Va-Deformed Free Convolution
Abstract
:1. Introduction
2. Remarks on the Free Meixner Family of Measures
- (i)
- If , then .
- (ii)
- If and , then , and with the sign opposite to the sign of a.
- (iii)
- If , then there are two atoms at
- (i)
- Wigner’s semicircle (free Gaussian) law if .
- (ii)
- The Marchenko–Pastur (free Poisson) type law if and .
- (iii)
- The free Pascal (free negative binomial) type law if and .
- (iv)
- The free Gamma type law if and .
- (v)
- The free analog of hyperbolic type law if and .
- (vi)
- The free binomial type law if .
3. Notes on the Marchenko–Pastur Law Based on -Convolution
4. New Limit Theorems Related to -Convolution
- (i)
- For so that the measure is well defined, we have
- (ii)
- For so that the measure is well defined, we have
- (iii)
- For so that the measure is well defined, we have
- (iv)
- For so that the measure is well defined, we have
5. -Deformed Free Cumulants and Variance Function
- (ii)
- Consider the Marchenko–Pastur law of the form (17) (for and ) with and variance . Then, , and ∀ , .
- (i)
- A deformed measure exists, which is ⊞-infinitely divisible, having mean and variance 1 such that is the VF of of the CSK family induced by ρ.
- (ii)
- There exists such that
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bożejko, M.; Wysoczański, J. New examples of onvolutions and non-commutative central limit theorems. Banach Cent. Publ. 1998, 43, 95–103. [Google Scholar] [CrossRef]
- Bożejko, M.; Wysoczański, J. Remarks on t-transformations of measures and convolutions. Ann. De L’institut Henri Poincare (B) Probab. Stat. 2001, 37, 737–761. [Google Scholar] [CrossRef]
- Krystek, A.; Yoshida, H. Generalized t-transformations of probability measures and deformed convolution. Probab. Math. Stat. 2004, 24, 97–119. [Google Scholar]
- Bożejko, M. Deformed Free Probability of Voiculescu; RIMS Kokyuroku; Kyoto University: Kyoto, Japan, 2001; Volume 1227, pp. 96–113. [Google Scholar]
- Bożejko, M.; Leinert, M.; Speicher, R. Convolution and limit theorems for conditionally free random variables. Pac. J. Math. 1996, 175, 357–388. [Google Scholar] [CrossRef]
- Krystek, A.; Yoshida, H. The combinatorics of the r-free convolution. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2003, 6, 619–627. [Google Scholar] [CrossRef]
- Bożejko, M.; Bożejko, W. Deformations and q-Convolutions. Old and New Results. Complex Anal. Oper. Theory 2024, 18, 130. [Google Scholar] [CrossRef]
- Yoshida, H. Remarks on the s-free convolution. In QP-PQ: Quantum Probability and White Noise AnalysisNon-Commutativity, Infinite-Dimensionality and Probability at the Crossroads; World Scientific: Singapore, 2003; pp. 412–433. [Google Scholar]
- Krystek, A.; Wojakowski, L. Associative convolutions arising from conditionally free convolution. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2005, 8, 515–545. [Google Scholar] [CrossRef]
- Fakhfakh, R. Va-deformed free convolution and variance function. Georgian Math. J. 2024, 31. [Google Scholar] [CrossRef]
- Takahiro, H. Conditionally monotone independence I: Independence, additive convolutions and related convolutions. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2011, 14, 465–516. [Google Scholar] [CrossRef]
- Anshelevich, M.; Młotkowski, W. Semigroups of Distributions with Linear Jacobi Parameters. J. Theor. Probab. 2012, 25, 1173–1206. [Google Scholar] [CrossRef]
- Popa, M.; Wang, J.C. On multiplicative conditionnaly free convolution. Trans. Am. Math. Soc. 2011, 363, 6309–6335. [Google Scholar] [CrossRef]
- Wang, J.C. Limit Theorems for Additive Conditionally Free Convolution. Can. J. Math. 2011, 63, 222–240. [Google Scholar] [CrossRef]
- Bryc, W. Free exponential families as kernel families. Demonstr. Math. 2006, XLII, 657–672. [Google Scholar]
- Bryc, W.; Hassairi, A. One-sided Cauchy-Stieltjes kernel families. J. Theor. Probab. 2010, 24, 577–594. [Google Scholar] [CrossRef]
- Wojakowski, L.J. The Lévy-Khintchine formula and Nica-Spricher property for deformations of the free convolution. Banach Cent. Publ. 2007, 78, 309–314. [Google Scholar]
- Fakhfakh, R. A characterization of the Marchenko-Pastur probability measure. Stat. Probab. Lett. 2022, 191, 109660. [Google Scholar] [CrossRef]
- Fakhfakh, R. On some properties of Cauchy-Stieltjes Kernel families. Indian J. Pure Appl. Math. 2021, 52, 1186–1200. [Google Scholar] [CrossRef]
- Friedman, D. The functional equation f(x + y) = g(x) + h(y). Am. Math. Mon. 1962, 69, 769–772. [Google Scholar] [CrossRef]
- Speicher, R.; Woroudi, R. Boolean convolution. Fields Inst. Commun. 1997, 12, 26727. [Google Scholar] [CrossRef]
- Fakhfakh, R. Variance function of boolean additive convolution. Stat. Probab. Lett. 2020, 163, 108777. [Google Scholar] [CrossRef]
- Belinschi, S.T.; Nica, A. On a remarkable semigroup of homomorphisms with respect to free multiplicative convolution. Indiana Univ. Math. J. 2008, 57, 1679–1713. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsharari, F.; Fakhfakh, R. Va-Deformed Free Convolution. Mathematics 2025, 13, 572. https://doi.org/10.3390/math13040572
Alsharari F, Fakhfakh R. Va-Deformed Free Convolution. Mathematics. 2025; 13(4):572. https://doi.org/10.3390/math13040572
Chicago/Turabian StyleAlsharari, Fahad, and Raouf Fakhfakh. 2025. "Va-Deformed Free Convolution" Mathematics 13, no. 4: 572. https://doi.org/10.3390/math13040572
APA StyleAlsharari, F., & Fakhfakh, R. (2025). Va-Deformed Free Convolution. Mathematics, 13(4), 572. https://doi.org/10.3390/math13040572