Analysis of Mild Extremal Solutions in Nonlinear Caputo-Type Fractional Delay Difference Equations
Abstract
:1. Introduction
- (I)
- The introduction of an iterative method employing mild upper and lower solution approximations for Caputo fractional nabla delayed difference equations.
- (II)
- The establishment of a novel analytical framework demonstrating uniform convergence of successive approximation sequences, grounded in fundamental real and functional analysis principles.
- (III)
- The demonstration of the algorithm’s practical utility within Bidirectional Associative Memory (BAM) neural networks, demonstrating its effectiveness in improving network performance through innovative applications.
2. Background of the Main Results
2.1. Fractional Difference Calculus: Definitions
- (i)
- (ii)
- If then
- (iii)
- If then
2.2. Problem Set Up and Preliminaries
- (i)
- Pointwise Convergence: A sequence is said to converge pointwise on S if, for every , the limit
- (ii)
- Uniformly Cauchy: The sequence is uniformly Cauchy if, for every , there exists such that whenever for any in
2.3. Initial Assessments on Mild Extremal Solutions
3. Main Results
3.1. Theoretical Foundation of the Algorithm
- (1)
- monotonically non-decreasing/non-increasing over the set , that is and the inequalities are satisfied.
- (2)
- converge uniformly on , specifically as we have where α and β represent the minimal and maximal mild solutions of Equation (1) and
3.2. Algorithm for Approximation
4. Applications
4.1. Numerical Techniques: Advantages and Methodological Insights
4.2. BAM Neural Networks with Constant Delay
- the activation functions ;
- the fractional orders the delay
- the initial functions
- the parameters
- the initial and and and and
4.3. Analysis of Proposed Graphs
- -
- The sequences and , representing mild lower and upper solutions, respectively, demonstrate distinct monotonic behaviors. Specifically, the sequence is non-decreasing while the sequence is non-increasing. This behavior is clearly illustrated in Figure 1, Figure 2 and Figure 3. Further supporting evidence is presented in Figure A1, Figure A2, Figure A3, Figure A4, Figure A5, Figure A6 and Figure A7 within the Appendix B. Additionally, Table 1 and Table 2, as well as all tables included in Appendix A, provide data that reinforce these findings.
- -
- -
- -
- Smaller fractional orders (refer to specific Figure 1 and Figure A1, and Table 1 and Table A9, Table A10, Table A11, Table A12, Table A13, Table A14 and Table A15) enhance the convergence rates for variables and , with acceleration becoming more evident as the fractional order approaches zero. Conversely, larger orders, depicted in certain Figure 2 and Figure 3 and Table 2 and Table A16, Table A17, Table A18, Table A19, Table A20, Table A21 and Table A22 nearing one, tend to decelerate this process.
5. Final Comments and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Caputo-type Fractional Nabla Difference Equation | |
Initial Value Problem | |
Caputo-type Fractional Nabla Difference System | |
Coupled of mild lower and upper solutions | |
Absolute error | |
BAM | Bidirectional associative memory |
Appendix A. Tables of the Numerical Simulations of Example 1
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 0.437996368 | 0.537998704 | 0.537998814 | 0.537998821 | 0.537998821 | 0.537998821 | 0.537998821 | 1.11022 |
2 | 0.406994552 | 0.529398185 | 0.549398534 | 0.54939857 | 0.549398573 | 0.549398573 | 0.549398573 | 2.22045 |
3 | 0.38374319 | 0.516047841 | 0.553568246 | 0.557568418 | 0.557568433 | 0.557568434 | 0.557568434 | 1.88738 |
4 | 0.364367055 | 0.500322584 | 0.554122943 | 0.563019312 | 0.563819353 | 0.563819356 | 0.563819357 | 2.47345 |
5 | 0.347412937 | 0.483113009 | 0.552263237 | 0.566451852 | 0.568752724 | 0.568912737 | 0.568912738 | 1.26572 |
6 | 0.332154231 | 0.464864411 | 0.548589437 | 0.568216337 | 0.572669243 | 0.573185114 | 0.573217118 | 3.20039 |
7 | 0.318167084 | 0.445836546 | 0.543458181 | 0.568513153 | 0.57573209 | 0.576815512 | 0.576945952 | 0.000130441 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 0.637999509 | 0.537998906 | 0.537998828 | 0.537998821 | 0.537998821 | 0.537998821 | 0.537998821 | 1.11022 |
2 | 0.706999263 | 0.569399246 | 0.54939862 | 0.549398576 | 0.549398573 | 0.549398573 | 0.549398573 | 2.88658 |
3 | 0.758749079 | 0.596049768 | 0.56156857 | 0.557568448 | 0.557568435 | 0.557568434 | 0.557568434 | 6.77236 |
4 | 0.801873926 | 0.620325376 | 0.574123598 | 0.564619409 | 0.563819361 | 0.563819357 | 0.563819357 | 2.36732 |
5 | 0.839608166 | 0.643116661 | 0.587264296 | 0.571252061 | 0.569072752 | 0.568912739 | 0.568912738 | 1.14588 |
6 | 0.873568983 | 0.664868916 | 0.601090958 | 0.577816704 | 0.573789307 | 0.573249122 | 0.573217118 | 3.2004 |
7 | 0.904699732 | 0.685841895 | 0.615647717 | 0.584513722 | 0.57825221 | 0.57707153 | 0.576945952 | 0.000125578 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 1.396000036 | 1.411000108 | 1.411000116 | 1.411000116 | 1.411000116 | 1.411000116 | 1.410999999 | 1.1783 |
2 | 1.344000053 | 1.368720135 | 1.369170158 | 1.369170161 | 1.369170161 | 1.369170161 | 1.369169998 | 1.62648 |
3 | 1.305000067 | 1.337565144 | 1.338371582 | 1.338385087 | 1.338385088 | 1.338385088 | 1.338384898 | 1.90134 |
4 | 1.272500078 | 1.311972644 | 1.313088697 | 1.313124453 | 1.31312486 | 1.31312486 | 1.313124651 | 2.09129 |
5 | 1.244062588 | 1.289856702 | 1.291247269 | 1.291312337 | 1.29131347 | 1.291313482 | 1.291313259 | 2.23015 |
6 | 1.218468847 | 1.270174351 | 1.271810181 | 1.271910778 | 1.271912916 | 1.271912961 | 1.271912728 | 2.33124 |
7 | 1.195007917 | 1.252317192 | 1.254172692 | 1.254314507 | 1.254317898 | 1.254318001 | 1.254317761 | 2.40139 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 1.426000363 | 1.411000128 | 1.411000117 | 1.411000116 | 1.411000116 | 1.411000116 | 1.410999999 | 1.1783 |
2 | 1.389000544 | 1.369620188 | 1.369170163 | 1.369170161 | 1.369170161 | 1.369170161 | 1.369169998 | 1.62648 |
3 | 1.361250681 | 1.339365231 | 1.338398593 | 1.338385089 | 1.338385088 | 1.338385088 | 1.338384898 | 1.90134 |
4 | 1.338125794 | 1.314672766 | 1.313156216 | 1.313125266 | 1.31312486 | 1.31312486 | 1.313124651 | 2.09143 |
5 | 1.317891518 | 1.293456857 | 1.291365422 | 1.291314772 | 1.291313495 | 1.291313482 | 1.291313259 | 2.23073 |
6 | 1.29968067 | 1.274674538 | 1.271987406 | 1.271915645 | 1.271913002 | 1.271912962 | 1.271912728 | 2.34001 |
7 | 1.282987392 | 1.257717411 | 1.254416373 | 1.254322618 | 1.254318091 | 1.254318005 | 1.254317761 | 2.43355 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 5.515231883 | 5.559582255 | 5.562412989 | 5.562412992 | 5.562412993 | 5.562412993 | 5.562412992 | 4.99545 |
2 | 5.52741739 | 5.600804981 | 5.608613012 | 5.609382574 | 5.609382576 | 5.609382576 | 5.609382575 | 1.11709 |
3 | 5.538384345 | 5.633524321 | 5.647344807 | 5.649546295 | 5.64970249 | 5.649702491 | 5.649702489 | 1.762 |
4 | 5.548620171 | 5.660444993 | 5.680987846 | 5.685237681 | 5.685726669 | 5.685758199 | 5.685758196 | 2.32806 |
5 | 5.558344205 | 5.682845799 | 5.710649797 | 5.717531562 | 5.718540337 | 5.718659097 | 5.718665373 | 6.27598 |
6 | 5.567679278 | 5.701477698 | 5.736972338 | 5.747041769 | 5.748762811 | 5.749046283 | 5.749073344 | 2.70609 |
7 | 5.576703182 | 5.716837819 | 5.760375268 | 5.774162464 | 5.776790813 | 5.777336898 | 5.777408948 | 7.20504 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 5.599744318 | 5.565644401 | 5.562412995 | 5.562412993 | 5.562412993 | 5.562412993 | 5.562412992 | 4.99545 |
2 | 5.679539772 | 5.618922475 | 5.610120113 | 5.609382578 | 5.609382576 | 5.609382576 | 5.609382575 | 1.11709 |
3 | 5.751355681 | 5.667291261 | 5.651848584 | 5.649859805 | 5.649702492 | 5.649702491 | 5.649702489 | 1.82742 |
4 | 5.818383863 | 5.712665191 | 5.689972717 | 5.686305112 | 5.685789653 | 5.685758199 | 5.685758196 | 2.70021 |
5 | 5.882060635 | 5.755893791 | 5.725607424 | 5.719888876 | 5.718785287 | 5.718671658 | 5.718665373 | 6.28541 |
6 | 5.943190337 | 5.797449301 | 5.759406727 | 5.751306411 | 5.749362847 | 5.749101374 | 5.749073344 | 2.80299 |
7 | 6.002282382 | 5.837629689 | 5.791805096 | 5.781025084 | 5.777972605 | 5.777485475 | 5.777408948 | 7.65272 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 9.030463766 | 9.083619004 | 9.085337684 | 9.085337686 | 9.085337686 | 9.085337686 | 9.085337685 | 9.99089 |
2 | 9.054834779 | 9.144167027 | 9.149628394 | 9.149998144 | 9.149998145 | 9.149998145 | 9.149998143 | 2.24417 |
3 | 9.076768691 | 9.194229315 | 9.204634101 | 9.205725829 | 9.205800379 | 9.20580038 | 9.205800376 | 3.60171 |
4 | 9.097240342 | 9.237266338 | 9.253555835 | 9.255709587 | 9.255942812 | 9.255957619 | 9.255957614 | 4.98034 |
5 | 9.11668841 | 9.274899763 | 9.297877978 | 9.301423768 | 9.301905311 | 9.301960772 | 9.301963711 | 2.93908 |
6 | 9.135358556 | 9.308073633 | 9.338457109 | 9.343715296 | 9.344538451 | 9.344670204 | 9.344682822 | 1.26173 |
7 | 9.153406363 | 9.337407956 | 9.375851711 | 9.383132769 | 9.384393458 | 9.384646227 | 9.384679663 | 3.3436 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 9.133792986 | 9.086904479 | 9.085337687 | 9.085337686 | 9.085337686 | 9.085337686 | 9.085337685 | 9.99089 |
2 | 9.240827375 | 9.155798899 | 9.150367973 | 9.149998146 | 9.149998145 | 9.149998145 | 9.149998143 | 2.24417 |
3 | 9.337158326 | 9.21727219 | 9.206900154 | 9.205874685 | 9.20580038 | 9.20580038 | 9.205800376 | 3.63395 |
4 | 9.427067212 | 9.274142376 | 9.258156405 | 9.25621554 | 9.255972427 | 9.255957619 | 9.255957614 | 5.16182 |
5 | 9.512480655 | 9.32768352 | 9.305641728 | 9.302539911 | 9.302019856 | 9.301966663 | 9.301963711 | 2.95179 |
6 | 9.59447756 | 9.378613628 | 9.350232702 | 9.345733177 | 9.344817726 | 9.344695897 | 9.344682822 | 1.3075 |
7 | 9.673741234 | 9.427390655 | 9.392507044 | 9.386378698 | 9.384941232 | 9.384715174 | 9.384679663 | 3.55108 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 0.637999509 | 0.537998906 | 0.537998828 | 0.537998821 | 0.537998821 | 0.537998821 | 0.537998821 | 1.11022 |
2 | 0.65179946 | 0.554199544 | 0.534198984 | 0.534198949 | 0.534198946 | 0.534198946 | 0.534198946 | 1.55431 |
3 | 0.659389433 | 0.558769643 | 0.540288961 | 0.536288896 | 0.536288888 | 0.536288887 | 0.536288887 | 2.9976 |
4 | 0.664702414 | 0.561720699 | 0.542495948 | 0.537791901 | 0.536991873 | 0.53699187 | 0.53699187 | 2.72584 |
5 | 0.668819974 | 0.563945763 | 0.544037363 | 0.53875172 | 0.537852482 | 0.537692477 | 0.537692477 | 6.06242 |
6 | 0.672196374 | 0.565748491 | 0.545257291 | 0.53951253 | 0.538499685 | 0.538279521 | 0.538247519 | 3.20016 |
7 | 0.675066313 | 0.56727208 | 0.546278949 | 0.540151944 | 0.539042693 | 0.538774433 | 0.538725663 | 4.87704 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 1.396000036 | 1.411000108 | 1.411000116 | 1.411000116 | 1.411000116 | 1.411000116 | 1.410999999 | 1.1783 |
2 | 1.385600039 | 1.404320105 | 1.404770122 | 1.404770124 | 1.404770124 | 1.404770124 | 1.404769998 | 1.25378 |
3 | 1.379880041 | 1.399869108 | 1.400315527 | 1.400329029 | 1.400329029 | 1.400329029 | 1.400328898 | 1.30508 |
4 | 1.375876043 | 1.39670901 | 1.39718135 | 1.3972009 | 1.397201305 | 1.397201305 | 1.397201171 | 1.34075 |
5 | 1.372772944 | 1.394248834 | 1.394742523 | 1.394765505 | 1.394765988 | 1.394766 | 1.394765863 | 1.36826 |
6 | 1.370228402 | 1.392227582 | 1.392738959 | 1.392764519 | 1.392765073 | 1.392765093 | 1.392764955 | 1.38704 |
7 | 1.368065543 | 1.390507955 | 1.3910344 | 1.391062072 | 1.391062686 | 1.391062712 | 1.391062571 | 1.40447 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 1.426000363 | 1.411000128 | 1.411000117 | 1.411000116 | 1.411000116 | 1.411000116 | 1.410999999 | 1.1783 |
2 | 1.418600399 | 1.40522014 | 1.404770125 | 1.404770124 | 1.404770124 | 1.404770124 | 1.404769998 | 1.25378 |
3 | 1.414530419 | 1.400949146 | 1.400342531 | 1.400329029 | 1.400329029 | 1.400329029 | 1.400328898 | 1.30508 |
4 | 1.411681433 | 1.397897051 | 1.397216455 | 1.397201711 | 1.397201306 | 1.397201305 | 1.397201171 | 1.34093 |
5 | 1.409473469 | 1.395516077 | 1.394782894 | 1.39476664 | 1.394766013 | 1.394766 | 1.394765863 | 1.36854 |
6 | 1.407662938 | 1.393558187 | 1.392783366 | 1.392765881 | 1.39276511 | 1.392765094 | 1.392764955 | 1.3947 |
7 | 1.406123987 | 1.391891784 | 1.391082138 | 1.391063616 | 1.391062732 | 1.391062713 | 1.391062571 | 1.41657 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 5.515231883 | 5.559582255 | 5.562412989 | 5.562412992 | 5.562412993 | 5.562412993 | 5.562412992 | 4.99545 |
2 | 5.516755071 | 5.559933536 | 5.564613122 | 5.565391586 | 5.565391587 | 5.565391587 | 5.565391586 | 5.62432 |
3 | 5.517592825 | 5.561991456 | 5.567221372 | 5.568234381 | 5.568393565 | 5.568393565 | 5.568393565 | 5.78969 |
4 | 5.518179253 | 5.56353138 | 5.569106674 | 5.570247933 | 5.570431954 | 5.570464276 | 5.570464275 | 5.60552 |
5 | 5.518633734 | 5.564747011 | 5.570584641 | 5.571828226 | 5.572036905 | 5.572081596 | 5.572088064 | 6.46791 |
6 | 5.519006408 | 5.565750227 | 5.571801776 | 5.57312997 | 5.573359197 | 5.573413659 | 5.573423525 | 9.86656 |
7 | 5.519323182 | 5.566604573 | 5.572837798 | 5.574238658 | 5.574485531 | 5.574548204 | 5.574560932 | 1.27281 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 5.599744318 | 5.565644401 | 5.562412995 | 5.562412993 | 5.562412993 | 5.562412993 | 5.562412992 | 4.99545 |
2 | 5.60971875 | 5.571534931 | 5.566138125 | 5.565391588 | 5.565391587 | 5.565391587 | 5.565391586 | 5.62433 |
3 | 5.615204687 | 5.575174147 | 5.569419413 | 5.568553867 | 5.568393566 | 5.568393565 | 5.568393565 | 6.52062 |
4 | 5.619044843 | 5.577756131 | 5.5716654 | 5.570705679 | 5.570496523 | 5.570464276 | 5.570464275 | 7.62753 |
5 | 5.622020964 | 5.579769748 | 5.573411927 | 5.572379322 | 5.572134238 | 5.572094536 | 5.572088064 | 6.47217 |
6 | 5.624461384 | 5.581427399 | 5.574847942 | 5.573755213 | 5.573480935 | 5.573434379 | 5.573423525 | 1.08534 |
7 | 5.62653574 | 5.582840358 | 5.576070925 | 5.57492671 | 5.574627562 | 5.574575135 | 5.574560932 | 1.42035 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 9.030463766 | 9.083619004 | 9.085337684 | 9.085337686 | 9.085337686 | 9.085337686 | 9.085337685 | 9.99089 |
2 | 9.033510143 | 9.086434568 | 9.089973068 | 9.090347081 | 9.090347081 | 9.090347081 | 9.09034708 | 1.13486 |
3 | 9.03518565 | 9.089835825 | 9.093881243 | 9.094405422 | 9.094481404 | 9.094481404 | 9.094481403 | 1.22325 |
4 | 9.036358505 | 9.09231546 | 9.096671916 | 9.097266809 | 9.097355401 | 9.097370586 | 9.097370585 | 1.27427 |
5 | 9.037267468 | 9.094259342 | 9.098850207 | 9.099500692 | 9.099601414 | 9.099622432 | 9.099625466 | 3.03425 |
6 | 9.038012817 | 9.095859784 | 9.10064124 | 9.10133736 | 9.101448153 | 9.101473773 | 9.101478401 | 4.62772 |
7 | 9.038646364 | 9.097221846 | 9.102165037 | 9.102900195 | 9.103019626 | 9.103049114 | 9.103055083 | 5.96959 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 9.133792986 | 9.086904479 | 9.085337687 | 9.085337686 | 9.085337686 | 9.085337686 | 9.085337685 | 9.99089 |
2 | 9.147172285 | 9.094501763 | 9.090721222 | 9.090347082 | 9.090347081 | 9.090347081 | 9.09034708 | 1.13486 |
3 | 9.154530899 | 9.099117704 | 9.095018481 | 9.094557141 | 9.094481404 | 9.094481404 | 9.094481403 | 1.2593 |
4 | 9.159681929 | 9.102377415 | 9.098003904 | 9.097485646 | 9.097385772 | 9.097370586 | 9.097370585 | 1.37217 |
5 | 9.163673977 | 9.104912015 | 9.100325575 | 9.099764451 | 9.099647207 | 9.099628503 | 9.099625466 | 3.03658 |
6 | 9.166947457 | 9.10699393 | 9.102232933 | 9.101636747 | 9.10150543 | 9.101483492 | 9.101478401 | 5.09094 |
7 | 9.169729915 | 9.108765377 | 9.103855848 | 9.103229743 | 9.103086453 | 9.103061745 | 9.103055083 | 6.66205 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 0.637999509 | 0.537998906 | 0.537998828 | 0.537998821 | 0.537998821 | 0.537998821 | 0.537998821 | 1.11022 |
2 | 0.762199067 | 0.584598827 | 0.564598168 | 0.564598118 | 0.564598115 | 0.564598115 | 0.564598115 | 1.77636 |
3 | 0.880188647 | 0.639409504 | 0.588927844 | 0.584927682 | 0.584927667 | 0.584927666 | 0.584927666 | 9.65894 |
4 | 0.994245241 | 0.70206583 | 0.616086779 | 0.601782453 | 0.600982388 | 0.600982383 | 0.600982382 | 2.27345 |
5 | 1.10545042 | 0.772270365 | 0.650021946 | 0.617523047 | 0.614063659 | 0.613903639 | 0.613903637 | 1.53252 |
6 | 1.214431496 | 0.849779164 | 0.694117363 | 0.634423227 | 0.625333193 | 0.624472981 | 0.624440974 | 3.20066 |
7 | 1.321596221 | 0.934387826 | 0.751413616 | 0.654780323 | 0.636057464 | 0.63332433 | 0.633121941 | 0.000202389 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 1.396000036 | 1.411000108 | 1.411000116 | 1.411000116 | 1.411000116 | 1.411000116 | 1.410999999 | 1.1783 |
2 | 1.302400068 | 1.333120176 | 1.333570203 | 1.333570206 | 1.333570206 | 1.333570206 | 1.333569998 | 2.08389 |
3 | 1.213480098 | 1.261021218 | 1.262187671 | 1.262201179 | 1.262201179 | 1.262201179 | 1.262200897 | 2.82693 |
4 | 1.127524128 | 1.19305714 | 1.195104906 | 1.195156867 | 1.195157274 | 1.195157274 | 1.195156929 | 3.45128 |
5 | 1.043717056 | 1.128423847 | 1.131440519 | 1.131567113 | 1.131568896 | 1.131568908 | 1.13156851 | 3.98269 |
6 | 0.961586127 | 1.066642179 | 1.070650106 | 1.070898897 | 1.070903657 | 1.070903727 | 1.070903283 | 4.43489 |
7 | 0.880824046 | 1.007392475 | 1.012356153 | 1.012786378 | 1.012796358 | 1.012796589 | 1.012796108 | 4.80863 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 1.426000363 | 1.411000128 | 1.411000117 | 1.411000116 | 1.411000116 | 1.411000116 | 1.410999999 | 1.1783 |
2 | 1.35940069 | 1.334020239 | 1.333570209 | 1.333570206 | 1.333570206 | 1.333570206 | 1.333569998 | 2.08389 |
3 | 1.296131 | 1.263541341 | 1.262214687 | 1.26220118 | 1.262201179 | 1.262201179 | 1.262200897 | 2.82693 |
4 | 1.2349703 | 1.197845336 | 1.195204837 | 1.195157681 | 1.195157274 | 1.195157274 | 1.195156929 | 3.45141 |
5 | 1.175338617 | 1.136084928 | 1.131675336 | 1.131570848 | 1.131568921 | 1.131568909 | 1.13156851 | 3.98345 |
6 | 1.116899568 | 1.077750714 | 1.071096239 | 1.070909347 | 1.070903793 | 1.070903728 | 1.070903283 | 4.4448 |
7 | 1.059434504 | 1.02250005 | 1.013103405 | 1.012809357 | 1.012796797 | 1.012796594 | 1.012796108 | 4.86216 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 5.515231883 | 5.559582255 | 5.562412989 | 5.562412992 | 5.562412993 | 5.562412993 | 5.562412992 | 4.99545 |
2 | 5.528940578 | 5.605910915 | 5.615148081 | 5.615908669 | 5.615908671 | 5.615908671 | 5.615908669 | 1.43694 |
3 | 5.541963838 | 5.64348346 | 5.661463116 | 5.664261419 | 5.66441386 | 5.66441386 | 5.664413858 | 2.76659 |
4 | 5.554552989 | 5.673738515 | 5.701981981 | 5.70846327 | 5.709120406 | 5.709150845 | 5.709150841 | 4.36036 |
5 | 5.566827412 | 5.697390786 | 5.736718761 | 5.748842684 | 5.750567755 | 5.750729859 | 5.750735857 | 5.9987 |
6 | 5.578856346 | 5.714865941 | 5.76542356 | 5.785442927 | 5.789004977 | 5.789516275 | 5.789553885 | 3.76107 |
7 | 5.590684798 | 5.726444089 | 5.787696489 | 5.818135839 | 5.824496575 | 5.825740395 | 5.82587696 | 0.000136565 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 5.599744318 | 5.565644401 | 5.562412995 | 5.562412993 | 5.562412993 | 5.562412993 | 5.562412992 | 4.99545 |
2 | 5.689514204 | 5.626830065 | 5.616637149 | 5.615908673 | 5.615908671 | 5.615908671 | 5.615908669 | 1.43694 |
3 | 5.774795596 | 5.68643966 | 5.667107117 | 5.664567419 | 5.664413861 | 5.66441386 | 5.664413858 | 2.82886 |
4 | 5.857234274 | 5.745069132 | 5.715387739 | 5.70986285 | 5.709181209 | 5.709150846 | 5.709150841 | 4.8081 |
5 | 5.937611986 | 5.802863926 | 5.762338764 | 5.752735373 | 5.750898861 | 5.750741872 | 5.750735857 | 6.01522 |
6 | 6.016382144 | 5.85983143 | 5.808516071 | 5.793946651 | 5.790071776 | 5.789592423 | 5.789553885 | 3.85376 |
7 | 6.093839465 | 5.915932078 | 5.854306341 | 5.834174288 | 5.827143799 | 5.826019805 | 5.82587696 | 0.000142845 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 9.030463766 | 9.083619004 | 9.085337684 | 9.085337686 | 9.085337686 | 9.085337686 | 9.085337685 | 9.99089 |
2 | 9.057881156 | 9.151691185 | 9.158057338 | 9.158422799 | 9.1584228 | 9.1584228 | 9.158422797 | 2.88387 |
3 | 9.083927676 | 9.209981145 | 9.223217821 | 9.224602611 | 9.224675351 | 9.224675351 | 9.224675345 | 5.61593 |
4 | 9.109105979 | 9.260271505 | 9.282207933 | 9.285470794 | 9.28578544 | 9.285799724 | 9.285799715 | 9.12941 |
5 | 9.133654824 | 9.303409651 | 9.335568757 | 9.341743073 | 9.342572056 | 9.342648157 | 9.342650958 | 2.80144 |
6 | 9.157712692 | 9.339870573 | 9.383498084 | 9.393778588 | 9.395497158 | 9.395737306 | 9.395754921 | 1.76152 |
7 | 9.181369596 | 9.36994133 | 9.426014801 | 9.441744015 | 9.444826529 | 9.445411118 | 9.445475115 | 6.39974 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 9.133792986 | 9.086904479 | 9.085337687 | 9.085337686 | 9.085337686 | 9.085337686 | 9.085337685 | 9.99089 |
2 | 9.254206674 | 9.164893049 | 9.158788296 | 9.158422801 | 9.1584228 | 9.1584228 | 9.158422797 | 2.88387 |
3 | 9.368599677 | 9.238558428 | 9.226053461 | 9.224747845 | 9.224675351 | 9.224675351 | 9.224675345 | 5.64667 |
4 | 9.479179581 | 9.309143523 | 9.289035811 | 9.286136842 | 9.285814009 | 9.285799725 | 9.285799715 | 9.34908 |
5 | 9.586994986 | 9.377161615 | 9.348741636 | 9.343599077 | 9.34272765 | 9.342653787 | 9.342650958 | 2.82843 |
6 | 9.692654084 | 9.442861651 | 9.405815033 | 9.397838947 | 9.395998552 | 9.395772988 | 9.395754921 | 1.80672 |
7 | 9.796552196 | 9.506372671 | 9.460713338 | 9.449410796 | 9.446070964 | 9.445542045 | 9.445475115 | 6.69295 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 0.437996368 | 0.537998704 | 0.537998814 | 0.537998821 | 0.537998821 | 0.537998821 | 0.537998821 | 1.11022 |
2 | 0.431796005 | 0.514198708 | 0.534199023 | 0.534199054 | 0.534199057 | 0.534199057 | 0.534199057 | 1.44329 |
3 | 0.428385805 | 0.510768692 | 0.532288916 | 0.536289065 | 0.536289076 | 0.536289077 | 0.536289077 | 1.11022 |
4 | 0.425998665 | 0.50891969 | 0.532095901 | 0.536192105 | 0.536992131 | 0.536992133 | 0.536992133 | 2.45781 |
5 | 0.424148632 | 0.50762472 | 0.53207732 | 0.536511967 | 0.537532797 | 0.537692805 | 0.537692806 | 8.27044 |
6 | 0.422631605 | 0.506611426 | 0.532101252 | 0.536824817 | 0.538020052 | 0.538215905 | 0.538247907 | 3.20018 |
7 | 0.421342131 | 0.505769561 | 0.532136212 | 0.537105866 | 0.538443107 | 0.538672468 | 0.538726103 | 5.36347 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 0.637999509 | 0.537998906 | 0.537998828 | 0.537998821 | 0.537998821 | 0.537998821 | 0.537998821 | 1.11022 |
2 | 0.65179946 | 0.554199702 | 0.5341991 | 0.53419906 | 0.534199057 | 0.534199057 | 0.534199057 | 2.10942 |
3 | 0.659389433 | 0.558769949 | 0.540289182 | 0.536289088 | 0.536289078 | 0.536289077 | 0.536289077 | 4.10783 |
4 | 0.664702414 | 0.561721135 | 0.542496265 | 0.537792172 | 0.536992137 | 0.536992134 | 0.536992133 | 2.35219 |
5 | 0.668819974 | 0.563946315 | 0.544037768 | 0.538752064 | 0.537852813 | 0.537692806 | 0.537692806 | 7.24212 |
6 | 0.672196374 | 0.565749144 | 0.545257775 | 0.539512942 | 0.538500077 | 0.538279909 | 0.538247907 | 3.20021 |
7 | 0.675066313 | 0.567272822 | 0.546279505 | 0.540152418 | 0.53904314 | 0.538774874 | 0.538726103 | 4.87715 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 1.396000036 | 1.411000108 | 1.411000116 | 1.411000116 | 1.411000116 | 1.411000116 | 1.410999999 | 1.1783 |
2 | 1.385600039 | 1.40432009 | 1.404770111 | 1.404770113 | 1.404770113 | 1.404770113 | 1.404769999 | 1.1425 |
3 | 1.379880041 | 1.399869077 | 1.400315504 | 1.400329008 | 1.400329008 | 1.400329008 | 1.400328899 | 1.09636 |
4 | 1.375876043 | 1.396708966 | 1.397181317 | 1.397200871 | 1.397201276 | 1.397201276 | 1.397201172 | 1.04378 |
5 | 1.372772944 | 1.394248779 | 1.394742481 | 1.394765467 | 1.394765951 | 1.394765963 | 1.394765864 | 9.91774 |
6 | 1.370228402 | 1.392227517 | 1.392738909 | 1.392764474 | 1.392765029 | 1.392765049 | 1.392764955 | 9.38812 |
7 | 1.368065543 | 1.390507882 | 1.391034342 | 1.391062021 | 1.391062635 | 1.391062661 | 1.391062572 | 8.91302 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 1.426000363 | 1.411000128 | 1.411000117 | 1.411000116 | 1.411000116 | 1.411000116 | 1.410999999 | 1.1783 |
2 | 1.418600399 | 1.405220137 | 1.404770115 | 1.404770113 | 1.404770113 | 1.404770113 | 1.404769999 | 1.1425 |
3 | 1.414530419 | 1.40094914 | 1.400342512 | 1.400329009 | 1.400329008 | 1.400329008 | 1.400328899 | 1.09636 |
4 | 1.411681433 | 1.397897042 | 1.397216429 | 1.397201682 | 1.397201276 | 1.397201276 | 1.397201172 | 1.04391 |
5 | 1.409473469 | 1.395516065 | 1.394782861 | 1.394766603 | 1.394765976 | 1.394765963 | 1.394765864 | 9.9211 |
6 | 1.407662938 | 1.393558172 | 1.392783329 | 1.392765838 | 1.392765066 | 1.39276505 | 1.392764955 | 9.46691 |
7 | 1.406123987 | 1.391891766 | 1.391082095 | 1.391063567 | 1.391062681 | 1.391062662 | 1.391062572 | 9.03859 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 5.515231883 | 5.559582255 | 5.562412989 | 5.562412992 | 5.562412993 | 5.562412993 | 5.562412992 | 4.99545 |
2 | 5.528940578 | 5.60759934 | 5.614543514 | 5.615321983 | 5.615321984 | 5.615321984 | 5.615321983 | 9.14365 |
3 | 5.541963838 | 5.648847736 | 5.661223448 | 5.662988492 | 5.663147678 | 5.663147678 | 5.663147677 | 1.24112 |
4 | 5.554552989 | 5.684745625 | 5.703789423 | 5.706838827 | 5.707185721 | 5.707218044 | 5.707218042 | 1.44531 |
5 | 5.566827412 | 5.716016293 | 5.74291456 | 5.747582078 | 5.748169019 | 5.748247861 | 5.748254328 | 6.46695 |
6 | 5.578856346 | 5.743107942 | 5.779014354 | 5.785659546 | 5.786550797 | 5.786692348 | 5.786709085 | 1.67375 |
7 | 5.590684798 | 5.766330332 | 5.812376205 | 5.821376457 | 5.822649802 | 5.822872754 | 5.822903965 | 3.1211 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 5.599744318 | 5.565644401 | 5.562412995 | 5.562412993 | 5.562412993 | 5.562412993 | 5.562412992 | 4.99545 |
2 | 5.689514204 | 5.624050452 | 5.616068526 | 5.615321986 | 5.615321984 | 5.615321984 | 5.615321983 | 9.14365 |
3 | 5.774795596 | 5.679056785 | 5.664883993 | 5.663307983 | 5.663147679 | 5.663147678 | 5.663147677 | 1.30766 |
4 | 5.857234274 | 5.731746737 | 5.710274163 | 5.707625295 | 5.707250292 | 5.707218044 | 5.707218042 | 1.74551 |
5 | 5.937611986 | 5.782642585 | 5.753008582 | 5.748991526 | 5.748334445 | 5.748260802 | 5.748254328 | 6.4736 |
6 | 6.016382144 | 5.8320517 | 5.79359873 | 5.787872485 | 5.786854604 | 5.786726825 | 5.786709085 | 1.77399 |
7 | 6.093839465 | 5.88017673 | 5.832424981 | 5.82460527 | 5.823134762 | 5.822937747 | 5.822903965 | 3.37821 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 9.030463766 | 9.083619004 | 9.085337684 | 9.085337686 | 9.085337686 | 9.085337686 | 9.085337685 | 9.99089 |
2 | 9.057881156 | 9.153329771 | 9.158243215 | 9.158617231 | 9.158617231 | 9.158617231 | 9.15861723 | 1.83872 |
3 | 9.083927676 | 9.214907787 | 9.224521888 | 9.225395418 | 9.2254714 | 9.225471401 | 9.225471398 | 2.55775 |
4 | 9.109105979 | 9.270192991 | 9.285913685 | 9.287476478 | 9.287640029 | 9.287655215 | 9.287655211 | 3.15173 |
5 | 9.133654824 | 9.320112947 | 9.343290562 | 9.345764838 | 9.346040327 | 9.346076476 | 9.346079508 | 3.03194 |
6 | 9.157712692 | 9.365236504 | 9.397187134 | 9.400819533 | 9.401238667 | 9.401302149 | 9.401309808 | 7.65943 |
7 | 9.181369596 | 9.405953208 | 9.447970787 | 9.453026159 | 9.453629235 | 9.453727247 | 9.453741193 | 1.39457 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 9.133792986 | 9.086904479 | 9.085337687 | 9.085337686 | 9.085337686 | 9.085337686 | 9.085337685 | 9.99089 |
2 | 9.254206674 | 9.164025346 | 9.158991374 | 9.158617232 | 9.158617232 | 9.158617231 | 9.15861723 | 1.83872 |
3 | 9.368599677 | 9.236315498 | 9.226362791 | 9.22554714 | 9.225471401 | 9.225471401 | 9.225471398 | 2.59046 |
4 | 9.479179581 | 9.305285619 | 9.289273801 | 9.287844841 | 9.287670401 | 9.287655215 | 9.287655211 | 3.2969 |
5 | 9.586994986 | 9.371665597 | 9.348680756 | 9.346419369 | 9.346116399 | 9.346082547 | 9.346079508 | 3.03911 |
6 | 9.692654084 | 9.435885844 | 9.405198722 | 9.401843125 | 9.401375461 | 9.401317936 | 9.401309808 | 8.1274 |
7 | 9.796552196 | 9.498230659 | 9.459271531 | 9.454519406 | 9.453843416 | 9.453756296 | 9.453741193 | 1.51031 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 0.437996368 | 0.537998704 | 0.537998814 | 0.537998821 | 0.537998821 | 0.537998821 | 0.537998821 | 1.11022 |
2 | 0.3821931 | 0.54459764 | 0.564597962 | 0.564598 | 0.564598004 | 0.564598004 | 0.564598004 | 3.33067 |
3 | 0.329179994 | 0.527406714 | 0.580927189 | 0.584927368 | 0.584927385 | 0.584927386 | 0.584927386 | 2.33147 |
4 | 0.277933993 | 0.489260897 | 0.586485353 | 0.600181848 | 0.600981897 | 0.600981902 | 0.600981903 | 2.74048 |
5 | 0.227969141 | 0.431782799 | 0.580459369 | 0.610162016 | 0.613742922 | 0.61390294 | 0.613902941 | 1.7208 |
6 | 0.179003586 | 0.356072509 | 0.561949206 | 0.613813575 | 0.623572158 | 0.624408051 | 0.624440057 | 3.20063 |
7 | 0.130854124 | 0.262947093 | 0.530032697 | 0.60944018 | 0.63033605 | 0.632913554 | 0.633120803 | 0.000207249 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 0.637999509 | 0.537998906 | 0.537998828 | 0.537998821 | 0.537998821 | 0.537998821 | 0.537998821 | 1.11022 |
2 | 0.762199067 | 0.584598669 | 0.564598053 | 0.564598007 | 0.564598004 | 0.564598004 | 0.564598004 | 9.99201 |
3 | 0.880188647 | 0.639409071 | 0.588927529 | 0.584927402 | 0.584927387 | 0.584927386 | 0.584927386 | 7.77156 |
4 | 0.994245241 | 0.702065034 | 0.616086199 | 0.601781964 | 0.600981908 | 0.600981903 | 0.600981903 | 2.63067 |
5 | 1.10545042 | 0.772269138 | 0.650021053 | 0.61752232 | 0.614062961 | 0.613902943 | 0.613902941 | 1.58358 |
6 | 1.214431496 | 0.849777449 | 0.694116121 | 0.634422231 | 0.625332265 | 0.624472063 | 0.624440057 | 3.20062 |
7 | 1.321596221 | 0.934385579 | 0.751412001 | 0.654779024 | 0.636056297 | 0.63332319 | 0.633120803 | 0.000202387 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 1.396000036 | 1.411000108 | 1.411000116 | 1.411000116 | 1.411000116 | 1.411000116 | 1.410999999 | 1.1783 |
2 | 1.302400068 | 1.333120192 | 1.333570214 | 1.333570217 | 1.333570217 | 1.333570217 | 1.333569997 | 2.19505 |
3 | 1.213480098 | 1.261021261 | 1.262187703 | 1.262201208 | 1.262201209 | 1.262201209 | 1.262200896 | 3.12515 |
4 | 1.127524128 | 1.193057219 | 1.195104965 | 1.195156921 | 1.195157327 | 1.195157328 | 1.195156928 | 3.99442 |
5 | 1.043717056 | 1.128423969 | 1.131440612 | 1.131567196 | 1.131568978 | 1.13156899 | 1.131568509 | 4.81555 |
6 | 0.961586127 | 1.06664235 | 1.070650238 | 1.070899014 | 1.070903771 | 1.07090384 | 1.070903281 | 5.5925 |
7 | 0.880824046 | 1.007392699 | 1.012356328 | 1.012786531 | 1.012796507 | 1.012796738 | 1.012796106 | 6.3185 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 1.426000363 | 1.411000128 | 1.411000117 | 1.411000116 | 1.411000116 | 1.411000116 | 1.410999999 | 1.1783 |
2 | 1.35940069 | 1.334020242 | 1.33357022 | 1.333570217 | 1.333570217 | 1.333570217 | 1.333569997 | 2.19505 |
3 | 1.296131 | 1.263541349 | 1.262214715 | 1.262201209 | 1.262201209 | 1.262201209 | 1.262200896 | 3.12515 |
4 | 1.2349703 | 1.197845352 | 1.195204885 | 1.195157734 | 1.195157328 | 1.195157328 | 1.195156928 | 3.99458 |
5 | 1.175338617 | 1.136084954 | 1.131675407 | 1.131570929 | 1.131569003 | 1.13156899 | 1.131568509 | 4.81643 |
6 | 1.116899568 | 1.077750751 | 1.071096335 | 1.070909458 | 1.070903907 | 1.070903841 | 1.070903281 | 5.60257 |
7 | 1.059434504 | 1.022500101 | 1.013103525 | 1.012809501 | 1.012796945 | 1.012796743 | 1.012796106 | 6.37197 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 5.515231883 | 5.559582255 | 5.562412989 | 5.562412992 | 5.562412993 | 5.562412993 | 5.562412992 | 4.99545 |
2 | 5.516755071 | 5.558245111 | 5.565217689 | 5.565978272 | 5.565978273 | 5.565978273 | 5.565978272 | 1.0913 |
3 | 5.517592825 | 5.557977921 | 5.566977386 | 5.569037957 | 5.569190395 | 5.569190396 | 5.569190394 | 1.76058 |
4 | 5.518179253 | 5.556950764 | 5.567170315 | 5.57082984 | 5.571330221 | 5.571360659 | 5.571360656 | 2.4298 |
5 | 5.518633734 | 5.555410363 | 5.566113823 | 5.571765513 | 5.572821677 | 5.572951442 | 5.572957443 | 6.00164 |
6 | 5.519006408 | 5.553490574 | 5.563897531 | 5.571960302 | 5.573790236 | 5.574133496 | 5.5741647 | 3.12043 |
7 | 5.519323182 | 5.551267629 | 5.560527401 | 5.571440372 | 5.574264932 | 5.574988397 | 5.575085797 | 9.74004 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 5.599744318 | 5.565644401 | 5.562412995 | 5.562412993 | 5.562412993 | 5.562412993 | 5.562412992 | 4.99545 |
2 | 5.60971875 | 5.574314544 | 5.566706748 | 5.565978275 | 5.565978274 | 5.565978273 | 5.565978272 | 1.0913 |
3 | 5.615204687 | 5.580333331 | 5.571187636 | 5.569343952 | 5.569190397 | 5.569190396 | 5.569190394 | 1.82891 |
4 | 5.619044843 | 5.584949856 | 5.574887442 | 5.571912927 | 5.571391022 | 5.571360659 | 5.571360656 | 2.81024 |
5 | 5.622020964 | 5.588653596 | 5.578227111 | 5.574222447 | 5.573088315 | 5.572963455 | 5.572957443 | 6.01168 |
6 | 5.624461384 | 5.591679092 | 5.581320596 | 5.576520377 | 5.574513911 | 5.574196809 | 5.5741647 | 3.21088 |
7 | 5.62653574 | 5.594166649 | 5.584202474 | 5.57894482 | 5.575825043 | 5.575188447 | 5.575085797 | 0.00010265 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 9.030463766 | 9.083619004 | 9.085337684 | 9.085337686 | 9.085337686 | 9.085337686 | 9.085337685 | 9.99089 |
2 | 9.033510143 | 9.084795981 | 9.08978719 | 9.090152649 | 9.090152649 | 9.090152649 | 9.090152647 | 2.19259 |
3 | 9.03518565 | 9.086220052 | 9.092725878 | 9.09376816 | 9.093840898 | 9.093840898 | 9.093840895 | 3.59346 |
4 | 9.036358505 | 9.086466375 | 9.094052054 | 9.095904424 | 9.096146982 | 9.096161266 | 9.096161261 | 5.16786 |
5 | 9.037267468 | 9.085939799 | 9.094280602 | 9.097144016 | 9.097660132 | 9.097721937 | 9.097724745 | 2.80786 |
6 | 9.038012817 | 9.084836702 | 9.093611817 | 9.097699728 | 9.098599878 | 9.098764841 | 9.098779641 | 1.48002 |
7 | 9.038646364 | 9.083261629 | 9.092131702 | 9.097666773 | 9.099064249 | 9.099414162 | 9.099460748 | 4.65863 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 9.133792986 | 9.086904479 | 9.085337687 | 9.085337686 | 9.085337686 | 9.085337686 | 9.085337685 | 9.99089 |
2 | 9.147172285 | 9.095369466 | 9.090518144 | 9.09015265 | 9.090152649 | 9.090152649 | 9.090152647 | 2.19259 |
3 | 9.154530899 | 9.100666472 | 9.094871612 | 9.093913391 | 9.093840899 | 9.093840898 | 9.093840895 | 3.6273 |
4 | 9.159681929 | 9.104371558 | 9.097977186 | 9.096426686 | 9.09617555 | 9.096161266 | 9.096161261 | 5.35563 |
5 | 9.163673977 | 9.10711451 | 9.100439946 | 9.098336688 | 9.097787119 | 9.097727567 | 9.097724745 | 2.82173 |
6 | 9.166947457 | 9.109177245 | 9.102478518 | 9.099923674 | 9.098947401 | 9.098794875 | 9.098779641 | 1.52337 |
7 | 9.169729915 | 9.110714359 | 9.104196846 | 9.101339391 | 9.099817775 | 9.099509822 | 9.099460748 | 4.90742 |
Appendix B. Graphs of the Numerical Simulations of Example 1
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science BV: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Podlubny, I. Fractional Differential Equation; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Chen, C.; Jia, B.; Liu, X.; Erbe, L. Existence and uniqueness theorem of the solution to a class of nonlinear nabla fractional difference system with a time delay. Mediterr. J. Math. 2018, 15, 1–12. [Google Scholar] [CrossRef]
- Chen, C.; Mert, R.; Jia, B.; Erbe, L.; Peterson, A. Gronwall’s inequality for a nabla fractional difference system with a retarded argument and an application. J. Differ. Equ. Appl. 2019, 25, 855–868. [Google Scholar] [CrossRef]
- Goodrich, C.S.; Peterson, A.C. Discrete Fractional Calculus; Springer: Charm, Switzerland, 2015. [Google Scholar]
- Du, F.; Jia, B. Finite-time stability of a class of nonlinear fractional delay difference systems. Appl. Math. Lett. 2019, 98, 233–239. [Google Scholar] [CrossRef]
- Damgov, V.; Trenchev, P.; Sheiretsky, K. Oscillator–wave model: Properties and heuristic instances. Chaos Solitons Fractals 2003, 17, 41–60. [Google Scholar] [CrossRef]
- Abbas, S.; Ahmad, B.; Benchohra, M.; Salim, A. Fractional Difference, Differential Equations, and Inclusions: Analysis and Stability; Morgan Kaufmann, Elsevier: Burlington, MA, USA, 2024. [Google Scholar]
- Yang, S.Y.; Wu, G.C. Discrete Gronwall’s inequality for Ulam stability of delay fractional difference equations. Math. Model. Anal. 2025, 30, 169–185. [Google Scholar] [CrossRef]
- Huang, L.L.; Park, J.H.; Wu, G.C.; Mo, Z.W. Variable-order fractional discrete-time recurrent neural networks. J. Comput. Appl. Math. 2020, 370, 112633. [Google Scholar] [CrossRef]
- Ramirez, J.D. Existence of Extremal Solutions for Caputo Fractional Differential Equations with Bounded Delay. Prog. Fract. Differ. Appl. 2023, 9, 487–498. [Google Scholar] [CrossRef]
- Hristova, S.; Stefanova, K.; Golev, A. Computer Simulation and Iterative Algorithm for Approximate Solving of Initial Value Problem for Riemann-Liouville Fractional Delay Differential Equations. Mathematics 2020, 8, 477. [Google Scholar] [CrossRef]
- Agarwal, R.; Golev, A.; Hristova, S.; O’Regan, D. Iterative techniques with computer realization for initial value problems for Riemann–Liouville fractional differential equations. J. Appl. Anal. 2020, 26, 21–47. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Hristova, S.; O’Regan, D.; Almeida, R. Approximate Iterative Method for Initial Value Problem of Impulsive Fractional Differential Equations with Generalized Proportional Fractional Derivatives. Mathematics 2021, 9, 1979. [Google Scholar] [CrossRef]
- Lakshmikantham, V.; Zhang, B.G. Monotone iterative technique for delay differential equations. Appl. Anal. 1986, 22, 227–233. [Google Scholar] [CrossRef]
- Chen, C.; Bohner, M.; Jia, B. Method of upper and lower solutions for nonlinear Caputo fractional difference equations and its applications. Fract. Calc. Appl. Anal. 2019, 22, 1307–1320. [Google Scholar] [CrossRef]
- Ouncharoen, R.; Chasreechai, S.; Sitthiwirattham, T. On Nonlinear Fractional Difference Equation with Delay and Impulses. Symmetry 2020, 12, 980. [Google Scholar] [CrossRef]
- Stoenchev, M.; Todorov, V.; Georgiev, S. Notes on the Overconvergence of Fourier Series and Hadamard–Ostrowski Gaps. Mathematics 2024, 12, 979. [Google Scholar] [CrossRef]
- Madamlieva, E.; Konstantinov, M.; Milev, M.; Petkova, M. Integral Representation for the Solutions of Autonomous Linear Neutral Fractional Systems with Distributed Delay. Mathematics 2020, 8, 364. [Google Scholar] [CrossRef]
- Madamlieva, E.; Konstantinov, M. On the Existence and Uniqueness of Solutions for Neutral-Type Caputo Fractional Differential Equations with Iterated Delays: Hyers–Ulam–Mittag–Leffler Stability. Mathematics 2025, 13, 484. [Google Scholar] [CrossRef]
- Wang, M.; Jia, B.; Du, F.; Liu, X. Asymptotic stability of fractional difference equations with bounded time delays. Fract. Calc. Appl. Anal. 2020, 23, 571–590. [Google Scholar] [CrossRef]
- Hioual, A.; Ouannas, A.; Grassi, G.; Oussaeif, T.E. Nonlinear nabla variable-order fractional discrete systems: Asymptotic stability and application to neural networks. J. Comput. Appl. Math. 2023, 423, 114939. [Google Scholar] [CrossRef]
- Alzabut, J.; Tyagi, S.; Abbas, S. Discrete fractional order BAM neural networks with leakage delay: Existence and stability results. Asian J. Control 2020, 22, 143–155. [Google Scholar] [CrossRef]
- Thabet, A.; Atici, F.M. On the Definitions of Nabla Fractional Operators. Abstr. Appl. Anal. 2012, 2012, 406757. [Google Scholar] [CrossRef]
- Boulares, H.; Ardjouni, A.; Laskri, Y. Existence and uniqueness of solutions for nonlinear fractional nabla difference systems with initial conditions. Fract. Differ. Calc. 2017, 2, 247–263. [Google Scholar] [CrossRef]
- Alzabut, J.; Abdeljawad, T.; Baleanu, D. Nonlinear delay fractional difference equations with applications on discrete fractional Lotka–Volterra competition model. J. Comput. Anal. Appl. 2018, 25, 889–898. [Google Scholar]
- Abbas, S. Existence of solutions to fractional order ordinary and delay differential equations and applications. Electron. J. Differ. Equ. 2011, 9, 1–11. [Google Scholar]
- Rudin, W. Principles of Mathematical Analysis, 3rd ed.; McGraw Hill Higher Education: New York, NY, USA, 1976; ISBN 978-0070856134. [Google Scholar]
- Bogachev, V.; Smolyanov, O. Real and Functional Analysis; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Abdeljawad, T. On Riemann and Caputo fractional differences. Comput. Math. Appl. 2011, 62, 1602–1611. [Google Scholar] [CrossRef]
- Agarwal, R.; Golev, A.; Hristova, S.; O’Regan, D.; Stefanova, K. Iterative techniques with computer realization for the initial value problem for Caputo fractional differential equations. J. Appl. Math. Comput. 2017, 58, 433–467. [Google Scholar] [CrossRef]
- Ostalczyk, P. Discrete Fractional Calculus: Applications in Control and Image Processing; Series in Computer Vision Book 4; World Scientific: Singapore, 2015; ISBN 978-9814725668. [Google Scholar]
- Cheng, S.S. Partial Difference Equations; Advances in Discrete Mathematics and Applications; CRC Press: Boca Raton, FL, USA, 2003; Volume 3, ISBN 978-0415298841. [Google Scholar]
- Georgiev, S.; Vulkov, L. Numerical Coefficient Reconstruction of Time-Depending Integer and Fractional-Order SIR Models for Economic Analysis of COVID-19. Mathematics 2022, 10, 4247. [Google Scholar] [CrossRef]
- Georgiev, S. Mathematical Identification Analysis of a Fractional-Order Delayed Model for Tuberculosis. Fractal Fract. 2023, 7, 538. [Google Scholar] [CrossRef]
- Diethelm, K.; Ford, N.J.; Freed, A.D. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 2002, 29, 3–22. [Google Scholar] [CrossRef]
- Ghoreishi, F.; Ghaffari, R.; Saad, N. Fractional Order Runge-Kutta Methods. Fractal Fract. 2023, 7, 245. [Google Scholar] [CrossRef]
- Garrappa, R. On linear stability of predictor–corrector algorithms for fractional differential equations. Int. J. Comput. Math. 2010, 87, 2281–2290. [Google Scholar] [CrossRef]
- Lubich, C. Discretized fractional calculus. SIAM J. Math. Anal. 1986, 17, 704–719. [Google Scholar] [CrossRef]
- Wu, G.C.; Baleanu, D.; Huang, L.L. Novel Mittag-Leffler stability of linear fractional delay difference equations with impulse. Appl. Math. Lett. 2018, 82, 71–78. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, L. Ground-state solution of a nonlinear fractional Schrödinger–Poisson system. Math. Methods Appl. Sci. 2022, 45, 1934–1958. [Google Scholar] [CrossRef]
- Lv, W. Existence of solutions for discrete fractional boundary value problems with a p-Laplacian operator. Adv. Differ. Equ. 2012, 2012, 163. [Google Scholar] [CrossRef]
- Liu, H.; Jin, Y.; Hou, C. Existence of positive solutions for discrete delta-nabla fractional boundary value problems with p-Laplacian. Bound. Value Probl. 2017, 2017, 60. [Google Scholar] [CrossRef]
- Zhang, W.; Zhai, C. Positive solutions for a Riemann-Liouville fractional system with ρ-Laplacian operators. Differ. Equ. Appl. 2024, 16, 305–319. [Google Scholar] [CrossRef]
- Han, Z.; Lu, H.; Zhang, C. Positive solutions for eigenvalue problems of fractional differential equation with generalized p-Laplacian. Appl. Math. Comput. 2015, 257, 526–536. [Google Scholar] [CrossRef]
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 0.437996368 | 0.537998704 | 0.537998814 | 0.537998821 | 0.537998821 | 0.537998821 | 0.537998821 | 1.11022 |
2 | 0.431796005 | 0.514198677 | 0.534198915 | 0.534198942 | 0.534198946 | 0.534198946 | 0.534198946 | 8.88178 |
3 | 0.428385805 | 0.510768628 | 0.532288749 | 0.536288876 | 0.536288886 | 0.536288887 | 0.536288887 | 6.66134 |
4 | 0.425998665 | 0.508919591 | 0.532095687 | 0.536191851 | 0.536991867 | 0.53699187 | 0.53699187 | 2.83572 |
5 | 0.424148632 | 0.507624588 | 0.532077068 | 0.536511655 | 0.53753247 | 0.537692476 | 0.537692477 | 7.09731 |
6 | 0.422631605 | 0.506611261 | 0.53210097 | 0.536824455 | 0.538019669 | 0.538215518 | 0.538247519 | 3.20012 |
7 | 0.421342131 | 0.505769363 | 0.532135907 | 0.53710546 | 0.538442674 | 0.538672029 | 0.538725663 | 5.36335 |
t | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 0.437996368 | 0.537998704 | 0.537998814 | 0.537998821 | 0.537998821 | 0.537998821 | 0.537998821 | 1.11022 |
2 | 0.3821931 | 0.544597671 | 0.56459807 | 0.564598112 | 0.564598115 | 0.564598115 | 0.564598115 | 1.11022 |
3 | 0.329179994 | 0.527406804 | 0.580927442 | 0.584927647 | 0.584927665 | 0.584927666 | 0.584927666 | 4.10783 |
4 | 0.277933993 | 0.48926107 | 0.586485747 | 0.600182317 | 0.600982377 | 0.600982382 | 0.600982382 | 2.37896 |
5 | 0.227969141 | 0.431783077 | 0.580459874 | 0.610162675 | 0.613743615 | 0.613903635 | 0.613903637 | 1.66748 |
6 | 0.179003586 | 0.356072913 | 0.561949768 | 0.613814406 | 0.623573066 | 0.624408968 | 0.624440974 | 3.20067 |
7 | 0.130854124 | 0.262947644 | 0.530033248 | 0.609441152 | 0.630337161 | 0.632914689 | 0.633121941 | 0.000207252 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarwal, R.P.; Madamlieva, E. Analysis of Mild Extremal Solutions in Nonlinear Caputo-Type Fractional Delay Difference Equations. Mathematics 2025, 13, 1321. https://doi.org/10.3390/math13081321
Agarwal RP, Madamlieva E. Analysis of Mild Extremal Solutions in Nonlinear Caputo-Type Fractional Delay Difference Equations. Mathematics. 2025; 13(8):1321. https://doi.org/10.3390/math13081321
Chicago/Turabian StyleAgarwal, Ravi P., and Ekaterina Madamlieva. 2025. "Analysis of Mild Extremal Solutions in Nonlinear Caputo-Type Fractional Delay Difference Equations" Mathematics 13, no. 8: 1321. https://doi.org/10.3390/math13081321
APA StyleAgarwal, R. P., & Madamlieva, E. (2025). Analysis of Mild Extremal Solutions in Nonlinear Caputo-Type Fractional Delay Difference Equations. Mathematics, 13(8), 1321. https://doi.org/10.3390/math13081321