Reconstruction and Prediction of Chaotic Time Series with Missing Data: Leveraging Dynamical Correlations Between Variables
Abstract
1. Introduction
2. Model
3. Experiments
3.1. Chaotic Systems
3.2. Dataset
3.3. Performance Metrics
3.4. Results Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Szpiro, G.G. Forecasting chaotic time series with genetic algorithms. Phys. Rev. E 1997, 55, 2557. [Google Scholar] [CrossRef]
- Palit, A.K.; Popovic, D. Forecasting chaotic time series using neuro-fuzzy approach. In Proceedings of the IJCNN’99. International Joint Conference on Neural Networks. Proceedings (Cat. No. 99CH36339), Washington, DC, USA, 10–16 July 1999; Volume 3, pp. 1538–1543. [Google Scholar]
- Wang, Y.; Jiang, W.; Yuan, S.; Wang, J. Forecasting chaotic time series based on improved genetic Wnn. In Proceedings of the 2008 Fourth International Conference on Natural Computation, Jinan, China, 18–20 October 2008; Volume 5, pp. 519–523. [Google Scholar]
- Jiang, C.; Song, F. Forecasting chaotic time series of exchange rate based on nonlinear autoregressive model. In Proceedings of the 2010 2nd International Conference on Advanced Computer Control, Shenyang, China, 27–29 March 2010; Volume 5, pp. 238–241. [Google Scholar]
- Gómez-Gil, P.; Ramírez-Cortes, J.M.; Pomares Hernández, S.E.; Alarcón-Aquino, V. A neural network scheme for long-term forecasting of chaotic time series. Neural Process. Lett. 2011, 33, 215–233. [Google Scholar] [CrossRef]
- Shen, M.; Chen, W.N.; Zhang, J.; Chung, H.S.H.; Kaynak, O. Optimal selection of parameters for nonuniform embedding of chaotic time series using ant colony optimization. IEEE Trans. Cybern. 2013, 43, 790–802. [Google Scholar] [CrossRef]
- Fonseca, R.; Gómez-Gil, P. Temporal validated meta-learning for long-term forecasting of chaotic time series using monte carlo cross-validation. In Recent Advances on Hybrid Approaches for Designing Intelligent Systems; Springer: Berlin/Heidelberg, Germany, 2014; pp. 353–367. [Google Scholar]
- Abdulkadir, S.J.; Yong, S.P. Scaled UKF–NARX hybrid model for multi-step-ahead forecasting of chaotic time series data. Soft Comput. 2015, 19, 3479–3496. [Google Scholar] [CrossRef]
- Sangiorgio, M.; Dercole, F. Robustness of LSTM neural networks for multi-step forecasting of chaotic time series. Chaos Solitons Fractals 2020, 139, 110045. [Google Scholar] [CrossRef]
- Kapil, C.; Barde, V.; Seemala, G.K.; Dimri, A. Investigating forced transient chaos in monsoon using Echo State Networks. Clim. Dyn. 2024, 62, 5759–5768. [Google Scholar] [CrossRef]
- Sun, J.; Li, L.; Peng, H. Sequence Prediction and Classification of Echo State Networks. Mathematics 2023, 11, 4640. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, L.; Yan, L.; He, X.; Feng, J.; Pan, W.; Luo, B. Chaotic time series prediction based on physics-informed neural operator. Chaos Solitons Fractals 2024, 186, 115326. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Cheng, C.; Tan, F.; Wei, Z. DeepVar: An end-to-end deep learning approach for genomic variant recognition in biomedical literature. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 598–605. [Google Scholar]
- Liu, Y.; Wu, H.; Wang, J.; Long, M. Non-stationary transformers: Exploring the stationarity in time series forecasting. Adv. Neural Inf. Process. Syst. 2022, 35, 9881–9893. [Google Scholar]
- Liu, T.; Zhao, X.; Sun, P.; Zhou, J. A hybrid proper orthogonal decomposition and next generation reservoir computing approach for high-dimensional chaotic prediction: Application to flow-induced vibration of tube bundles. Chaos Interdiscip. J. Nonlinear Sci. 2024, 34, 3. [Google Scholar] [CrossRef]
- Xiong, L.; Su, L.; Wang, X.; Pan, C. Dynamic adaptive graph convolutional transformer with broad learning system for multi-dimensional chaotic time series prediction. Appl. Soft Comput. 2024, 157, 111516. [Google Scholar] [CrossRef]
- Fu, K.; Li, H.; Shi, X. CTF-former: A novel simplified multi-task learning strategy for simultaneous multivariate chaotic time series prediction. Neural Netw. 2024, 174, 106234. [Google Scholar] [CrossRef]
- Wahdany, D.; Schmitt, C.; Cremer, J.L. More than accuracy: End-to-end wind power forecasting that optimises the energy system. Electr. Power Syst. Res. 2023, 221, 109384. [Google Scholar] [CrossRef]
- Batista, G.E.; Monard, M.C. An analysis of four missing data treatment methods for supervised learning. Appl. Artif. Intell. 2003, 17, 519–533. [Google Scholar] [CrossRef]
- Banks, D.; House, L.; McMorris, F.R.; Arabie, P.; Gaul, W.A. Classification, Clustering, and Data Mining Applications. In Proceedings of the Meeting of the International Federation of Classification Societies (IFCS), Illinois Institute of Technology, Chicago, IL, USA, 15–18 July 2004; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Luengo, J.; García, S.; Herrera, F. A study on the use of imputation methods for experimentation with radial basis function network classifiers handling missing attribute values: The good synergy between rbfns and eventcovering method. Neural Netw. 2010, 23, 406–418. [Google Scholar] [CrossRef]
- Jerez, J.M.; Molina, I.; García-Laencina, P.J.; Alba, E.; Ribelles, N.; Martín, M.; Franco, L. Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artif. Intell. Med. 2010, 50, 105–115. [Google Scholar] [CrossRef]
- Laña, I.; Olabarrieta, I.I.; Vélez, M.; Del Ser, J. On the imputation of missing data for road traffic forecasting: New insights and novel techniques. Transp. Res. Part C Emerg. Technol. 2018, 90, 18–33. [Google Scholar] [CrossRef]
- Tresp, V.; Hofmann, R. Nonlinear time-series prediction with missing and noisy data. Neural Comput. 1998, 10, 731–747. [Google Scholar] [CrossRef] [PubMed]
- Chiewchanwattana, S.; Lursinsap, C. FI-GEM networks for incomplete time-series prediction. In Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN’02 (Cat. No. 02CH37290), Honolulu, HI, USA, 12–17 May 2002; Volume 2, pp. 1757–1762. [Google Scholar]
- Zhao, P.; Xing, L.; Yu, J. Chaotic time series prediction: From one to another. Phys. Lett. A 2009, 373, 2174–2177. [Google Scholar] [CrossRef]
- Rodriguez, H.; Flores, J.J.; Morales, L.A.; Lara, C.; Guerra, A.; Manjarrez, G. Forecasting from incomplete and chaotic wind speed data. Soft Comput. 2019, 23, 10119–10127. [Google Scholar] [CrossRef]
- Salgado, C.M.; Azevedo, C.; Proença, H.; Vieira, S.M. Missing Data. In Secondary Analysis of Electronic Health Records; MIT Critical Data, Ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 143–162. [Google Scholar]
- Hastie, T.; Mazumder, R.; Lee, J.D.; Zadeh, R. Matrix completion and low-rank SVD via fast alternating least squares. J. Mach. Learn. Res. 2015, 16, 3367–3402. [Google Scholar]
- Mazumder, R.; Hastie, T.; Tibshirani, R. Spectral regularization algorithms for learning large incomplete matrices. J. Mach. Learn. Res. 2010, 11, 2287–2322. [Google Scholar] [PubMed]
- White, I.R.; Royston, P.; Wood, A.M. Multiple imputation using chained equations: Issues and guidance for practice. Stat. Med. 2011, 30, 377–399. [Google Scholar] [CrossRef]
- Brophy, E.; Wang, Z.; She, Q.; Ward, T. Generative adversarial networks in time series: A systematic literature review. ACM Comput. Surv. 2023, 55, 1–31. [Google Scholar] [CrossRef]
- Du, W.; Côté, D.; Liu, Y. Saits: Self-attention-based imputation for time series. Expert Syst. Appl. 2023, 219, 119619. [Google Scholar] [CrossRef]
- Shi, L.; Yan, Y.; Wang, H.; Wang, S.; Qu, S.X. Predicting chaotic dynamics from incomplete input via reservoir computing with (D+ 1)-dimension input and output. Phys. Rev. E 2023, 107, 054209. [Google Scholar] [CrossRef]
- Chen, Y.; Qian, Y.; Cui, X. Time series reconstructing using calibrated reservoir computing. Sci. Rep. 2022, 12, 16318. [Google Scholar] [CrossRef]
- Cunillera, A.; Soriano, M.C.; Fischer, I. Cross-predicting the dynamics of an optically injected single-mode semiconductor laser using reservoir computing. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Pathak, J.; Hunt, B.; Girvan, M.; Brockett, R.; Ott, E. Reservoir observers: Model-free inference of unmeasured variables in chaotic systems. Chaos Interdiscip. J. Nonlinear Sci. 2017, 27. [Google Scholar] [CrossRef] [PubMed]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M. A hyperchaos generated from Lorenz system. Phys. A Stat. Mech. Its Appl. 2008, 387, 3751–3758. [Google Scholar] [CrossRef]
- Banerjee, A.; Pathak, J.; Roy, R.; Restrepo, J.G.; Ott, E. Using machine learning to assess short term causal dependence and infer network links. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29. [Google Scholar] [CrossRef] [PubMed]
- Dong, E.; Yuan, M.; Du, S.; Chen, Z. A new class of Hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator. Appl. Math. Model. 2019, 73, 40–71. [Google Scholar] [CrossRef]
- Yoon, J.; Jordon, J.; Schaar, M. Gain: Missing data imputation using generative adversarial nets. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 5689–5698. [Google Scholar]
Module | Lr | es | ml | nl | ep | bs | ||
---|---|---|---|---|---|---|---|---|
LightGBM | 0.01 | 50 | 0.5 | 0.5 | 20 | - | - | |
NST | 0.0008 | 100 | - | - | - | - | 100 | 256 |
Additional NST Hyperparameters: | ||||||||
hl | 2 (number of hidden layers in projector) | |||||||
hd | 128 (hidden layer dimension of the projector) |
Lr | ep | bs | hd/hs | rs | sr/sp/ts | |
---|---|---|---|---|---|---|
NST | 0.0001 | 500 | 256 | 128 | – | – |
DeepVar | 0.01 | 100 | 128 | 30 | – | – |
LSTM | 0.001 | 100 | 32 | 30 | – | – |
ESN | – | – | – | – | 500 | 1/0.45/1.12 |
Data | F-Statistic | p-Value | Significance Level |
---|---|---|---|
Lorenz | 139.19 | Significant | |
Hyperchaotic Lorenz | 763.04 | Significant | |
Coupled Lorenz | 857.41 | Significant | |
Conservative Chaos | 1447.28 | Significant |
Data | LNS_PM | NST | LSTM | DeepVar | ESN |
---|---|---|---|---|---|
Lorenz | (23.583, 23.782) | (23.424, 23.621) | (20.242, 20.420) | (21.738, 21.906) | (26.553, 26.610) |
(23.668, 23.867) | (23.490, 23.689) | (20.256, 20.435) | (22.346, 22.523) | (26.469, 26.525) | |
(23.640, 23.841) | (23.648, 23.843) | (21.375, 21.544) | (24.902, 25.056) | (26.601, 26.659) | |
(23.746, 23.943) | (23.723, 23.914) | (21.962, 22.100) | (22.753, 22.948) | (26.586, 26.643) | |
(23.669, 23.870) | (23.525, 23.696) | (20.679, 20.804) | (20.589, 20.791) | (26.624, 26.681) | |
Hyperchaotic Lorenz | (24.507, 25.053) | (24.479, 25.017) | (22.436, 22.861) | (23.522, 24.043) | (39.756, 40.127) |
(24.355, 24.899) | (23.973, 24.494) | (20.174, 20.625) | (23.515, 24.049) | (39.877, 40.253) | |
(24.070, 24.617) | (24.026, 24.532) | (19.714, 20.209) | (21.302, 21.796) | (38.838, 39.212) | |
(24.039, 24.579) | (24.595, 25.167) | (20.230, 20.673) | (23.899, 24.442) | (38.881, 39.253) | |
(24.178, 24.725) | (24.614, 25.086) | (20.003, 20.309) | (24.591, 25.161) | (38.994, 39.356) | |
Coupled Lorenz | (17.261, 17.360) | (17.249, 17.348) | (16.576, 16.654) | (18.440, 18.535) | (16.915, 17.001) |
(17.298, 17.396) | (17.311, 17.410) | (16.391, 16.466) | (18.182, 18.279) | (17.094, 17.179) | |
(17.271, 17.370) | (17.271, 17.369) | (15.582, 15.653) | (17.081, 17.171) | (17.132, 17.216) | |
(17.277, 17.376) | (17.229, 17.327) | (15.336, 15.413) | (17.987, 18.080) | (17.044, 17.133) | |
(17.269, 17.368) | (17.279, 17.377) | (15.876, 15.941) | (17.884, 17.974) | (17.042, 17.125) | |
Conservative Chaos | (−0.007, 0.011) | (−0.006, 0.012) | (0.048, 0.066) | (0.008, 0.025) | (−0.646, −0.645) |
(−0.006, 0.012) | (−0.005, 0.012) | (0.119, 0.138) | (−0.066, −0.047) | (−0.644, −0.643) | |
(−0.006, 0.011) | (−0.007, 0.011) | (0.070, 0.088) | (0.069, 0.087) | (−0.646, −0.646) | |
(−0.006, 0.012) | (−0.007, 0.011) | (0.048, 0.067) | (−0.101, −0.083) | (−0.645, −0.644) | |
(−0.006, 0.011) | (−0.007, 0.011) | (0.156, 0.174) | (−0.162, −0.143) | (−0.641, −0.639) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, J.; Mao, H.; Wang, Y.; Yao, Z. Reconstruction and Prediction of Chaotic Time Series with Missing Data: Leveraging Dynamical Correlations Between Variables. Mathematics 2025, 13, 152. https://doi.org/10.3390/math13010152
Lv J, Mao H, Wang Y, Yao Z. Reconstruction and Prediction of Chaotic Time Series with Missing Data: Leveraging Dynamical Correlations Between Variables. Mathematics. 2025; 13(1):152. https://doi.org/10.3390/math13010152
Chicago/Turabian StyleLv, Jingchan, Hongcun Mao, Yu Wang, and Zhihai Yao. 2025. "Reconstruction and Prediction of Chaotic Time Series with Missing Data: Leveraging Dynamical Correlations Between Variables" Mathematics 13, no. 1: 152. https://doi.org/10.3390/math13010152
APA StyleLv, J., Mao, H., Wang, Y., & Yao, Z. (2025). Reconstruction and Prediction of Chaotic Time Series with Missing Data: Leveraging Dynamical Correlations Between Variables. Mathematics, 13(1), 152. https://doi.org/10.3390/math13010152