Natural Methods of Unsupervised Topological Alignment
Abstract
1. Introduction
2. Preliminaries
3. Coupled Unsupervised Manifold Alignment
3.1. Coupled Laplacian Mapping
3.1.1. Generalized Eigenvectors
3.1.2. Restriction of the Dimension
3.1.3. Probabilistic Approach
3.1.4. Characteristic of the Mapping
3.2. Unsupervised Manifold Alignment via the Reproducing Kernel
3.2.1. Reproducing Kernel Hilbert Space
3.2.2. Kernel-Based Mapping
3.3. Prospective Application to the Modern Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mironenko, I.V.; Kryukova, O.V.; Buianova, A.A.; Churov, A.V.; Arbatsky, M.S.; Kubrikova, A.A.; Petrusenko, Y.S.; Repinskaia, Z.A.; Shmitko, A.O.; Ilyina, G.A.; et al. ACE-Dependent Alzheimer’s Disease: Circulating ACE Phenotypes in Heterozygous Carriers of Rare ACE Variants. Int. J. Mol. Sci. 2025, 26, 9099. [Google Scholar] [CrossRef] [PubMed]
- Arbatskiy, M.; Balandin, D.; Churov, A.; Varachev, V.; Nikolaeva, E.; Mitrofanov, A.; Bekyashev, A.; Tkacheva, O.; Susova, O.; Nasedkina, T. Intratumoral Cell Heterogeneity in Patient-Derived Glioblastoma Cell Lines Revealed by Single-Cell RNA-Sequencing. Int. J. Mol. Sci. 2024, 25, 8472. [Google Scholar] [CrossRef] [PubMed]
- Kulebyakina, M.; Basalova, N.; Butuzova, D.; Arbatsky, M.; Chechekhin, V.; Kalinina, N.; Tyurin-Kuzmin, P.; Kulebyakin, K.; Klychnikov, O.; Efimenko, A. Balance between Pro and Antifibrotic Proteins in Mesenchymal Stromal Cell Secretome Fractions Revealed by Proteome and Cell Subpopulation Analysis. Int. J. Mol. Sci. 2024, 25, 290. [Google Scholar] [CrossRef] [PubMed]
- Basalova, N.; Sagaradze, G.; Arbatskiy, M.; Evtushenko, E.; Kulebyakin, K.; Grigorieva, O.; Akopyan, Z.; Kalinina, N.; Efimenko, A. Secretome of Mesenchymal Stromal Cells Prevents Myofibroblasts Differentiation by Transferring Fibrosis-Associated microRNAs within Extracellular Vesicles. Cells 2020, 9, 1272. [Google Scholar] [CrossRef]
- Welch, J.D.; Hartemink, A.J.; Prins, J.F. MATCHER: Manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics. Genome Biol. 2017, 18, 138. [Google Scholar] [CrossRef]
- Liu, J.; Huang, Y.; Singh, R.; Vert, J.P.; Noble, W.S. Jointly Embedding Multiple Single-Cell Omics Measurements. Algorithms Bioinform. 2019, 143, 10. [Google Scholar]
- Cao, K.; Hong, Y.; Wan, L. Manifold alignment for heterogeneous single-cell multi-omics data integration using Pamona. Bioinformatics 2022, 38, 211–219. [Google Scholar] [CrossRef]
- Chapel, L.; Alaya, M.Z.; Gasso, G. Partial optimal tranport with applications on positive-unlabeled learning. Adv. Neural Inf. Process. Syst. 2020, 33, 2900–2910. [Google Scholar]
- Duren, Z.; Chen, X.; Zamanighomi, M.; Zeng, W.; Satpathy, A.T.; Chang, H.Y.; Wang, Y.; Wong, W.H. Integrative analysis of single-cell genomics data by coupled nonnegative matrix factorizations. Proc. Natl. Acad. Sci. USA 2018, 115, 7723–7728. [Google Scholar] [CrossRef]
- Cao, K.; Bai, X.; Hong, Y.; Wan, L. Unsupervised topological alignment for single-cell multi-omics integration. Bioinformatics 2020, 36, 148–156. [Google Scholar] [CrossRef]
- Dou, J.; Liang, S.; Mohanty, V.; Cheng, X.; Kim, S.; Choi, J.; Li, Y.; Rezvani, K.; Chen, R.; Chen, K. Unbiased integration of single cell multi-omics data. bioRxiv 2020. [Google Scholar] [CrossRef]
- Korsunsky, I.; Millard, N.; Fan, J.; Slowikowski, K.; Zhang, F.; Wei, K.; Baglaenko, Y.; Brenner, M.; Loh, P.; Raychaudhuri, S. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 2019, 16, 1289–1296. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, A.B.; Roco, C.M.; Muscat, R.A.; Kuchina, A.; Sample, P.; Yao, Z.; Graybuck, L.T.; Peeler, D.J.; Mukherjee, S.; Chen, W.; et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 2018, 360, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Stuart, T.; Butler, A.; Hoffman, P.; Hafemeister, C.; Papalexi, E.; Mauck, W.M., III; Hao, Y.; Stoeckius, M.; Smibert, P.; Satija, R. Comprehensive integration of single-cell data. Cell 2019, 177, 1888–1902. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Sun, D.; Huang, X.; Wan, C.; Li, Z.; Han, Y.; Qin, Q.; Fan, J.; Qiu, X.; Xie, Y.; et al. Integrative analyses of single-cell transcriptome and regulome using MAESTRO. Genome Biol. 2020, 21, 198. [Google Scholar] [CrossRef]
- Belkin, M.; Matveeva, I.; Niyogi, P. Regularization and semi-supervised learning on large graphs. In Learning Theory. COLT 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 624–638. [Google Scholar]
- Ek, C.H. Shared Gaussian Process Latent Variables Models. Ph.D. Thesis, Oxford Brookes University, Oxford, UK, 2004. [Google Scholar]
- Ham, J.H.; Lee, D.D.; Saul, L.K. Semisupervised alignment of manifolds. In Proceedings of the 10th International Conference on Artificial Intelligence and Statistics, Bridgetown, Barbados, 6–8 January 2005; pp. 120–127. [Google Scholar]
- Kukushkin, M.V. Schatten Index of the Sectorial Operator via the Real Component of Its Inverse. Mathematics 2024, 12, 540. [Google Scholar] [CrossRef]
- Ham, J.H.; Lee, D.D.; Saul, L.K. Learning high dimensional correspondences from low dimensional manifolds. In Proceedings of the 20th International Conference on Machine Learning, Washington, DC, USA, 21–24 August 2003. [Google Scholar]
- Belkin, M.; Niyogi, P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 2003, 15, 1373–1396. [Google Scholar] [CrossRef]
- Van Der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Hinton, G.E.; Roweis, S.T. Stochastic Neighbor Embedding. Adv. Neural Inf. Process. Syst. 2002, 15, 833–840. [Google Scholar]
- Chwialkowski, K.; Ramdas, A.; Sejdinovic, D.; Gretton, A. Fast two-sample testing with analytic representations of probability measures. Adv. Neural Inf. Process. Syst. 2015, 28, 1981–1989. [Google Scholar]
- Rohart, F.; Gautier, B.; Singh, A.; Lê Cao, K.-A. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 2017, 13, e1005752. [Google Scholar] [CrossRef]
- Ashuach, T.; Gabitto, M.I.; Koodli, R.V.; Saldi, G.A.; Jordan, M.I.; Yosef, N. MultiVI: Deep generative model for the integration of multimodal data. Nat. Methods 2023, 20, 1222–1231. [Google Scholar] [CrossRef]
- Bredikhin, D.; Kats, I.; Stegle, O. MUON: Multimodal omics analysis framework. Genome Biol. 2022, 23, 42. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Meng-Papaxanthos, L.; Vert, J.-P.; Noble, W.S. Multimodal Single-Cell Translation and Alignment with Semi-Supervised Learning. J. Comput. Biol. 2022, 29, 1198–1212. [Google Scholar] [CrossRef]
- Xu, Y.; Begoli, E.; McCord, R.P. sciCAN: Single-cell chromatin accessibility and gene expression data integration via cycle-consistent adversarial network. npj Syst. Biol. Appl. 2022, 8, 33. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kukushkin, M.V.; Arbatskiy, M.S.; Balandin, D.E.; Churov, A.V. Natural Methods of Unsupervised Topological Alignment. Mathematics 2025, 13, 3968. https://doi.org/10.3390/math13243968
Kukushkin MV, Arbatskiy MS, Balandin DE, Churov AV. Natural Methods of Unsupervised Topological Alignment. Mathematics. 2025; 13(24):3968. https://doi.org/10.3390/math13243968
Chicago/Turabian StyleKukushkin, Maksim V., Mikhail S. Arbatskiy, Dmitriy E. Balandin, and Alexey V. Churov. 2025. "Natural Methods of Unsupervised Topological Alignment" Mathematics 13, no. 24: 3968. https://doi.org/10.3390/math13243968
APA StyleKukushkin, M. V., Arbatskiy, M. S., Balandin, D. E., & Churov, A. V. (2025). Natural Methods of Unsupervised Topological Alignment. Mathematics, 13(24), 3968. https://doi.org/10.3390/math13243968

