Analysis of Receiver Operating Characteristic Curves for Cure Survival Data and Mismeasured Biomarkers
Abstract
1. Introduction
2. Notation and Models
2.1. Cure Model
2.2. Measurement Error Model
3. Methodology
3.1. Construction of the Error-Corrected Likelihood Function
3.2. Estimation of Parameters and Functions
- Step 1:
- Choose an initial value for and , and denote them by and .
- Step 2:
- For , given and , , update by finding
- Step 3:
- For , given and , update by finding
- Step 4:
- Repeat Steps 2 and 3 until convergence, and let and denote the limit of and as .
3.3. Estimation of ROC and AUC
3.3.1. Time-Independent AUC
3.3.2. Time-Dependent AUC
- (a)
- For the time-independent result in Section 3.3.1,
- (b)
- (a)
- For the time-independent result in Section 3.3.1,
- (b)
- For the time-dependent result in Section 3.3.2,
4. Numerical Studies
5. Summary
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Theoretical Justification
Appendix A.1. Regularity Conditions
- (C1)
- is a compact set, and the true parameter value is an interior point of .
- (C2)
- Let be the finite maximum support of the failure time.
- (C3)
- are independent and identically distributed for .
- (C4)
- The covariates or biomarkers are bounded.
- (C5)
- Censoring time is noninformative. That is, the failure time and the censoring time are independent, given the covariate .
Appendix A.2. Proof of Theorem 1
Appendix A.3. Proof of Theorem 2
- (a)
- , where Z is a tight random element;
- (b)
- The map is Fréchet differentiable at with a continuously invertible derivative , where denotes an operator of the derivative of f with respect to x;
- (c)
- , and satisfies .
- Check Condition (a):
- Check Condition (b):
- Check Condition (c):
Appendix A.4. Proof of Theorem 3
- Proof of part (a)
- Proof of part (b)
Appendix A.5. Proof of Theorem 4
- Proof of part (a)
- Step 1: Examine
- Step 2: Examine
- Proof of part (b)
References
- Lawless, J.F. Statistical Models and Methods for Lifetime Data; Wiley: New York, NY, USA, 2003. [Google Scholar]
- Lu, W.; Ying, Z. On semiparametric transformation cure models. Biometrika 2004, 91, 331–343. [Google Scholar] [CrossRef]
- Chen, C.-M.; Shen, P.-S.; Wei, J.C.-C.; Lin, L. A semiparametric mixture cure survival model for left-truncated and right-censored data. Biom. J. 2017, 59, 270–290. [Google Scholar] [CrossRef]
- Amico, M.; Keilegom, I.V.; Legrand, C. The single-index/Cox mixture cure model. Biometrics 2019, 75, 452–462. [Google Scholar] [CrossRef]
- Amico, M.; Keilegom, I.V. Cure models in survival analysis. Annu. Rev. Stat. Its Appl. 2018, 5, 311–342. [Google Scholar] [CrossRef]
- Bertrand, A.; Legrand, C.; Carroll, R.J.; Meester, C.D.; Keilegom, I.V. Inference in a survival cure model with mismeasured covariates using a simulation-extrapolation approach. Biometrika 2017, 104, 31–50. [Google Scholar] [CrossRef]
- Ma, Y.; Yin, G. Cure rate model with mismeasured covariates under transformation. J. Am. Stat. Assoc. 2008, 103, 743–756. [Google Scholar] [CrossRef]
- Chen, L.-P. Semiparametric estimation for cure survival model with left-truncated and right-censored data and covariate measurement error. Stat. Probab. Lett. 2019, 154, 108547. [Google Scholar] [CrossRef]
- Beyene, K.M.; El Ghouch, A. Smoothed time-dependent receiver operating characteristic curve for right censored survival data. Stat. Med. 2020, 39, 3373–3396. [Google Scholar] [CrossRef]
- Heagerty, P.J.; Lumley, T.; Pepe, M.S. Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics 2000, 56, 337–344. [Google Scholar] [CrossRef]
- Kamarudin, A.N.; Cox, T.; Kolamunnage-Dona, R. Time-dependent ROC curve analysis in medical research: Current methods and applications. BMC Med. Res. Methodol. 2017, 17, 53. [Google Scholar] [CrossRef]
- Li, L.; Greene, T.; Hu, B. A simple method to estimate the time-dependent receiver operating characteristic curve and the area under the curve with right censored data. Stat. Methods Med. Res. 2018, 27, 2264–2278. [Google Scholar] [CrossRef]
- Song, X.; Zhou, X.-H. A semiparametric approach for the covariate specific roc curve with survival outcome. Stat. Sin. 2008, 18, 947–965. [Google Scholar]
- Zhang, Y.; Han, X.; Shao, Y. The ROC of Cox proportional hazards cure models with application in cancer studies. Lifetime Data Anal. 2021, 27, 195–215. [Google Scholar] [CrossRef]
- Amico, M.; Keilegom, I.V.; Han, B. Assessing cure status prediction from survival data using receiver operating characteristic curves. Biometrika 2021, 108, 727–740. [Google Scholar] [CrossRef]
- Kolamunnage-Dona, R.; Kamarudin, A.N. Adjustment for the measurement error in evaluating biomarker performances at baseline for future survival outcomes: Time-dependent receiver operating characteristic curve within a joint modelling framework. Res. Methods Med. Health Sci. 2021, 2, 51–60. [Google Scholar] [CrossRef]
- Crowther, M.J.; Lambert, P.C.; Abrams, K.R. Adjusting for measurement error in baseline prognostic biomarkers included in a time-to-event analysis: A joint modelling approach. BMC Med. Res. Methodol. 2013, 13, 146. [Google Scholar] [CrossRef]
- Nevo, D.; Zucker, D.M.; Tamimic, R.M.; Wang, M. Accounting for measurement error in biomarker data and misclassification of subtypes. Stat. Med. 2016, 35, 5686–5700. [Google Scholar] [CrossRef]
- Mao, M.; Wang, J.-L. Semiparametric efficient estimation for a class of generalized proportional odds cure models. J. Am. Stat. 2010, 105, 302–311. [Google Scholar] [CrossRef]
- Chen, L.-P. Semiparametric estimation for the transformation model with length-biased data and covariate measurement error. J. Stat. Comput. Simul. 2020, 90, 420–442. [Google Scholar] [CrossRef]
- Carroll, R.J.; Ruppert, D.; Stefanski, L.A.; Crainiceanu, C.M. Measurement Error in Nonlinear Model; CRC Press: New York, NY, USA, 2006. [Google Scholar]
- Chen, L.-P.; Yi, G.Y. Semiparametric estimation methods for left-truncated and right-censored survival data with covariate measurement error. Ann. Inst. Stat. Math. 2021, 73, 481–517. [Google Scholar] [CrossRef]
- Elandt-Johnson, R.C.; Johnson, N.L. Survival Models and Data Analysis; John Wiley & Sons: New York, NY, USA, 1980. [Google Scholar]
- Chen, L.-P.; Yi, G.Y. Analysis of noisy survival data with graphical proportional hazards measurement error models. Biometrics 77, 956–969. [CrossRef]
- Hunter, D.R.; Lange, K. Computing estimates in the proportional odds model. Ann. Inst. Stat. Math. 2002, 54, 155–168. [Google Scholar] [CrossRef]
- Zheng, Y.; Cai, T.; Feng, Z. Application of the time-dependent ROC curves for prognostic accuracy with multiple biomarkers. Biometrics 2006, 62, 279–287. [Google Scholar] [CrossRef]
- Carroll, R.J.; Spiegelman, C.H.; Lan, K.K.G.; Bailey, K.T.; Abbot, R.D. On errors-in-variables for binary regression model. Biometrika 1984, 71, 19–25. [Google Scholar] [CrossRef]
- Webb, A.; Ma, J. Cox models with time-varying covariates and partly-interval censoring—A maximum penalised likelihood approach. Stat. Med. 2023, 42, 815–833. [Google Scholar] [CrossRef]
- van der Vaart, A.W. Asymptotic Statistics; Cambridge University Press: New York, NY, USA, 1998. [Google Scholar]
- Kim, J.P.; Lu, W.; Sit, T.; Ying, Z. A unified approach to semiparametric transformation models under general biased sampling schemes. J. Am. Stat. Assoc. 2013, 108, 217–227. [Google Scholar] [CrossRef]
- van der Vaart, A.W.; Wellner, J.A. Weak Convergence and Empirical Processes; Springer: New York, NY, USA, 1996. [Google Scholar]
- Su, Y.-R.; Wang, J.-L. Modeling left-truncated and right-censored survival data with longitudinal covariates. Ann. Stat. 2012, 40, 1465–1488. [Google Scholar] [CrossRef]
- Durrett, R. Probability: Theory and Examples; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Hoeffding, W. A class of statistics with asymptotically normal distribution. Ann. Math. Stat. 1948, 19, 293–325. [Google Scholar] [CrossRef]
Parameter | Methods | |||||||
---|---|---|---|---|---|---|---|---|
Bias | S.E. | MSE | Bias | S.E. | MSE | |||
0.15 | Naive | 0.163 | 0.308 | 0.121 | 0.159 | 0.230 | 0.078 | |
Proposed | 0.012 | 0.325 | 0.106 | 0.009 | 0.238 | 0.057 | ||
Naive | 0.170 | 0.231 | 0.082 | 0.165 | 0.208 | 0.070 | ||
Proposed | 0.018 | 0.266 | 0.071 | 0.013 | 0.220 | 0.049 | ||
Naive | 0.108 | 0.033 | 0.013 | 0.096 | 0.030 | 0.010 | ||
Proposed | 0.014 | 0.056 | 0.003 | 0.007 | 0.047 | 0.002 | ||
Naive | 0.115 | 0.051 | 0.016 | 0.108 | 0.047 | 0.014 | ||
Proposed | 0.016 | 0.060 | 0.004 | 0.013 | 0.057 | 0.003 | ||
Naive | 0.114 | 0.049 | 0.015 | 0.103 | 0.041 | 0.012 | ||
Proposed | 0.013 | 0.062 | 0.004 | 0.009 | 0.056 | 0.003 | ||
0.35 | Naive | 0.195 | 0.321 | 0.141 | 0.178 | 0.255 | 0.097 | |
Proposed | 0.020 | 0.345 | 0.119 | 0.017 | 0.269 | 0.073 | ||
Naive | 0.195 | 0.264 | 0.108 | 0.181 | 0.229 | 0.085 | ||
Proposed | 0.023 | 0.281 | 0.080 | 0.020 | 0.245 | 0.060 | ||
Naive | 0.125 | 0.047 | 0.018 | 0.114 | 0.042 | 0.015 | ||
Proposed | 0.017 | 0.060 | 0.004 | 0.014 | 0.055 | 0.003 | ||
Naive | 0.123 | 0.060 | 0.019 | 0.112 | 0.055 | 0.016 | ||
Proposed | 0.020 | 0.071 | 0.005 | 0.017 | 0.066 | 0.005 | ||
Naive | 0.121 | 0.054 | 0.018 | 0.116 | 0.050 | 0.016 | ||
Proposed | 0.019 | 0.069 | 0.005 | 0.016 | 0.063 | 0.004 | ||
0.55 | Naive | 0.214 | 0.348 | 0.167 | 0.193 | 0.285 | 0.118 | |
Proposed | 0.027 | 0.362 | 0.132 | 0.023 | 0.307 | 0.095 | ||
Naive | 0.226 | 0.287 | 0.133 | 0.201 | 0.266 | 0.111 | ||
Proposed | 0.028 | 0.301 | 0.091 | 0.025 | 0.278 | 0.078 | ||
Naive | 0.133 | 0.066 | 0.022 | 0.128 | 0.059 | 0.020 | ||
Proposed | 0.021 | 0.078 | 0.006 | 0.019 | 0.069 | 0.005 | ||
Naive | 0.136 | 0.068 | 0.023 | 0.124 | 0.063 | 0.019 | ||
Proposed | 0.026 | 0.079 | 0.007 | 0.024 | 0.074 | 0.006 | ||
Naive | 0.134 | 0.060 | 0.022 | 0.128 | 0.057 | 0.020 | ||
Proposed | 0.025 | 0.066 | 0.005 | 0.021 | 0.069 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.-P. Analysis of Receiver Operating Characteristic Curves for Cure Survival Data and Mismeasured Biomarkers. Mathematics 2025, 13, 424. https://doi.org/10.3390/math13030424
Chen L-P. Analysis of Receiver Operating Characteristic Curves for Cure Survival Data and Mismeasured Biomarkers. Mathematics. 2025; 13(3):424. https://doi.org/10.3390/math13030424
Chicago/Turabian StyleChen, Li-Pang. 2025. "Analysis of Receiver Operating Characteristic Curves for Cure Survival Data and Mismeasured Biomarkers" Mathematics 13, no. 3: 424. https://doi.org/10.3390/math13030424
APA StyleChen, L.-P. (2025). Analysis of Receiver Operating Characteristic Curves for Cure Survival Data and Mismeasured Biomarkers. Mathematics, 13(3), 424. https://doi.org/10.3390/math13030424