An Efficient Iterative Scheme for Approximating the Fixed Point of a Function Endowed with Condition (Bγ,μ) Applied for Solving Infectious Disease Models
Abstract
:1. Introduction
2. Preliminaries
- (a)
- asymptotic radius of at u as a functional, defined by ,
- (b)
- asymptotic radius of relative to the set by
- (c)
- asymptotic center of relative to the set by
- 1.
- the iterative scheme in a real Banach space X, defined by , is said to be -stable or stable with respect to if implies
- 2.
- the iterative scheme defined by is said to be almost -stable if implies that .
- 1.
- 2.
- at least one of the following holds:
- (i)
- (ii)
- .
The condition implies and condition implies . - 3.
- 1.
- converges weakly to τ,
- 2.
- ,
3. Main Results
3.1. Weak and Strong Convergence Theorems
- Conversely, assume that is bounded and . We can show that . To do that, let . Applying (3) of Proposition 1 for , ,
- By the hypothesis of Lemma 6, we have that is Fejer-monotone with respect to . Again, from Proposition 2, converges strongly to a fixed point in . □
3.2. Stability and Almost Stability Results
- Let . We show that if and only if
3.3. Numerical Example
- Case A
- For , we obtain
- Case B
- For and , we obtain
- Case C
- For , we obtain
4. Application to Infectious Diseases Model
- (C1)
- is continuous,
- (C2)
- , ,
- (C3)
- , .
5. Application to Boundary Value Problem of Third Order via Green’s Function
5.1. Construction of Green’s Function
- (A1)
- satisfies the associated boundary conditions;
- (A2)
- is continuous at , that is
- (A3)
- is continuous at , that is
- (A4)
- has jump disconttinuity at ;
5.2. Picard-like-Green Iterative Scheme
- (a)
- the kernel, which represents the Green function is bounded,
- (b)
- L is a bounded linear operator, and
- (c)
- one can choose and for where M is a bound for (i.e., ) and , .
5.3. Convergence Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suzuki, T. Fixed point theorems and convergence theorems for some generalized nonexpansive mappings. J. Math. Appl. 2008, 340, 1088–1095. [Google Scholar] [CrossRef]
- García-Falset, J.; Llorens-Fuster, E.; Suzuki, T. Fixed point theory for a class of generalized nonexpansive mapping. J. Math. Anal. 2011, 375, 185–195. [Google Scholar] [CrossRef]
- Patir, B.; Goswami, N.; Mishra, V.N. Some results on fixed theory for a class of generalized nonexpansive mappings. Fixed Point Theory Appl. 2018, 2018, 19. [Google Scholar] [CrossRef]
- Picard, E. Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives. J. Math. Pures Appl. 1890, 6, 145–210. [Google Scholar]
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Krasnosel’skii, M.A. Two observations about the method of successive approximations. Usp. Mat. Nauk. 1955, 10, 123–127. [Google Scholar]
- Khuri, S.A.; Sayfy, A.; Zaveri, A. A new iteration method based on Green’s functions for the solution of PDEs. Int. J. Comput. Math. 2017, 3, 3091–3103. [Google Scholar] [CrossRef]
- Khuri, S.A.; Sayfy, A. Numerical solution of functional differential equations: A Green’s function-based iterative approach. Int. J. Comput. Math. 2018, 95, 1937–1949. [Google Scholar] [CrossRef]
- Khuri, S.A.; Louhichi, I. A new fixed point iteration method for nonlinear third-order BVPs. Int. J. Comput. Math. 2021, 98, 2220–2232. [Google Scholar] [CrossRef]
- Okeke, G.A.; Udo, A.V.; Alqahtani, R.T.; Hussain, N. A faster iterative scheme for solving nonlinear fractional differential equation of the Caputo type. AIMS Math. 2023, 8, 28488–28516. [Google Scholar] [CrossRef]
- Okeke, G.A.; Ofem, A.E.; Işik, H. A faster iterative method for solving nonlinear third-order BVPs based on Green’s function. Bound. Value Probl. 2022, 2022, 103. [Google Scholar] [CrossRef]
- Ullah, K.; Arshad, M. Numerical reckoning fixed points for Suzuki’s generalized nonexpansive mapping via new iteration process. Filomat 2018, 32, 187–196. [Google Scholar] [CrossRef]
- Gürsoy, P.; Karakaya, V. A Picard-S hybrid iteration method for solving a differential equation with retarded argument. arXiv 2014, arXiv:1403.2546v2. [Google Scholar]
- Abbas, M.; Asghar, M.W.; De la Sen, M. Approximation of the solution of delay fractional differential equation using AA-iterative scheme. Mathematics 2022, 10, 273. [Google Scholar] [CrossRef]
- Ullah, K.; Arshad, M. New three-step iteration process and fixed point approximation in Banach spaces. J. Linear Topol. Algebra 2018, 7, 87–100. [Google Scholar]
- Ullah, K.; Abbas, M.; Ahmad, J.; Ahmad, F. Approximating fixed point of operators satisfying the (Bγ,μ) condition. Iran. J. Math. Sci. Inform. 2024, 19, 135–148. [Google Scholar] [CrossRef]
- Agarwal, R.P.; O’Regan, D.; Sahu, D.R. Fixed Point Theory for Lipschitzian Type Mppings with Applications; Topological Fixed Point Theory and Its Applications; Springer: New York, NY, USA, 2009; Volume 6. [Google Scholar] [CrossRef]
- Goebel, K.; Kirk, W.A. Topics in Metric Fixed Theory; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar] [CrossRef]
- Opial, Z. Weak convergence of the sequence of successive approximations for nonexpansive mapping. Bull. Am. Math. Soc. 1967, 73, 591–597. [Google Scholar] [CrossRef]
- Senter, H.F.; Dotson, W.G., Jr. Approximating fixed points of nonexpansive mappings. Proc. Am. Math. Soc. 1974, 44, 375–380. [Google Scholar] [CrossRef]
- Liu, Z.; Kang, S.M.; Cho, Y.J. Convergence and almost stability of Ishikawa iterative scheme with errors for m-accretive operators. Comput. Math. Appl. 2004, 47, 767–778. [Google Scholar] [CrossRef]
- Schu, J. Weak and strong convergence to fixed points of asymptotically nonexpansive mappings. Bull. Aust. Math. Soc. 1991, 43, 153–159. [Google Scholar] [CrossRef]
- Berinde, V. On the stability of some fixed procedure. Bul. Ştiinţ. Univ. Baia Mare Ser. B Mat.-Inform. 2002, XVIII, 7–14. [Google Scholar]
- Berinde, V. Summable almost stability of fixed point iteration procedures. Carpathian J. Math. 2003, 19, 81–88. [Google Scholar]
- Bauschke, H.H.; Combettes, P.L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces; Springer: New York, NY, USA, 2011. [Google Scholar]
- Alam, K.H.; Rohen, Y.; Tomar, A. On fixed point and its application to the spread of infectious diseases model in Mvb-metric space. Math. Methods Appl. Sci. 2024, 47, 6489–6503. [Google Scholar] [CrossRef]
- Leggett, R.W.; Williams, L.R. A fixed point theorem with application to an infectious disease model. J. Math. Anal. Appl. 1980, 76, 91–97. [Google Scholar] [CrossRef]
- Zhang, S.-S.; Bian, W.-M. Fixed point indexes and its applications to nonlinear integral equations modelling infectious diseases. Appl. Math. Mech. 1989, 10, 399–406. [Google Scholar] [CrossRef]
- Ali, F.; Ali, J.; Uddin, I. A novel approach for the solution of BVPs via Green’s function and fixed point iterative method. J. Appl. Math. Comput. 2021, 66, 167–181. [Google Scholar] [CrossRef]
- Okeke, G.A.; Udo, A.V.; Rasulov, Z. A novel Picard-Ishikawa-Green’s iterative scheme for solving third order boundary value problems. Math. Meth. Appl. Sci. 2024, 47, 7255–7269. [Google Scholar] [CrossRef]
Step | Picard-like | M | AA | Picard-S | |
---|---|---|---|---|---|
1 | 4.9906 | 4.8200 | 4.7000 | 4.9340 | 4.6600 |
2 | 5.0000 | 4.9838 | 4.9550 | 4.9978 | 4.9422 |
3 | 5.0000 | 4.9985 | 4.9932 | 4.9999 | 4.9902 |
4 | 5.0000 | 4.9999 | 4.9990 | 5.0000 | 4.9983 |
5 | 5.0000 | 5.0000 | 4.9998 | 5.0000 | 4.9997 |
6 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 |
7 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 |
8 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 |
9 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 |
10 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 |
11 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 |
12 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 |
13 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 |
14 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 |
15 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 |
16 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 |
17 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 |
18 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 |
19 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 |
20 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okeke, G.A.; Udo, A.V.; Alqahtani, R.T. An Efficient Iterative Scheme for Approximating the Fixed Point of a Function Endowed with Condition (Bγ,μ) Applied for Solving Infectious Disease Models. Mathematics 2025, 13, 562. https://doi.org/10.3390/math13040562
Okeke GA, Udo AV, Alqahtani RT. An Efficient Iterative Scheme for Approximating the Fixed Point of a Function Endowed with Condition (Bγ,μ) Applied for Solving Infectious Disease Models. Mathematics. 2025; 13(4):562. https://doi.org/10.3390/math13040562
Chicago/Turabian StyleOkeke, Godwin Amechi, Akanimo Victor Udo, and Rubayyi T. Alqahtani. 2025. "An Efficient Iterative Scheme for Approximating the Fixed Point of a Function Endowed with Condition (Bγ,μ) Applied for Solving Infectious Disease Models" Mathematics 13, no. 4: 562. https://doi.org/10.3390/math13040562
APA StyleOkeke, G. A., Udo, A. V., & Alqahtani, R. T. (2025). An Efficient Iterative Scheme for Approximating the Fixed Point of a Function Endowed with Condition (Bγ,μ) Applied for Solving Infectious Disease Models. Mathematics, 13(4), 562. https://doi.org/10.3390/math13040562