387 | 0.4231 | 0.5265 | 0.5673 | 0.5795 | 0.5308 |
OLD | 0.9365 | 0.9330 | 0.8465 | 0.8465 | 0.9248 | 0.9345 | 0.9369 | 0.9360 |
PS | 0.9971 | 0.9250 | 0.9788 | 0.5827 | 0.9788 | 0.9865 | 0.9856 | 0.9962 |
PW | 0.9491 | 0.9428 | 0.9483 | 0.9084 | 0.9292 | 0.9173 | 0.9540 | 0.9495 |
IS | 0.9390 | 0.8043 | 0.4532 | 0.8394 | 0.8961 | 0.8887 | 0.9195 | 0.8491 |
Spa | 0.9302 | 0 | 0.7440 | 0.7783 | 0.8572 | 0.8579 | 0.8970 | 0.8848 |
MB | 0.5154 | 0.6890 | 0.7129 | 0.5188 | 0.7505 | 0.5730 | 0.6433 | 0.706 |
Con | 0.6620 | 0 | 0.6633 | 0.6583 | 0.6597 | 0.6610 | 0.6710 | 0.7406 |
Average | 0.8022 | 0.6005 | 0.6905 | 0.7029 | 0.7949 | 0.7689 | 0.8015 | 0.7947 |
Dataset | Raw Data | FSRS | FSDIS | SADA | FSFS | Semi2MNR | SARM1 | SARM2 |
---|---|---|---|---|---|---|---|---|
Arr | 0.5686 | 0.5066 | 0.4845 | 0.4115 | 0.5730 | 0.5465 | 0.5530 | 0.5486 |
Aud | 0.9704 | 0.9175 | 0.8840 | 0.9639 | 0.9897 | 0.9046 | 0.9459 | 0.9240 |
ACA | 0.8406 | 0.6072 | 0.6623 | 0.8377 | 0.8333 | 0.6101 | 0.7137 | 0.7246 |
DRD | 0.5934 | 0.5222 | 0.5543 | 0.6299 | 0.6690 | 0.6142 | 0.6681 | 0.6299 |
OLD | 0.9325 | 0.9333 | 0.9321 | 0.9325 | 0.9294 | 0.9309 | 0.9353 | 0.9369 |
PS | 0.9635 | 0.9904 | 0.9894 | 0.5702 | 0.9942 | 0.9885 | 0.9923 | 0.9913 |
PW | 0.9426 | 0.9426 | 0.9340 | 0.8905 | 0.9312 | 0.9283 | 0.9450 | 0.9393 |
IS | 0.9299 | 0.8844 | 0.5039 | 0.8671 | 0.9056 | 0.9000 | 0.9429 | 0.9325 |
Spa | 0.9078 | 0 | 0.7772 | 0.6846 | 0.8765 | 0.8450 | 0.8911 | 0.9031 |
MB | 0.6524 | 0.6824 | 0.5194 | 0.5166 | 0.8025 | 0.5909 | 0.6909 | 0.6542 |
Con | 0.6377 | 0 | 0.6563 | 0.6213 | 0.5543 | 0.5643 | 0.6657 | 0.6583 |
Average | 0.8127 | 0.6351 | 0.7179 | 0.7205 | 0.8235 | 0.7658 | 0.8131 | 0.8039 |
Dataset | FSRS | FSDIS | SADA | FSFS | Semi2MNR | SARM1 | SARM2 |
---|---|---|---|---|---|---|---|
Arr | 0.6314 | 0.6413 | 0.5478 | 0.5628 | 0.6624 | 0.8256 | 0.7145 |
Aud | 0.9543 | 0.9198 | 0.9958 | 0.9997 | 0.9809 | 0.9999 | 0.9652 |
ACA | 0.6282 | 0.7769 | 0.9237 | 0.9089 | 0.7266 | 0.6923 | 0.7074 |
DRD | 0.5588 | 0.6172 | 0.5435 | 0.5883 | 0.5350 | 0.7119 | 0.6802 |
OLD | 0.5909 | 0.7037 | 0.6743 | 0.7257 | 0.7016 | 0.7414 | 0.7811 |
PS | 1 | 1 | 0.5900 | 1 | 0.9479 | 1 | 1 |
PW | 0 | 0.9913 | 0.9318 | 0.9875 | 0.9654 | 0.9921 | 0.9938 |
IS | 0.9948 | 0.8044 | 0.9975 | 0.9991 | 0.9800 | 0.9999 | 0.9880 |
Spa | 0 | 0.8683 | 0.8415 | 0.8056 | 0.8133 | 0.9247 | 0.8689 |
MB | 0.9062 | 0.8888 | 0.6925 | 0.9821 | 0.7607 | 0.9058 | 0.8703 |
Con | 0 | 0.7843 | 0.7589 | 0.6411 | 0.8266 | 0.9470 | 0.9485 |
Average | 0.5695 | 0.8178 | 0.7725 | 0.8364 | 0.8091 | 0.8855 | 0.8653 |
Dataset | FSRS | FSDIS | SADA | FSFS | Semi2MNR | SARM1 | SARM2 |
---|---|---|---|---|---|---|---|
Arr | 0.6192 | 0.5925 | 0.5370 | 0.5613 | 0.6160 | 0.7329 | 0.6666 |
Aud | 0.9970 | 0.9231 | 0.9701 | 0.9684 | 0.9809 | 0.9596 | 0.9433 |
ACA | 0.6282 | 0.7769 | 0.9237 | 0.9089 | 0.7141 | 0.6923 | 0.7074 |
DRD | 0.5588 | 0.6172 | 0.5435 | 0.5883 | 0.6531 | 0.7119 | 0.6802 |
OLD | 0.3871 | 0.4045 | 0.5438 | 0.3877 | 0.5860 | 0.6171 | 0.5355 |
PS | 0.9365 | 0.9745 | 0.6195 | 0.9677 | 0.7426 | 0.9994 | 1 |
PW | 0 | 0.9854 | 0.9578 | 0.9747 | 0.9400 | 0.9851 | 0.9852 |
IS | 0.9319 | 0.7414 | 0.9987 | 0.9957 | 0.9651 | 0.9960 | 0.9284 |
Spa | 0 | 0.8699 | 0.8505 | 0.9302 | 0.9176 | 0.9443 | 0.9340 |
MB | 0.6404 | 0.8332 | 0.5854 | 0.8092 | 0.7607 | 0.6409 | 0.6947 |
Con | 0 | 0.6556 | 0.5337 | 0.5573 | 0.5752 | 0.7551 | 0.6933 |
Average | 0.5181 | 0.7613 | 0.7331 | 0.7863 | 0.7683 | 0.8213 | 0.7971 |
Dataset | FSRS | FSDIS | SADA | FSFS | Semi2MNR | SARM1 | SARM2 |
---|---|---|---|---|---|---|---|
Arr | 44.2646 | 79.0389 | 9.5137 | 173.4523 | 2.0570 | 0.6715 | 1.2215 |
Aud | 1.5412 | 2.2547 | 3.2974 | 39.0163 | 0.66725 | 0.2792 | 0.5720 |
ACA | 0.9666 | 0.6114 | 2.3818 | 37.8134 | 0.32245 | 0.1488 | 0.1587 |
DRD | 2.4309 | 4.1497 | 7.4338 | 26.0488 | 0.79814 | 0.3184 | 0.7071 |
OLD | 132.5813 | 313.4274 | 50.0988 | 165.3208 | 8.3492 | 3.3065 | 3.5238 |
PS | 3.2669 | 6.2606 | 5.7542 | 40.4705 | 6.3004 | 0.3036 | 1.0441 |
IS | 42.6029 | 68.5449 | 27.2511 | 29.0793 | 3.9428 | 1.2997 | 4.0554 |
MB | 301.1410 | 88.9425 | 73.0712 | 122.0196 | 11.9561 | 16.0032 | 19.6206 |
Average | 66.0994 | 70.4038 | 22.3503 | 79.1526 | 4.2992 | 2.7914 | 3.8629 |
Dataset | FSRS | FSDIS | SADA | FSFS | Semi2MNR | SARM1 | SARM2 |
---|---|---|---|---|---|---|---|
Arr | 7 | 6 | 2.5 | 4 | 5 | 2.5 | 1 |
Aud | 2 | 7 | 4 | 3 | 5 | 1 | 6 |
ACA | 7 | 5 | 1 | 2 | 6 | 4 | 3 |
DRD | 6 | 7 | 5 | 4 | 3 | 1 | 2 |
OLD | 6 | 7 | 3 | 4 | 5 | 1 | 2 |
PS | 5 | 4 | 7 | 3 | 6 | 1 | 2 |
PW | 4 | 3 | 7 | 6 | 5 | 1 | 2 |
IS | 4 | 7 | 3 | 5 | 2 | 1 | 6 |
Spa | 7 | 4 | 5 | 6 | 2 | 1 | 3 |
MB | 4 | 5 | 7 | 1 | 6 | 3 | 2 |
Con | 7 | 5 | 3 | 6 | 4 | 1 | 2 |
Dataset | FSRS | FSDIS | SADA | FSFS | Semi2MNR | SARM1 | SARM2 |
---|---|---|---|---|---|---|---|
Arr | 7 | 4 | 4 | 6 | 4 | 1 | 2 |
Aud | 6 | 7 | 5 | 4 | 2 | 1 | 3 |
ACA | 7 | 5 | 1 | 2 | 6 | 4 | 3 |
DRD | 5 | 6 | 7 | 4 | 2 | 1 | 3 |
OLD | 4 | 6.5 | 6.5 | 5 | 3 | 1 | 2 |
PS | 6 | 4.5 | 7 | 4.5 | 2 | 3 | 1 |
PW | 4 | 3 | 7 | 5 | 6 | 1 | 2 |
IS | 6 | 7 | 5 | 2 | 3 | 1 | 4 |
Spa | 7 | 6 | 5 | 4 | 3 | 1 | 2 |
MB | 4 | 2 | 7 | 1 | 6 | 5 | 3 |
Con | 7 | 3 | 6 | 5 | 4 | 2 | 1 |
Dataset | FSRS | FSDIS | SADA | FSFS | Semi2MNR | SARM1 | SARM2 |
---|---|---|---|---|---|---|---|
Arr | 5 | 6 | 7 | 1 | 4 | 2 | 3 |
Aud | 5 | 7 | 2 | 1 | 6 | 3 | 4 |
ACA | 7 | 5 | 1 | 2 | 6 | 4 | 3 |
DRD | 7 | 6 | 3.5 | 1 | 5 | 2 | 3.5 |
OLD | 3 | 5 | 4 | 7 | 6 | 2 | 1 |
PS | 4 | 5 | 7 | 1 | 6 | 2 | 3 |
PW | 2 | 4 | 7 | 5 | 6 | 1 | 3 |
IS | 5 | 7 | 6 | 3 | 4 | 1 | 2 |
Spa | 7 | 5 | 6 | 3 | 4 | 2 | 1 |
MB | 3 | 6 | 7 | 1 | 5 | 2 | 4 |
Con | 7 | 3 | 4 | 6 | 5 | 1 | 2 |
Classifiers | Source | SS | df | MS | p-Value | |
---|---|---|---|---|---|---|
Groups | 126.32 | 6 | 21.05 | 27.11 | 0.0001 | |
BT | Error | 181.18 | 60 | 3.02 | ||
Total | 175 | 59 | ||||
Groups | 145.23 | 6 | 24.2 | 31.43 | 0.00002 | |
SVM | Error | 159.77 | 60 | 2.66 | ||
Total | 305 | 76 | ||||
Groups | 135.32 | 6 | 22.55 | 29.04 | 0.00006 | |
KNN | Error | 172.18 | 60 | 2.87 | ||
Total | 307.5 | 76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; He, J.; Liu, H.; Li, Z. Semi-Supervised Attribute Selection Algorithms for Partially Labeled Multiset-Valued Data. Mathematics 2025, 13, 1318. https://doi.org/10.3390/math13081318
He Y, He J, Liu H, Li Z. Semi-Supervised Attribute Selection Algorithms for Partially Labeled Multiset-Valued Data. Mathematics. 2025; 13(8):1318. https://doi.org/10.3390/math13081318
Chicago/Turabian StyleHe, Yuanzi, Jiali He, Haotian Liu, and Zhaowen Li. 2025. "Semi-Supervised Attribute Selection Algorithms for Partially Labeled Multiset-Valued Data" Mathematics 13, no. 8: 1318. https://doi.org/10.3390/math13081318
APA StyleHe, Y., He, J., Liu, H., & Li, Z. (2025). Semi-Supervised Attribute Selection Algorithms for Partially Labeled Multiset-Valued Data. Mathematics, 13(8), 1318. https://doi.org/10.3390/math13081318