Algorithm for Acoustic Wavefield in Space-Wavenumber Domain of Vertically Heterogeneous Media Using NUFFT
Abstract
:1. Introduction
2. Methods
2.1. Acoustic Equation in Space-Wavenumber Domain
2.2. Boundary Conditions
2.3. Boundary Value Problem Solution
2.4. NUFFT Theory
- Gaussian interpolation to uniform sampling points: Interpolate the non-uniform grid onto the uniform grid using Gaussian interpolation, obtaining .
- Deconvolution: Perform deconvolution on the values at each uniform grid point to obtain .
- FFT calculation: Perform standard FFT on the uniform grid points for , obtaining .
- Gaussian interpolation to non-uniform sampling points: Perform Gaussian interpolation to map the uniform grid points onto the non-uniform grid, obtaining .
- Deconvolution: Perform deconvolution to obtain the final transformation result .
2.5. Wavenumber Selection
2.6. Algorithm Flowchart
3. Results
3.1. Correctness Verification
3.2. Half-Space Model
3.3. Three-Layer Medium Model
3.4. Sensitivity Analysis
3.4.1. Grid Nodes
3.4.2. Medium Velocity
3.4.3. Source Frequency
3.5. Efficiency and Memory Usage
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aki, K.; Richards, P.G. Quantitative Seismology, 2nd ed.; University Science Books: Santa Cruz, CA, USA, 2002. [Google Scholar]
- Ben-Menahem, A.; Jit Singh, S. Multipolar Elastic Fields in a Layered Half Space. Bull. Seismol. Soc. Am. 1968, 58, 1519–1572. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, H. An Efficient Method for Computing Green’s Functions for a Layered Half-Space at Large Epicentral Distances. Bull. Seismol. Soc. Am. 2001, 91, 858–869. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, Z.; Dai, S.; Iqbal, I.; Yang, Y. Fast Computation of Green Function for Layered Seismic Field via Discrete Complex Image Method and Double Exponential Rules. Symmetry 2021, 13, 1969. [Google Scholar] [CrossRef]
- Ouyang, F.; Zhao, J.; Dai, S.; Wang, S. Seismic Wave Modeling in Vertically Varying Viscoelastic Media with General Anisotropy. Geophysics 2021, 86, T211–T227. [Google Scholar] [CrossRef]
- Liu, W.; Wang, H.; Xi, Z.; Wang, L.; Chen, C.; Guo, T.; Yan, M.; Wang, T. Multitask Learning-Driven Physics-Guided Deep Learning Magnetotelluric Inversion. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5926416. [Google Scholar] [CrossRef]
- Liu, W.; Wang, H.; Xi, Z.; Zhang, R.; Huang, X. Physics-Driven Deep Learning Inversion with Application to Magnetotelluric. Remote Sens. 2022, 14, 3218. [Google Scholar] [CrossRef]
- Buchwald, V.T. Elastic Waves in Anisotropic Media. Proc. R. Soc. Lond. 1959, 253, 563–580. [Google Scholar]
- Bufler, H. Theory of Elasticity of a Multilayered Medium. J. Elast. 1971, 1, 125–143. Available online: https://link.springer.com/article/10.1007/BF00046464 (accessed on 2 January 2025). [CrossRef]
- Bahar, L.Y. Transfer Matrix Approach to Layered Systems. J. Eng. Mech. Div. 1972, 98, 1159–1172. [Google Scholar] [CrossRef]
- Kattis, S.E.; Beskos, D.E.; Cheng, A.H.D. 2D Dynamic Response of Unlined and Lined Tunnels in Poroelastic Soil to Harmonic Body Waves. Earthq. Eng. Struct. Dynamlcs 2003, 32, 97–100. [Google Scholar] [CrossRef]
- Ciz, R.; Gurevich, B. Amplitude of Biot’s Slow Wave Scattered by a Spherical Inclusion in a Fluid-Saturated Poroelastic Medium. Geophys. J. Int. 2005, 160, 991–1005. [Google Scholar] [CrossRef]
- Weihua, L.; Chenggang, Z. Scattering of Plane SV Waves by Cylindrical Canyons in Saturated Porous Medium. Soil Dyn. Earthq. Eng. 2005, 25, 981–995. [Google Scholar] [CrossRef]
- Hasheminejad, S.M.; Avazmohammadi, R. Harmonic Wave Diffraction by Two Circular Cavities in a Poroelastic Formation. Soil Dyn. Earthq. Eng. 2007, 27, 29–41. [Google Scholar] [CrossRef]
- Hasheminejad, S.M.; Avazmohammadi, R. Dynamic Stress Concentrations in Lined Twin Tunnels within Fluid-Saturated Soil. J. Eng. Mech. 2008, 137, 542–554. [Google Scholar] [CrossRef]
- Jiang, L.-F.; Zhou, X.-L.; Wang, J.-H. Scattering of a Plane Wave by a Lined Cylindrical Cavity in a Poroelastic Half-Plane. Comput. Geotech. 2009, 36, 773–786. [Google Scholar] [CrossRef]
- Liu, X.; Greenhalgh, S.; Zhou, B. Scattering of Plane Transverse Waves by Spherical Inclusions in a Poroelastic Medium. Geophys. J. Int. 2009, 176, 938–950. [Google Scholar] [CrossRef]
- Trifunac, M.D. Scattering of Plane Sh Waves by a Semi-cylindrical Canyon. Earthq. Eng. Struct. Dyn. 1972, 1, 267–281. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, Y.; Gao, Y.; Pak, R.Y.S.; Wu, Y.; Zhang, F. An Exact Solution for SH-Wave Scattering by a Radially Multilayered Inhomogeneous Semicylindrical Canyon. Geophys. J. Int. 2019, 217, 1232–1260. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, M.; Liu, Z. Wave Function Expansion Method for the Scattering of SH Waves by Two Symmetrical Circular Cavities in Two Bonded Exponentially Graded Half Spaces. Eng. Anal. Bound. Elem. 2019, 106, 389–396. [Google Scholar] [CrossRef]
- Alterman, Z.; Karal, F.C., Jr. Propagation of Elastic Waves in Layered Media by Finite Difference Methods. Bull. Seismol. Soc. Am. 1968, 58, 367–398. [Google Scholar]
- JafarGandomi, A.; Takenaka, H. Efficient FDTD Algorithm for Plane-Wave Simulation for Vertically Heterogeneous Attenuative Media. Geophysics 2007, 72, A47–Z71. [Google Scholar] [CrossRef]
- JafarGandomi, A.; Takenaka, H. FDTD3C—A FORTRAN Program to Model Multi-Component Seismic Waves for Vertically Heterogeneous Attenuative Media. Comput. Geosci. 2013, 51, 314–323. [Google Scholar] [CrossRef]
- Sheikhhassani, R.; Dravinski, M. Dynamic Stress Concentration for Multiple Multilayered Inclusions Embedded in an Elastic Half-Space Subjected to SH-Waves. Wave Motion 2016, 62, 20–40. [Google Scholar] [CrossRef]
- Sotelo, E.; Favino, M.; Jr, R.L.G. Application of the Generalized Finite-Element Method to the Acoustic Wave Simulation in Exploration Seismology. Geophysics 2021, 86, T61–T74. [Google Scholar] [CrossRef]
- Lei, W.; Liu, Y.; Li, G.; Zhu, S.; Chen, G.; Li, C. 2D Frequency-Domain Finite-Difference Acoustic Wave Modeling Using Optimized Perfectly Matched Layers. Geophysics 2023, 88, F1–F13. [Google Scholar] [CrossRef]
- Altybay, A.; Tokmagambetov, N. Numerical Simulation and Parallel Computing of Acoustic Wave Equation in Isotropic-Heterogeneous Media. CMES Comput. Model. Eng. Sci. 2024, 141, 1867–1881. [Google Scholar] [CrossRef]
- Xu, S. The Finite Element Method in Geophysics; Science Press: Beijing, China, 1994. [Google Scholar]
- Dutt, A.; Rokhlin, V. Fast Fourier Transforms for Nonequispaced Data. Siam J. Sci. Comput. 1993, 14, 1368–1393. [Google Scholar] [CrossRef]
- Fessler, J.A.; Sutton, B.P. Nonuniform Fast Fourier Transforms Using Min-Max Interpolation. IEEE Trans. Signal Process. 2003, 51, 560–574. [Google Scholar] [CrossRef]
- Greengard, L.; Lee, J.-Y. Accelerating the Nonuniform Fast Fourier Transform. SIAM Rev. 2004, 46, 443–454. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Greengard, L. The Type 3 Nonuniform FFT and Its Applications. J. Comput. Phys. 2005, 206, 1–5. [Google Scholar] [CrossRef]
- Keiner, J.; Kunis, S.; Potts, D. Fast Summation of Radial Functions on the Sphere. Computing 2006, 78, 1–15. [Google Scholar] [CrossRef]
- Keiner, J.; Kunis, S.; Potts, D. Using NFFT 3—A Software Library for Various Nonequispaced Fast Fourier Transforms. ACM Trans. Math. Softw. 2009, 36, 1–30. [Google Scholar] [CrossRef]
- Dissanayake, D. Acoustic Waves; BoD—Books on Demand; Intechopen: London, UK, 2010; ISBN 978-953-307-111-4. [Google Scholar]
- Wu, L. Efficient Modelling of Gravity Effects Due to Topographic Masses Using the Gauss-FFT Method. Geophys. J. Int. 2016, 205, 160–178. [Google Scholar] [CrossRef]
Nx × Ny × Nz | Nkx × Nky | Rrms (%) |
---|---|---|
201 × 201 × 201 | 201 × 201 | 2.1 |
401 × 401 × 201 | 401 × 401 | 1.5 |
401 × 401 × 401 | 401 × 401 | 0.9 |
501 × 501 × 501 | 501 × 501 | 0.5 |
Velocity (m/s) | Rrms (%) |
---|---|
1000 | 0.98 |
2000 | 0.68 |
3000 | 0.51 |
4000 | 0.42 |
5000 | 0.39 |
Frequency (Hz) | Rrms (%) |
---|---|
10 | 0.41 |
20 | 0.51 |
30 | 0.67 |
40 | 0.78 |
50 | 0.98 |
Nx × Ny × Nz | Nkx × Nky | Time/s | Memory/Gb |
---|---|---|---|
101 × 101 × 101 | 101 × 101 | 3.8 | 0.35 |
201 × 201 × 201 | 201 × 201 | 25.2 | 0.27 |
201 × 201 × 401 | 201 × 201 | 51.1 | 0.78 |
401 × 401 × 201 | 401 × 401 | 97.8 | 1.28 |
401 × 401 × 201 | 201 × 201 | 57.3 | 0.64 |
201 × 201 × 201 | 401 × 401 | 62.3 | 0.93 |
401 × 401 × 401 | 401 × 401 | 192.2 | 1.97 |
501 × 501 × 501 | 501 × 501 | 373.9 | 4.07 |
1001 × 1001 × 1001 | 1001 × 1001 | 2580.6 | 30.3 |
Nx × Ny × Nz | Time/s | Memory/Gb |
---|---|---|
21 × 21 × 11 | 10.5 | 2.52 |
41 × 41 × 21 | 59.3 | 12.32 |
51 × 51 × 26 | 140.2 | 25.41 |
61 × 61 × 31 | 296.6 | 49.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Dai, S. Algorithm for Acoustic Wavefield in Space-Wavenumber Domain of Vertically Heterogeneous Media Using NUFFT. Mathematics 2025, 13, 571. https://doi.org/10.3390/math13040571
Zhang Y, Dai S. Algorithm for Acoustic Wavefield in Space-Wavenumber Domain of Vertically Heterogeneous Media Using NUFFT. Mathematics. 2025; 13(4):571. https://doi.org/10.3390/math13040571
Chicago/Turabian StyleZhang, Ying, and Shikun Dai. 2025. "Algorithm for Acoustic Wavefield in Space-Wavenumber Domain of Vertically Heterogeneous Media Using NUFFT" Mathematics 13, no. 4: 571. https://doi.org/10.3390/math13040571
APA StyleZhang, Y., & Dai, S. (2025). Algorithm for Acoustic Wavefield in Space-Wavenumber Domain of Vertically Heterogeneous Media Using NUFFT. Mathematics, 13(4), 571. https://doi.org/10.3390/math13040571