Tensorial Maclaurin Approximation Bounds and Structural Properties for Mixed-Norm Orlicz–Zygmund Spaces
Abstract
:1. Introduction
1.1. Benefits and Significance of the Maclaurin Series Approximation
- Function Approximation: Replace complex functions with simpler polynomial expressions, which are utilized in calculators and computer software to evaluate functions with high precision.
- Economics and Finance: Investigate physical systems near reference states and use Hamiltonians to solve quantum systems with perturbative relativistic formulas for low velocities.
- Numerical Methods: Use expansions to generate numerical differentiation formulas and analyze truncation mistakes to ensure accuracy.
- Machine Learning: Optimize loss functions and enhance algorithms. Gradient descent inequality employs first- and second-order approximations to assess convergence.
- Physics and Engineering: Approximate potential energy functions at equilibrium points are used to expand state equations or partition functions in systems close to equilibrium.
- is bounded in ;
- For some ,
1.2. Main Contribution
2. Preliminaries
- The Hilbert space contains the class of all vectors, and is its span;
- for . If is a Cartesian product of and , it is typical to read as instead of . A Cartesian product and a function of into satisfy the following axioms
3. The Major Results
Tensorial Maclaurin Approximation Using Different Types of Generalize Convex Mappings
4. Preliminary Results
4.1. Semi-Modular Spaces
- ;
- for all and ;
- if for all , then ;
- function is left-continuous for every ;
- function is non-decreasing for every .
4.2. Variable Exponent Spaces
4.3. Mixed Norm Function Spaces
5. Main Results Related to Mixed-Orlicz–Zygmund Space
5.1. Completeness
5.2. Separability
5.3. Precompactness
- (a) is precompact in ;
- (b) For all there exists such that
- (c) For all and , then
- (d) For all .
6. Conclusions and Future Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Diening, L.; Lee, M.; Ok, J. Parabolic weighted Sobolev–Poincaré type inequalities. Nonlinear Anal. 2022, 218, 112772. [Google Scholar] [CrossRef]
- Harboure, E.; Salinas, O.; Viviani, B. Boundedness of Operators Related to a Degenerate Schrödinger Semigroup. Potential Anal. 2022, 57, 401–431. [Google Scholar] [CrossRef]
- Poudel, S.; Wang, X.; Lee, S. A Novel Technique for Minimizing Energy Functional Using Neural Networks. Eng. Appl. Artif. Intell. 2024, 133, 108313. [Google Scholar] [CrossRef]
- Duan, S.-Q.; Wang, Q.-W.; Duan, X.-F. On Rayleigh Quotient Iteration for the Dual Quaternion Hermitian Eigenvalue Problem. Mathematics 2024, 12, 4006. [Google Scholar] [CrossRef]
- Lakoba, T.I.; Micula, S. Recent Progress in Studies of Stability of Numerical Schemes. Symmetry 2022, 14, 2692. [Google Scholar] [CrossRef]
- Javed, M.Z.; Awan, M.U.; Ciurdariu, L.; Dragomir, S.S.; Almalki, Y. On Extended Class of Totally Ordered Interval-Valued Convex Stochastic Processes and Applications. Fractal Fract. 2024, 8, 577. [Google Scholar] [CrossRef]
- Costa, T.M.; Román-Flores, H. Some Integral Inequalities for Fuzzy-Interval-Valued Functions. Inf. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
- Liu, W.; Shi, F.; Ye, G.; Zhao, D. The Properties of Harmonically Cr-h-Convex Function and Its Applications. Mathematics 2022, 10, 2089. [Google Scholar] [CrossRef]
- Kara, H.; Budak, H.; Ali, M.A.; Sarikaya, M.Z.; Chu, Y.-M. Weighted Hermite–Hadamard Type Inclusions for Products of Co-Ordinated Convex Interval-Valued Functions. Adv. Differ. Equ. 2021, 2021, 104. [Google Scholar] [CrossRef]
- Balazs, P.; Bellomonte, G.; Hosseinnezhad, H. Frame-Related Sequences in Chains and Scales of Hilbert Spaces. Axioms 2022, 11, 180. [Google Scholar] [CrossRef]
- Afzal, W.; Prosviryakov, E.Y.; El-Deeb, S.M.; Almalki, Y. Some New Estimates of Hermite–Hadamard, Ostrowski and Jensen-Type Inclusions for h-Convex Stochastic Process via Interval-Valued Functions. Symmetry 2023, 15, 831. [Google Scholar] [CrossRef]
- Chalco-Cano, Y.; Flores-Franulič, A.; Román-Flores, H. Ostrowski Type Inequalities for Interval-Valued Functions Using Generalized Hukuhara Derivative. Comput. Appl. Math. 2012, 31, 457–472. [Google Scholar]
- Afzal, W.; Abbas, M.; Macías-Díaz, J.E.; Treanţă, S. Some H-Godunova–Levin Function Inequalities Using Center Radius (Cr) Order Relation. Fractal Fract. 2022, 6, 518. [Google Scholar] [CrossRef]
- Acu, A.M.; Gonska, H.; Raşa, I. Grüss-Type and Ostrowski-Type Inequalities in Approximation Theory. Ukr. Math. J. 2011, 63, 843–864. [Google Scholar] [CrossRef]
- Tariq, M.; Ahmad, H.; Budak, H.; Sahoo, S.K.; Sitthiwirattham, T.; Reunsumrit, J. A Comprehensive Analysis of Hermite-Hadamard Type Inequalities via Generalized Preinvex Functions. Axioms 2021, 10, 328. [Google Scholar] [CrossRef]
- Amer Latif, M. Fejér-Type Inequalities for Harmonically Convex Functions and Related Results. Symmetry 2023, 15, 1602. [Google Scholar] [CrossRef]
- Ahmadini, A.A.H.; Afzal, W.; Abbas, M.; Aly, E.S. Weighted Fejér, Hermite-Hadamard, and Trapezium-Type Inequalities for (h1,h2)-Godunova-Levin Preinvex Function with Applications and Two Open Problems. Mathematics 2024, 12, 382. [Google Scholar] [CrossRef]
- Pečarić, J.; Perić, I.; Roqia, G. Exponentially Convex Functions Generated by Wulbert’s Inequality and Stolarsky-Type Means. Math. Comput. Model. 2012, 55, 1849–1857. [Google Scholar] [CrossRef]
- A. Khan, Z.; Afzal, W.; Nazeer, W.; K. Asamoah, J.K. Some New Variants of Hermite-Hadamard and Fejér-Type Inequalities for Godunova-Levin Preinvex Class of Interval-Valued Functions. J. Math. 2024, 2024, 8814585. [Google Scholar] [CrossRef]
- Liu, C. The Renormalization Method Based on the Taylor Expansion and Applications for Asymptotic Analysis. Nonlinear Dyn. 2017, 88, 1099–1124. [Google Scholar] [CrossRef]
- Monera, M.G.; Montesinos-Amilibia, A.; Sanabria-Codesal, E. The Taylor Expansion of the Exponential Map and Geometric Applications. RACSAM 2014, 108, 881–906. [Google Scholar] [CrossRef]
- Almalki, Y.; Afzal, W. Some New Estimates of Hermite–Hadamard Inequalities for Harmonical cr-h-Convex Functions via Generalized Fractional Integral Operator on Set-Valued Mappings. Mathematics 2023, 11, 4041. [Google Scholar] [CrossRef]
- Khôi, L.H. Hilbert Spaces of Holomorphic Dirichlet Series and Applications to Convolution Equations. J. Math. Anal. Appl. 1997, 206, 10–24. [Google Scholar] [CrossRef]
- Feng, H.; Hui, S.Y.W.; Shen, R. Approximating Reproducing Kernel Hilbert Space Functions by Bernstein Operators. Results Math 2024, 79, 234. [Google Scholar] [CrossRef]
- Kaltenbach, A.; Růžička, M. Variable Exponent Bochner–Lebesgue Spaces with Symmetric Gradient Structure. J. Math. Anal. Appl. 2021, 503, 125355. [Google Scholar] [CrossRef]
- Bachar, M.; Khamsi, M.A.; Méndez, O. Examining Nonlinear Fredholm Equations in Lebesgue Spaces with Variable Exponents. Symmetry 2023, 15, 2014. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Consistent Treatment of Quantum Systems with a Time-Dependent Hilbert Space. Entropy 2024, 26, 314. [Google Scholar] [CrossRef]
- Ghalyan, N.F.; Ray, A.; Jenkins, W.K. A Concise Tutorial on Functional Analysis for Applications to Signal Processing. Sci 2022, 4, 40. [Google Scholar] [CrossRef]
- Ramer, R. On Nonlinear Transformations of Gaussian Measures. J. Funct. Anal. 1974, 15, 166–187. [Google Scholar] [CrossRef]
- Altwaijry, N.; Feki, K.; Minculete, N. A Generalized Norm on Reproducing Kernel Hilbert Spaces and Its Applications. Axioms 2023, 12, 645. [Google Scholar] [CrossRef]
- Ruiz-Medina, M.D.; Angulo, J.M.; Anh, V.V. Application of Hilbert-0pace Methods to Random Field Modelling and Estimation. Am. J. Math. Manag. Sci. 2001, 21, 263–282. [Google Scholar]
- Araki, H.; Hansen, F. Jensen’s operator inequality for functions of several variables. Proc. Am. Math. Soc. 2000, 7, 2075–2084. [Google Scholar]
- Afzal, W.; Abbas, M.; Breaz, D.; Cotîlă, L.-I. Fractional Hermite-Hadamard, Newton-Milne, and Convexity Involving Arithmetic-Geometric Mean-Type Inequalities in Hilbert and Mixed-Norm Morrey Spaces ℓq(·) (Mp(·),v(·)) with Variable Exponents. Fractal Fract. 2024, 8, 518. [Google Scholar] [CrossRef]
- Ghosh, P.; Samanta, T. Introduction of Frame in Tensor Product of N-Hilbert Spaces. Sahand Commun. Math. Anal. 2021, 17, 16. [Google Scholar]
- Stojiljkovic, V. Twice Differentiable Ostrowski Type Tensorial Norm Inequality for Continuous Functions of self-adjoint Operators in Hilbert Spaces. Eur. J. Pure Appl. Math. 2023, 16, 1421–1433. [Google Scholar] [CrossRef]
- Stojiljković, V. Simpson Type Tensorial Norm Inequalities for Continuous Functions of self-adjoint Operators in Hilbert Spaces. CMI 2024, 33, 105–117. [Google Scholar] [CrossRef]
- Silvestru, D. A Trapezoid Type Tensorial Norm Inequality for Continuous Functions of self-adjoint Operators in Hilbert Spaces. Istanb. J. Math. 2023, 1, 48–56. [Google Scholar]
- Khan, Z.A.; Afzal, W.; Abbas, M.; Ro, J.; Aloraini, N.M. A Novel Fractional Approach to Finding the Upper Bounds of Simpson and Hermite-Hadamard-Type Inequalities in Tensorial Hilbert Spaces by Using Differentiable Convex Mappings. Aims MATH 2024, 9, 35151–35180. [Google Scholar] [CrossRef]
- Afzal, W.; Abbas, M.; Alsalami, O.M. Bounds of Different Integral Operators in Tensorial Hilbert and Variable Exponent Function Spaces. Mathematics 2024, 12, 2464. [Google Scholar] [CrossRef]
- Wada, S. On Some Refinement of the Cauchy–Schwarz Inequality. Linear Algebra Appl. 2007, 420, 433–440. [Google Scholar] [CrossRef]
- Gümüş, M.; Hezenci, F.; Budak, H. Some New Approaches to Fractional Euler-Maclaurin-Type Inequalities via Various Function Classes. Fractal Fract. 2024, 8, 372. [Google Scholar] [CrossRef]
- Meftah, B.; Souahi, A.; Merad, M. Some Local Fractional Maclaurin Type Inequalities for Generalized Convex Functions and Their Applications. Chaos Solitons Fractals 2022, 162, 112504. [Google Scholar] [CrossRef]
- Merad, M.; Meftah, B.; Moumen, A.; Bouye, M. Fractional Maclaurin-Type Inequalities for Multiplicatively Convex Functions. Fractal Fract. 2023, 7, 879. [Google Scholar] [CrossRef]
- Stojiljković, V.; Dragomir, S.S. Tensorial Simpson 1/8 Type Inequalities for Convex Functions of self-adjoint Operators in Hilbert Space. Eur. J. Math. Anal. 2024, 4, 17. [Google Scholar] [CrossRef]
- Stojiljkovic, V. Generalized Tensorial Simpson Type Inequalities for Convex Functions of self-adjoint Operators in Hilbert Space. Maltepe J. Math. 2024, 6, 78–89. [Google Scholar] [CrossRef]
- Ghosh, P.; Samanta, T.K. Generalized Fusion Frame in A Tensor Product of Hilbert Space. J. Indian Math. Soc. 2022, 89, 58–71. [Google Scholar] [CrossRef]
- Orlicz, W. Über Konjugierte Exponentenfolgen. Studia Math. 1931, 3, 200–211. [Google Scholar] [CrossRef]
- Kováčik, O.; Rákosník, J. On spaces Lp(μ),Wk,p(μ). Czechoslov. Math. J. 1991, 41, 592–618. [Google Scholar] [CrossRef]
- Bachar, M.; Mendez, O.; Bounkhel, M. Modular Uniform Convexity of Lebesgue Spaces of Variable Integrability. Symmetry 2018, 10, 708. [Google Scholar] [CrossRef]
- El Amri, A.; Khamsi, M.A. New Modular Fixed-Point Theorem in the Variable Exponent Spaces ℓp(μ). Mathematics 2022, 10, 869. [Google Scholar] [CrossRef]
- Sultan, M.; Sultan, B.; Aloqaily, A.; Mlaiki, N.; Sultan, M.; Sultan, B.; Aloqaily, A.; Mlaiki, N. Boundedness of Some Operators on Grand Herz Spaces with Variable Exponent. Aims MATH 2023, 8, 12964–12985. [Google Scholar] [CrossRef]
- Kopaliani, T. Interpolation Theorems for Variable Exponent Lebesgue Spaces. J. Funct. Anal. 2009, 257, 3541–3551. [Google Scholar] [CrossRef]
- Lazzaretti, M.; Calatroni, L.; Estatico, C. Modular-Proximal Gradient Algorithms in Variable Exponent Lebesgue Spaces. SIAM J. Sci. Comput. 2022, 44, A3463–A3489. [Google Scholar] [CrossRef]
- Botelho, F.; Jamison, J. Algebraic and Topological Reflexivity Properties of ℓp(μ) Spaces. J. Math. Anal. Appl. 2008, 346, 141–144. [Google Scholar] [CrossRef]
- Amri, A.E.; Khamsi, M.A.; Méndez, O.D. A Fixed Point Theorem in the Lebesgue Spaces of Variable Integrability Lp(·). Symmetry 2023, 15, 1999. [Google Scholar] [CrossRef]
- Brezis, H. Weak Topologies. Reflexive Spaces. Separable Spaces. Uniform Convexity. In Functional Analysis, Sobolev Spaces and Partial Differential Equations; Brezis, H., Ed.; Springer: New York, NY, USA, 2011; pp. 55–87. ISBN 9780387709147. [Google Scholar]
- Luo, Z.; Cheng, Q. Characterization of Reflexivity by Convex Functions. J. Funct. Spaces 2016, 2016, 1–4. [Google Scholar] [CrossRef]
- Jain, P.K.; Arora, K.K.; Sinha, D.P. Quasi Reflexivity and the Sup of Linear Functionals. Bull. Austral. Math. Soc. 1997, 55, 89–98. [Google Scholar] [CrossRef]
- Pasqualetto, E.; Rajala, T. Vector Calculus on Weighted Reflexive Banach Spaces. Math. Z. 2024, 308, 48. [Google Scholar] [CrossRef]
- Samko, S. Variable Exponent Herz Spaces. Mediterr. J. Math. 2013, 10, 2007–2025. [Google Scholar] [CrossRef]
- Rodabaugh, S.E. Separation Axioms: Representation Theorems, Compactness, and Compactifications. In Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory; Höhle, U., Rodabaugh, S.E., Eds.; Springer: Boston, MA, USA, 1999; pp. 481–552. ISBN 9781461550792. [Google Scholar]
- Green, J.W. Moore-Closed Spaces, Completeness and Centered Bases. Gen. Topol. Its Appl. 1974, 4, 297–313. [Google Scholar] [CrossRef]
- Almira, J.M.; Luther, U. Compactness and Generalized Approximation Spaces. Numer. Funct. Anal. Optim. 2002, 23, 1–38. [Google Scholar] [CrossRef]
- Carro, M.J.; Soria, J. Weighted Lorentz Spaces and the Hardy Operator. J. Funct. Anal. 1993, 112, 480–494. [Google Scholar] [CrossRef]
- Bandaliyev, R.A.; Górka, P.; Guliyev, V.S.; Sawano, Y. Relatively Compact Sets in Variable Exponent Morrey Spaces on Metric Spaces. Mediterr. J. Math. 2021, 18, 232. [Google Scholar] [CrossRef]
- Eleuteri, M.; Passarelli di Napoli, A. Lipschitz Regularity of Minimizers of Variational Integrals with Variable Exponents. Nonlinear Anal. Real World Appl. 2023, 71, 103815. [Google Scholar] [CrossRef]
- Giannetti, F.; Passarelli Di Napoli, A. Higher Differentiability of Minimizers of Variational Integrals with Variable Exponents. Math. Z. 2015, 280, 873–892. [Google Scholar] [CrossRef]
- Byun, S.-S.; Oh, J. Global Gradient Estimates for the Borderline Case of Double Phase Problems with BMO Coefficients in Nonsmooth Domains. J. Differ. Equ. 2017, 263, 1643–1693. [Google Scholar] [CrossRef]
- Vetro, C.; Zeng, S. Regularity and Dirichlet Problem for Double-Phase Energy Functionals of Different Power Growth. J. Geom. Anal. 2024, 34, 105. [Google Scholar] [CrossRef]
- Ferreira, R.; Hästö, P.; Ribeiro, A.M. Characterization of Generalized Orlicz Spaces. Commun. Contemp. Math. 2020, 22, 1850079. [Google Scholar] [CrossRef]
- Sultan, B.; Hussain, A.; Sultan, M. Chracterization of Generalized Campanato Spaces with Variable Exponents via Fractional Integrals. J. Pseudo-Differ. Oper. Appl. 2025, 16, 22. [Google Scholar] [CrossRef]
- Bachar, M. The Variation of Constants Formula in Lebesgue Spaces with Variable Exponents. Symmetry 2024, 16, 978. [Google Scholar] [CrossRef]
- Lukkassen, D.; Persson, L.-E.; Samko, S.; Wall, P. Weighted Hardy-Type Inequalities in Variable Exponent Morrey-Type Spaces. J. Funct. Spaces Appl. 2013, 2013, 1–11. [Google Scholar] [CrossRef]
- Diening, L.; Harjulehto, P.; Hästö, P.; Ruzicka, M. Lebesgue and Sobolev Spaces with Variable Exponents; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2011; Volume 2017, ISBN 9783642183621/9783642183638. [Google Scholar]
- Ragusa, M.A.; Tachikawa, A. Regularity of Minimizers for Double Phase Functionals of Borderline Case with Variable Exponents. Adv. Nonlinear Anal. 2024, 13, 20240017. [Google Scholar] [CrossRef]
- Cruz-Uribe, D.; Gogatishvili, A.; Kopaliani, T. On the Embedding between the Variable Lebesgue Space Lp(·)(Ω) and the Orlicz Space L(LogL)α(Ω). J. Math. Anal. Appl. 2025, 544, 129081. [Google Scholar] [CrossRef]
- Koranyi, A. On Some Classes of Analytic Functions of Several Variables. Trans. Am. Math. Soc. 1961, 101, 520. [Google Scholar] [CrossRef]
- Dragomir, S. Tensorial and Hadamard Product Inequalities for Synchronous Functions. Commun. Adv. Math. Sci. 2023, 6, 177–187. [Google Scholar] [CrossRef]
- Akın, L. On Innovations of N-Dimensional Integral-Type Inequality on Time Scales. Adv. Differ. Equ. 2021, 2021, 148. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, J. Mixed-Norm Amalgam Spaces and Their Predual. Symmetry 2022, 14, 74. [Google Scholar] [CrossRef]
- Saibi, K. Variable Besov–Morrey Spaces Associated with Operators. Mathematics 2023, 11, 2038. [Google Scholar] [CrossRef]
- Giannetti, F.; Passarelli Di Napoli, A. Regularity Results for a New Class of Functionals with Non-Standard Growth Conditions. J. Differ. Equ. 2013, 254, 1280–1305. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afzal, W.; Abbas, M.; Meetei, M.Z.; Bourazza, S. Tensorial Maclaurin Approximation Bounds and Structural Properties for Mixed-Norm Orlicz–Zygmund Spaces. Mathematics 2025, 13, 917. https://doi.org/10.3390/math13060917
Afzal W, Abbas M, Meetei MZ, Bourazza S. Tensorial Maclaurin Approximation Bounds and Structural Properties for Mixed-Norm Orlicz–Zygmund Spaces. Mathematics. 2025; 13(6):917. https://doi.org/10.3390/math13060917
Chicago/Turabian StyleAfzal, Waqar, Mujahid Abbas, Mutum Zico Meetei, and Saïd Bourazza. 2025. "Tensorial Maclaurin Approximation Bounds and Structural Properties for Mixed-Norm Orlicz–Zygmund Spaces" Mathematics 13, no. 6: 917. https://doi.org/10.3390/math13060917
APA StyleAfzal, W., Abbas, M., Meetei, M. Z., & Bourazza, S. (2025). Tensorial Maclaurin Approximation Bounds and Structural Properties for Mixed-Norm Orlicz–Zygmund Spaces. Mathematics, 13(6), 917. https://doi.org/10.3390/math13060917