Asymptotic Confidence Intervals for the Mean with Increased Finite-Sample Coverage Probabilities
Abstract
1. Introduction
2. Main Results
2.1. Preliminaries
2.2. FACIs Based on and
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
| FACI Coverages | Ratios of Average Lengths | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Distribution | ||||||||||
| Pareto(2,1) | 50 | 76.62 (0.42) | 77.91 (0.41) | 84.46 (0.36) | 84.76 (0.36) | 88.47 (0.32) | 1.121 | 1.361 | 1.259 | 1.344 |
| 100 | 78.31 (0.41) | 79.90 (0.40) | 85.04 (0.36) | 85.80 (0.35) | 89.53 (0.31) | 1.111 | 1.280 | 1.189 | 1.280 | |
| 300 | 82.15 (0.38) | 83.56 (0.37) | 86.88 (0.34) | 87.17 (0.33) | 90.71 (0.29) | 1.106 | 1.192 | 1.120 | 1.202 | |
| 500 | 83.14 (0.37) | 83.47 (0.37) | 86.88 (0.34) | 87.26 (0.33) | 90.28 (0.30) | 1.104 | 1.162 | 1.100 | 1.179 | |
| 1000 | 84.67 (0.36) | 85.93 (0.35) | 87.85 (0.33) | 88.24 (0.32) | 91.03 (0.29) | 1.104 | 1.129 | 1.079 | 1.156 | |
| Weibull(0.4,1) | 50 | 77.18 (0.42) | 78.20 (0.41) | 84.06 (0.37) | 84.33 (0.36) | 87.44 (0.33) | 1.120 | 1.361 | 1.259 | 1.343 |
| 100 | 81.37 (0.39) | 82.90 (0.38) | 87.86 (0.33) | 88.13 (0.32) | 90.54 (0.29) | 1.111 | 1.280 | 1.190 | 1.281 | |
| 300 | 85.61 (0.35) | 85.75 (0.35) | 89.68 (0.30) | 89.18 (0.31) | 90.82 (0.29) | 1.106 | 1.192 | 1.120 | 1.202 | |
| 500 | 86.56 (0.34) | 87.30 (0.33) | 90.22 (0.30) | 89.78 (0.30) | 91.30 (0.28) | 1.105 | 1.162 | 1.100 | 1.179 | |
| 1000 | 87.82 (0.33) | 88.35 (0.32) | 91.11 (0.28) | 90.09 (0.30) | 91.17 (0.28) | 1.103 | 1.129 | 1.079 | 1.156 | |
| InverseNormal(7,1) | 50 | 78.44 (0.41) | 79.27 (0.41) | 84.90 (0.36) | 84.91 (0.36) | 87.81 (0.33) | 1.121 | 1.361 | 1.259 | 1.343 |
| 100 | 82.47 (0.38) | 83.35 (0.37) | 88.35 (0.32) | 88.20 (0.32) | 90.42 (0.29) | 1.111 | 1.280 | 1.189 | 1.279 | |
| 300 | 86.65 (0.34) | 87.16 (0.33) | 91.11 (0.28) | 90.28 (0.30) | 91.74 (0.28) | 1.105 | 1.192 | 1.119 | 1.201 | |
| 500 | 88.08 (0.32) | 87.99 (0.33) | 91.94 (0.27) | 90.71 (0.29) | 91.64 (0.28) | 1.104 | 1.162 | 1.100 | 1.179 | |
| 1000 | 89.29 (0.31) | 88.79 (0.32) | 91.92 (0.27) | 90.65 (0.29) | 91.10 (0.28) | 1.103 | 1.128 | 1.079 | 1.156 | |
| Log-logistic(2.1,1) | 50 | 79.73 (0.40) | 80.88 (0.39) | 87.50 (0.33) | 87.82 (0.33) | 91.03 (0.29) | 1.121 | 1.361 | 1.259 | 1.344 |
| 100 | 82.65 (0.38) | 83.18 (0.37) | 88.82 (0.32) | 89.19 (0.31) | 92.49 (0.26) | 1.112 | 1.280 | 1.189 | 1.279 | |
| 300 | 85.16 (0.36) | 85.46 (0.35) | 89.35 (0.31) | 89.49 (0.31) | 91.94 (0.27) | 1.106 | 1.192 | 1.120 | 1.202 | |
| 500 | 85.18 (0.36) | 85.99 (0.35) | 89.30 (0.31) | 89.28 (0.31) | 92.16 (0.27) | 1.104 | 1.162 | 1.100 | 1.179 | |
| 1000 | 86.29 (0.34) | 86.97 (0.34) | 89.34 (0.31) | 89.46 (0.31) | 91.76 (0.27) | 1.104 | 1.129 | 1.079 | 1.156 | |
| Log-normal(0,1.3) | 50 | 80.89 (0.39) | 82.02 (0.38) | 87.69 (0.33) | 87.51 (0.33) | 90.64 (0.29) | 1.121 | 1.361 | 1.260 | 1.344 |
| 100 | 82.77 (0.38) | 83.35 (0.37) | 88.79 (0.32) | 88.64 (0.32) | 91.34 (0.28) | 1.111 | 1.280 | 1.189 | 1.280 | |
| 300 | 87.03 (0.34) | 87.18 (0.33) | 91.27 (0.28) | 90.75 (0.29) | 92.09 (0.27) | 1.106 | 1.192 | 1.120 | 1.202 | |
| 500 | 87.21 (0.33) | 87.66 (0.33) | 90.93 (0.29) | 90.26 (0.30) | 91.97 (0.27) | 1.104 | 1.162 | 1.099 | 1.179 | |
| 1000 | 88.24 (0.32) | 88.52 (0.32) | 91.31 (0.28) | 90.54 (0.29) | 91.96 (0.27) | 1.104 | 1.129 | 1.079 | 1.156 | |
| Frechet(2.5) | 50 | 82.70 (0.38) | 84.05 (0.37) | 90.40 (0.29) | 90.38 (0.29) | 92.77 (0.26) | 1.120 | 1.361 | 1.259 | 1.344 |
| 100 | 84.96 (0.36) | 85.53 (0.35) | 90.81 (0.29) | 90.82 (0.29) | 92.89 (0.26) | 1.111 | 1.280 | 1.190 | 1.281 | |
| 300 | 87.06 (0.34) | 87.11 (0.34) | 91.16 (0.28) | 90.53 (0.29) | 92.24 (0.27) | 1.105 | 1.192 | 1.120 | 1.202 | |
| 500 | 87.58 (0.33) | 87.65 (0.33) | 91.18 (0.28) | 90.52 (0.29) | 92.41 (0.26) | 1.104 | 1.162 | 1.099 | 1.178 | |
| 1000 | 89.03 (0.31) | 88.62 (0.32) | 91.45 (0.28) | 91.06 (0.29) | 92.28 (0.27) | 1.103 | 1.129 | 1.079 | 1.156 | |
| Half-t(3) | 50 | 86.12 (0.35) | 86.82 (0.34) | 92.92 (0.26) | 92.50 (0.26) | 94.25 (0.23) | 1.121 | 1.361 | 1.260 | 1.344 |
| 100 | 87.11 (0.34) | 87.43 (0.33) | 92.98 (0.26) | 92.42 (0.26) | 93.88 (0.24) | 1.111 | 1.280 | 1.189 | 1.280 | |
| 300 | 88.42 (0.32) | 88.40 (0.32) | 93.07 (0.25) | 91.43 (0.28) | 92.17 (0.27) | 1.106 | 1.192 | 1.120 | 1.202 | |
| 500 | 89.02 (0.31) | 88.75 (0.32) | 92.55 (0.26) | 91.36 (0.28) | 91.93 (0.27) | 1.105 | 1.162 | 1.100 | 1.179 | |
| 1000 | 89.35 (0.31) | 89.29 (0.31) | 92.25 (0.27) | 91.03 (0.29) | 91.65 (0.28) | 1.103 | 1.128 | 1.079 | 1.156 | |
| SymPareto(2,1) | 50 | 89.94 (0.30) | 90.37 (0.30) | 96.95 (0.17) | 95.04 (0.22) | 94.57 (0.23) | 1.120 | 1.361 | 1.259 | 1.344 |
| 100 | 90.29 (0.30) | 90.58 (0.29) | 95.91 (0.20) | 94.14 (0.23) | 93.21 (0.25) | 1.111 | 1.280 | 1.189 | 1.279 | |
| 300 | 90.44 (0.29) | 90.32 (0.30) | 94.65 (0.23) | 92.50 (0.26) | 91.75 (0.28) | 1.106 | 1.192 | 1.121 | 1.203 | |
| 500 | 90.53 (0.29) | 90.36 (0.30) | 94.14 (0.23) | 92.37 (0.27) | 91.77 (0.27) | 1.104 | 1.162 | 1.100 | 1.179 | |
| 1000 | 90.11 (0.30) | 90.05 (0.30) | 93.35 (0.25) | 91.66 (0.28) | 91.15 (0.28) | 1.102 | 1.128 | 1.079 | 1.156 | |
| t(3) | 50 | 89.63 (0.30) | 89.55 (0.31) | 96.62 (0.18) | 94.86 (0.22) | 94.56 (0.23) | 1.120 | 1.360 | 1.259 | 1.343 |
| 100 | 89.71 (0.30) | 89.65 (0.30) | 95.58 (0.21) | 93.57 (0.25) | 92.91 (0.26) | 1.111 | 1.280 | 1.189 | 1.280 | |
| 300 | 90.08 (0.30) | 90.38 (0.29) | 94.38 (0.23) | 92.19 (0.27) | 91.68 (0.28) | 1.105 | 1.192 | 1.120 | 1.202 | |
| 500 | 90.13 (0.30) | 90.30 (0.30) | 93.62 (0.24) | 91.75 (0.28) | 91.28 (0.28) | 1.104 | 1.162 | 1.100 | 1.179 | |
| 1000 | 89.38 (0.31) | 89.53 (0.31) | 92.57 (0.26) | 90.81 (0.29) | 90.50 (0.29) | 1.103 | 1.129 | 1.079 | 1.156 | |
| FACI Coverages | Ratios of Average Lengths | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Distribution | ||||||||||
| Pareto(2,1) | 50 | 85.64 (0.35) | 87.64 (0.33) | 92.21 (0.27) | 92.09 (0.27) | 94.26 (0.23) | 1.119 | 1.351 | 1.248 | 1.330 |
| 100 | 87.94 (0.33) | 89.66 (0.30) | 92.90 (0.26) | 93.08 (0.25) | 95.66 (0.20) | 1.111 | 1.272 | 1.178 | 1.261 | |
| 300 | 91.62 (0.28) | 92.82 (0.26) | 94.49 (0.23) | 94.79 (0.22) | 96.84 (0.17) | 1.105 | 1.185 | 1.110 | 1.187 | |
| 500 | 92.16 (0.27) | 93.10 (0.25) | 94.64 (0.23) | 95.05 (0.22) | 97.23 (0.16) | 1.103 | 1.155 | 1.090 | 1.165 | |
| 1000 | 93.73 (0.24) | 94.56 (0.23) | 95.56 (0.21) | 95.97 (0.20) | 97.77 (0.15) | 1.103 | 1.122 | 1.070 | 1.143 | |
| Weibull(0.4,1) | 50 | 85.42 (0.35) | 87.06 (0.34) | 91.02 (0.29) | 90.86 (0.29) | 93.03 (0.25) | 1.119 | 1.351 | 1.247 | 1.330 |
| 100 | 89.94 (0.30) | 91.29 (0.28) | 93.73 (0.24) | 93.80 (0.24) | 95.87 (0.20) | 1.110 | 1.272 | 1.178 | 1.262 | |
| 300 | 93.58 (0.25) | 94.56 (0.23) | 96.00 (0.20) | 96.04 (0.20) | 97.65 (0.15) | 1.105 | 1.185 | 1.110 | 1.187 | |
| 500 | 94.61 (0.23) | 95.21 (0.21) | 96.57 (0.18) | 96.73 (0.18) | 97.94 (0.14) | 1.104 | 1.155 | 1.090 | 1.165 | |
| 1000 | 96.14 (0.19) | 96.44 (0.19) | 97.35 (0.16) | 97.40 (0.16) | 98.39 (0.13) | 1.103 | 1.122 | 1.070 | 1.143 | |
| InverseNormal(7,1) | 50 | 86.05 (0.35) | 87.77 (0.33) | 91.01 (0.29) | 90.93 (0.29) | 92.95 (0.26) | 1.119 | 1.351 | 1.247 | 1.330 |
| 100 | 90.58 (0.29) | 91.78 (0.27) | 94.19 (0.23) | 94.36 (0.23) | 96.14 (0.19) | 1.111 | 1.272 | 1.178 | 1.261 | |
| 300 | 94.75 (0.22) | 95.23 (0.21) | 96.65 (0.18) | 96.74 (0.18) | 98.04 (0.14) | 1.105 | 1.185 | 1.110 | 1.187 | |
| 500 | 95.70 (0.20) | 96.40 (0.19) | 97.31 (0.16) | 97.38 (0.16) | 98.51 (0.12) | 1.104 | 1.155 | 1.090 | 1.165 | |
| 1000 | 96.64 (0.18) | 97.03 (0.17) | 97.79 (0.15) | 97.84 (0.15) | 98.62 (0.12) | 1.103 | 1.122 | 1.070 | 1.143 | |
| Log-logistic(2.1,1) | 50 | 88.88 (0.31) | 90.57 (0.29) | 94.60 (0.23) | 94.47 (0.23) | 96.55 (0.18) | 1.120 | 1.351 | 1.248 | 1.330 |
| 100 | 91.63 (0.28) | 92.95 (0.26) | 95.66 (0.20) | 95.75 (0.20) | 97.65 (0.15) | 1.111 | 1.272 | 1.177 | 1.261 | |
| 300 | 93.68 (0.24) | 94.36 (0.23) | 96.25 (0.19) | 96.43 (0.19) | 98.02 (0.14) | 1.105 | 1.185 | 1.110 | 1.187 | |
| 500 | 94.16 (0.23) | 95.17 (0.21) | 96.44 (0.19) | 96.73 (0.18) | 98.25 (0.13) | 1.104 | 1.155 | 1.090 | 1.165 | |
| 1000 | 94.80 (0.22) | 95.40 (0.21) | 96.34 (0.19) | 96.58 (0.18) | 97.98 (0.14) | 1.103 | 1.122 | 1.070 | 1.143 | |
| Log-normal(0,1.3) | 50 | 88.70 (0.32) | 90.59 (0.29) | 93.95 (0.24) | 93.94 (0.24) | 95.79 (0.20) | 1.119 | 1.351 | 1.248 | 1.331 |
| 100 | 91.38 (0.28) | 92.40 (0.26) | 94.83 (0.22) | 94.97 (0.22) | 96.91 (0.17) | 1.111 | 1.272 | 1.178 | 1.262 | |
| 300 | 94.91 (0.22) | 95.46 (0.21) | 96.79 (0.18) | 96.92 (0.17) | 98.30 (0.13) | 1.105 | 1.185 | 1.110 | 1.187 | |
| 500 | 95.42 (0.21) | 95.88 (0.20) | 97.15 (0.17) | 97.29 (0.16) | 98.37 (0.13) | 1.104 | 1.155 | 1.090 | 1.165 | |
| 1000 | 96.40 (0.19) | 96.83 (0.18) | 97.68 (0.15) | 97.83 (0.15) | 98.78 (0.11) | 1.103 | 1.122 | 1.070 | 1.143 | |
| Frechet(2.5) | 50 | 91.41 (0.28) | 92.66 (0.26) | 95.83 (0.20) | 95.75 (0.20) | 97.38 (0.16) | 1.119 | 1.351 | 1.248 | 1.330 |
| 100 | 93.37 (0.25) | 94.13 (0.24) | 96.52 (0.18) | 96.62 (0.18) | 98.17 (0.13) | 1.111 | 1.272 | 1.178 | 1.262 | |
| 300 | 95.15 (0.21) | 95.69 (0.20) | 97.29 (0.16) | 97.39 (0.16) | 98.48 (0.12) | 1.105 | 1.185 | 1.110 | 1.187 | |
| 500 | 95.55 (0.21) | 96.15 (0.19) | 97.32 (0.16) | 97.52 (0.16) | 98.65 (0.12) | 1.104 | 1.155 | 1.090 | 1.165 | |
| 1000 | 96.44 (0.19) | 97.04 (0.17) | 97.88 (0.14) | 97.86 (0.14) | 98.77 (0.11) | 1.103 | 1.122 | 1.070 | 1.143 | |
| Half-t(3) | 50 | 94.04 (0.24) | 95.09 (0.22) | 97.68 (0.15) | 97.62 (0.15) | 98.73 (0.11) | 1.120 | 1.351 | 1.248 | 1.331 |
| 100 | 95.50 (0.21) | 96.21 (0.19) | 98.23 (0.13) | 98.24 (0.13) | 99.04 (0.10) | 1.111 | 1.272 | 1.178 | 1.262 | |
| 300 | 96.76 (0.18) | 96.97 (0.17) | 98.35 (0.13) | 98.27 (0.13) | 98.94 (0.10) | 1.105 | 1.185 | 1.110 | 1.187 | |
| 500 | 97.00 (0.17) | 97.09 (0.17) | 98.43 (0.12) | 98.26 (0.13) | 98.85 (0.11) | 1.104 | 1.155 | 1.090 | 1.165 | |
| 1000 | 97.27 (0.16) | 97.44 (0.16) | 98.31 (0.13) | 98.06 (0.14) | 98.71 (0.11) | 1.103 | 1.122 | 1.070 | 1.143 | |
| SymPareto(2,1) | 50 | 98.22 (0.13) | 98.42 (0.12) | 99.72 (0.05) | 99.49 (0.07) | 99.47 (0.07) | 1.119 | 1.351 | 1.247 | 1.330 |
| 100 | 98.36 (0.13) | 98.23 (0.13) | 99.63 (0.06) | 99.16 (0.09) | 99.00 (0.10) | 1.110 | 1.272 | 1.177 | 1.261 | |
| 300 | 98.32 (0.13) | 98.24 (0.13) | 99.39 (0.08) | 98.84 (0.11) | 98.81 (0.11) | 1.105 | 1.185 | 1.110 | 1.187 | |
| 500 | 98.57 (0.12) | 98.43 (0.12) | 99.40 (0.08) | 98.95 (0.10) | 98.92 (0.10) | 1.104 | 1.155 | 1.090 | 1.165 | |
| 1000 | 98.17 (0.13) | 98.06 (0.14) | 99.02 (0.10) | 98.43 (0.12) | 98.49 (0.12) | 1.102 | 1.122 | 1.070 | 1.143 | |
| t(3) | 50 | 97.92 (0.14) | 98.15 (0.13) | 99.75 (0.05) | 99.45 (0.07) | 99.38 (0.08) | 1.119 | 1.351 | 1.247 | 1.330 |
| 100 | 98.00 (0.14) | 98.03 (0.14) | 99.59 (0.06) | 99.10 (0.09) | 99.06 (0.10) | 1.110 | 1.272 | 1.178 | 1.261 | |
| 300 | 98.28 (0.13) | 98.00 (0.14) | 99.32 (0.08) | 98.79 (0.11) | 98.66 (0.11) | 1.105 | 1.185 | 1.110 | 1.187 | |
| 500 | 97.92 (0.14) | 98.04 (0.14) | 99.06 (0.10) | 98.53 (0.12) | 98.46 (0.12) | 1.104 | 1.155 | 1.090 | 1.165 | |
| 1000 | 97.95 (0.14) | 98.05 (0.14) | 98.88 (0.11) | 98.23 (0.13) | 98.24 (0.13) | 1.103 | 1.122 | 1.070 | 1.143 | |
| Distribution | |||||||||
| Pareto(2,1) | 50 | 1.125 | 84.76 | 82.80 (96.169) | 1.96 | 1.201 | 88.47 | 84.51 (97.294) | 3.96 |
| 100 | 0.815 | 85.80 | 83.66 (94.957) | 2.14 | 0.877 | 89.53 | 85.52 (96.477) | 4.01 | |
| 300 | 0.517 | 87.17 | 85.59 (93.457) | 1.58 | 0.555 | 90.71 | 87.24 (95.194) | 3.47 | |
| 500 | 0.406 | 87.26 | 85.97 (92.947) | 1.29 | 0.435 | 90.28 | 87.83 (94.756) | 2.45 | |
| 1000 | 0.301 | 88.24 | 87.08 (92.407) | 1.16 | 0.322 | 91.03 | 89.14 (94.270) | 1.89 | |
| Weibull(0.4,1) | 50 | 5.061 | 84.33 | 82.92 (96.157) | 1.41 | 5.399 | 87.44 | 84.25 (97.281) | 3.19 |
| 100 | 3.586 | 88.13 | 86.00 (94.964) | 2.13 | 3.860 | 90.54 | 87.94 (96.487) | 2.60 | |
| 300 | 2.090 | 89.18 | 88.70 (93.459) | 0.48 | 2.243 | 90.82 | 90.45 (95.197) | 0.37 | |
| 500 | 1.617 | 89.78 | 89.16 (92.954) | 0.62 | 1.734 | 91.30 | 90.94 (94.755) | 0.36 | |
| 1000 | 1.142 | 90.09 | 90.17 (92.414) | −0.08 | 1.224 | 91.17 | 92.09 (94.283) | −0.92 | |
| InverseNormal(7,1) | 50 | 9.350 | 84.91 | 83.73 (96.160) | 1.18 | 9.975 | 87.81 | 85.04 (97.282) | 2.77 |
| 100 | 6.628 | 88.20 | 87.08 (94.948) | 1.12 | 7.132 | 90.42 | 88.67 (96.464) | 1.75 | |
| 300 | 3.823 | 90.28 | 90.26 (93.443) | 0.02 | 4.101 | 91.74 | 91.95 (95.180) | −0.21 | |
| 500 | 2.925 | 90.71 | 90.99 (92.949) | −0.28 | 3.137 | 91.64 | 92.70 (94.755) | −1.06 | |
| 1000 | 2.052 | 90.65 | 91.45 (92.406) | −0.80 | 2.198 | 91.10 | 93.11 (94.274) | −2.01 | |
| Log-logistic(2.1,1) | 50 | 1.056 | 87.82 | 85.91 (96.168) | 1.91 | 1.127 | 91.03 | 87.52 (97.291) | 3.51 |
| 100 | 0.774 | 89.19 | 87.39 (94.947) | 1.80 | 0.833 | 92.49 | 89.20 (96.458) | 3.29 | |
| 300 | 0.462 | 89.49 | 88.43 (93.460) | 1.06 | 0.496 | 91.94 | 90.05 (95.199) | 1.89 | |
| 500 | 0.370 | 89.28 | 88.27 (92.949) | 1.01 | 0.397 | 92.16 | 90.20 (94.752) | 1.96 | |
| 1000 | 0.269 | 89.46 | 88.53 (92.413) | 0.93 | 0.289 | 91.76 | 90.45 (94.281) | 1.31 | |
| Log-normal(0,1.3) | 50 | 2.368 | 87.51 | 86.49 (96.174) | 1.02 | 2.528 | 90.64 | 87.61 (97.300) | 3.03 |
| 100 | 1.655 | 88.64 | 87.52 (94.958) | 1.12 | 1.782 | 91.34 | 89.33 (96.480) | 2.01 | |
| 300 | 0.972 | 90.75 | 90.18 (93.455) | 0.57 | 1.043 | 92.09 | 91.96 (95.190) | 0.13 | |
| 500 | 0.742 | 90.26 | 90.07 (92.947) | 0.19 | 0.796 | 91.97 | 91.89 (94.750) | 0.08 | |
| 1000 | 0.528 | 90.54 | 90.65 (92.415) | −0.11 | 0.565 | 91.96 | 92.54 (94.281) | −0.58 | |
| Frechet(2.5) | 50 | 0.686 | 90.38 | 89.06 (96.164) | 1.32 | 0.732 | 92.77 | 90.38 (97.292) | 2.39 |
| 100 | 0.476 | 90.82 | 89.59 (94.963) | 1.23 | 0.513 | 92.89 | 91.21 (96.483) | 1.68 | |
| 300 | 0.278 | 90.53 | 90.37 (93.449) | 0.16 | 0.298 | 92.24 | 92.16 (95.190) | 0.08 | |
| 500 | 0.215 | 90.52 | 90.46 (92.941) | 0.06 | 0.231 | 92.41 | 92.07 (94.738) | 0.34 | |
| 1000 | 0.154 | 91.06 | 91.22 (92.405) | −0.16 | 0.164 | 92.28 | 92.84 (94.270) | −0.56 | |
| Half-t(3) | 50 | 0.703 | 92.50 | 92.17 (96.174) | 0.33 | 0.751 | 94.25 | 93.25 (97.298) | 1.00 |
| 100 | 0.482 | 92.42 | 91.92 (94.959) | 0.50 | 0.518 | 93.88 | 93.64 (96.480) | 0.24 | |
| 300 | 0.271 | 91.43 | 92.09 (93.458) | −0.66 | 0.290 | 92.17 | 93.86 (95.198) | −1.69 | |
| 500 | 0.208 | 91.36 | 91.74 (92.955) | −0.38 | 0.223 | 91.93 | 93.67 (94.758) | −1.74 | |
| 1000 | 0.145 | 91.03 | 91.68 (92.411) | −0.65 | 0.156 | 91.65 | 93.41 (94.280) | −1.76 | |
| Distribution | |||||||||
| Pareto(2,1) | 50 | 1.576 | 92.09 | 90.68 (99.630) | 1.41 | 1.681 | 94.26 | 91.98 (99.803) | 2.28 |
| 100 | 1.141 | 93.08 | 91.73 (99.385) | 1.35 | 1.222 | 95.66 | 93.02 (99.666) | 2.64 | |
| 300 | 0.725 | 94.79 | 93.82 (99.018) | 0.97 | 0.776 | 96.84 | 94.84 (99.424) | 2.00 | |
| 500 | 0.569 | 95.05 | 93.76 (98.877) | 1.29 | 0.608 | 97.23 | 95.14 (99.328) | 2.09 | |
| 1000 | 0.422 | 95.97 | 94.99 (98.719) | 0.98 | 0.451 | 97.77 | 96.09 (99.216) | 1.68 | |
| Weibull(0.4,1) | 50 | 7.093 | 90.86 | 89.86 (99.629) | 1.00 | 7.563 | 93.03 | 90.89 (99.802) | 2.14 |
| 100 | 5.021 | 93.80 | 92.63 (99.386) | 1.17 | 5.379 | 95.87 | 93.63 (99.667) | 2.24 | |
| 300 | 2.930 | 96.04 | 95.10 (99.019) | 0.94 | 3.133 | 97.65 | 96.08 (99.425) | 1.57 | |
| 500 | 2.267 | 96.73 | 95.97 (98.878) | 0.76 | 2.423 | 97.94 | 96.80 (99.328) | 1.14 | |
| 1000 | 1.601 | 97.40 | 96.98 (98.720) | 0.42 | 1.711 | 98.39 | 97.68 (99.218) | 0.71 | |
| InverseNormal(7,1) | 50 | 13.104 | 90.93 | 89.83 (99.629) | 1.10 | 13.971 | 92.95 | 90.90 (99.802) | 2.05 |
| 100 | 9.285 | 94.36 | 93.29 (99.384) | 1.07 | 9.943 | 96.14 | 94.30 (99.665) | 1.84 | |
| 300 | 5.360 | 96.74 | 96.17 (99.017) | 0.57 | 5.731 | 98.04 | 96.84 (99.423) | 1.20 | |
| 500 | 4.101 | 97.38 | 96.76 (98.877) | 0.62 | 4.384 | 98.51 | 97.47 (99.328) | 1.04 | |
| 1000 | 2.878 | 97.84 | 97.53 (98.719) | 0.31 | 3.075 | 98.62 | 98.18 (99.217) | 0.44 | |
| Log-logistic(2.1,1) | 50 | 1.480 | 94.47 | 93.43 (99.630) | 1.04 | 1.578 | 96.55 | 94.46 (99.803) | 2.09 |
| 100 | 1.085 | 95.75 | 94.57 (99.384) | 1.18 | 1.162 | 97.65 | 95.69 (99.664) | 1.96 | |
| 300 | 0.648 | 96.43 | 95.42 (99.019) | 1.01 | 0.693 | 98.02 | 96.38 (99.425) | 1.64 | |
| 500 | 0.519 | 96.73 | 95.85 (98.878) | 0.88 | 0.555 | 98.25 | 96.84 (99.328) | 1.41 | |
| 1000 | 0.378 | 96.58 | 95.80 (98.720) | 0.78 | 0.404 | 97.98 | 96.61 (99.218) | 1.37 | |
| Log-normal(0,1.3) | 50 | 3.318 | 93.94 | 92.96 (99.630) | 0.98 | 3.538 | 95.79 | 93.91 (99.804) | 1.88 |
| 100 | 2.318 | 94.97 | 94.16 (99.385) | 0.81 | 2.483 | 96.91 | 95.00 (99.666) | 1.91 | |
| 300 | 1.363 | 96.92 | 96.39 (99.018) | 0.53 | 1.457 | 98.30 | 97.13 (99.424) | 1.17 | |
| 500 | 1.040 | 97.29 | 96.65 (98.877) | 0.64 | 1.112 | 98.37 | 97.43 (99.328) | 0.94 | |
| 1000 | 0.740 | 97.83 | 97.37 (98.720) | 0.46 | 0.791 | 98.78 | 97.99 (99.218) | 0.79 | |
| Frechet(2.5) | 50 | 0.961 | 95.75 | 95.07 (99.629) | 0.68 | 1.025 | 97.38 | 95.82 (99.803) | 1.56 |
| 100 | 0.667 | 96.62 | 95.73 (99.386) | 0.89 | 0.714 | 98.17 | 96.49 (99.667) | 1.68 | |
| 300 | 0.390 | 97.39 | 96.67 (99.017) | 0.72 | 0.417 | 98.48 | 97.35 (99.424) | 1.13 | |
| 500 | 0.302 | 97.52 | 96.77 (98.876) | 0.75 | 0.322 | 98.65 | 97.62 (99.326) | 1.03 | |
| 1000 | 0.215 | 97.86 | 97.49 (98.718) | 0.37 | 0.230 | 98.77 | 98.03 (99.217) | 0.74 | |
| Half-t(3) | 50 | 0.985 | 97.62 | 97.05 (99.630) | 0.57 | 1.051 | 98.73 | 97.66 (99.804) | 1.07 |
| 100 | 0.674 | 98.24 | 97.51 (99.386) | 0.73 | 0.722 | 99.04 | 98.26 (99.666) | 0.78 | |
| 300 | 0.379 | 98.27 | 97.96 (99.019) | 0.31 | 0.406 | 98.94 | 98.51 (99.425) | 0.43 | |
| 500 | 0.291 | 98.26 | 98.09 (98.878) | 0.17 | 0.311 | 98.85 | 98.69 (99.329) | 0.16 | |
| 1000 | 0.204 | 98.06 | 98.05 (98.719) | 0.01 | 0.218 | 98.71 | 98.71 (99.218) | 0.00 | |
References
- Logan, B.F.; Mallows, C.L.; Rice, S.O.; Shepp, L.A. Limit Distributions of Self-Normalized Sums. Ann. Probab. 1973, 1, 788–809. [Google Scholar] [CrossRef]
- Csörgo, M.; Szyszkowicz, B.; Wang, Q. Donsker’s Theorem for Self-Normalized Partial Sums Processes. Ann. Probab. 2003, 31, 1228–1240. [Google Scholar] [CrossRef]
- Tuzov, E. Exploring Functional Asymptotic Confidence Intervals for a Population Mean. Master’s Thesis, University of Manitoba, Winnipeg, MB, Canada, 2014. [Google Scholar]
- Martsynyuk, Y.V.; Tuzov, E. Exploring Functional CLT Confidence Intervals for a Population Mean in the Domain of Attraction of the Normal Law. Acta Math. Hungar. 2016, 148, 493–508. [Google Scholar] [CrossRef]
- Csörgo, M.; Szyszkowicz, B.; Wang, Q. On Weighted Approximations in D[0, 1] with Applications to Self-Normalized Partial Sum Processes. Acta Math. Hungar. 2008, 121, 307–332. [Google Scholar] [CrossRef]
- Csörgo, M.; Csörgo, S.; Horváth, L.; Mason, D.M. Weighted Empirical and Quantile Processes. Ann. Probab. 1986, 14, 31–85. [Google Scholar] [CrossRef]
- Erdos, P.; Kac, M. On Certain Limit Theorems of the Theory of Probability. Bull. Am. Math. Soc. 1946, 52, 292–302. [Google Scholar] [CrossRef]
- Csörgo, S.; Horváth, L. On the Koziol–Green Model for Random Censorship. Biometrika 1981, 68, 391–401. [Google Scholar] [CrossRef]
- Shao, Q.-M.; Wang, Q. Self-Normalized Limit Theorems: A Survey. Probab. Surv. 2013, 10, 69–93. [Google Scholar] [CrossRef]
- Shao, Q.-M. An explicit Berry-Esseen bound for Student’s t-statistic via Stein’s method. In Stein’s Method and Applications; Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore; Singapore University Press: Singapore, 2005; Volume 5, pp. 143–155. [Google Scholar] [CrossRef]
- Bentkus, V.; Götze, F. The Berry–Esseen Bound for Student’s Statistic. Ann. Probab. 1996, 24, 491–503. [Google Scholar] [CrossRef]
| Distribution | Probability Density Function |
|---|---|
| Weibull | |
| InverseNormal | |
| Log-logistic | |
| Log-normal | |
| Frechet | |
| Half-t | |
| SymPareto |
| 1.198 | 1.668 | 2.292 | |
| 10.734 | 14.888 | 20.690 |
| 2.414540 | 3.360469 | 4.661709 | |
| 1.875837 | 2.652915 | 3.697833 |
| FACI Coverages | Ratios of Average Lengths | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Distribution | ||||||||||
| 50 | 81.41 (0.39) | 83.40 (0.37) | 88.49 (0.32) | 88.65 (0.32) | 92.05 (0.27) | 1.124 | 1.354 | 1.253 | 1.339 | |
| 100 | 83.74 (0.37) | 85.66 (0.35) | 89.51 (0.31) | 89.94 (0.30) | 93.16 (0.25) | 1.115 | 1.274 | 1.183 | 1.272 | |
| 300 | 87.05 (0.34) | 88.75 (0.32) | 91.10 (0.28) | 91.83 (0.27) | 94.64 (0.23) | 1.109 | 1.187 | 1.115 | 1.196 | |
| 500 | 88.06 (0.32) | 89.18 (0.31) | 91.14 (0.28) | 91.81 (0.27) | 94.77 (0.22) | 1.108 | 1.157 | 1.094 | 1.174 | |
| 1000 | 89.82 (0.30) | 90.81 (0.29) | 92.12 (0.27) | 92.74 (0.26) | 95.34 (0.21) | 1.107 | 1.124 | 1.074 | 1.151 | |
| 50 | 81.51 (0.39) | 83.04 (0.38) | 87.92 (0.33) | 87.99 (0.33) | 90.89 (0.29) | 1.124 | 1.354 | 1.252 | 1.338 | |
| 100 | 86.04 (0.35) | 87.77 (0.33) | 90.98 (0.29) | 91.27 (0.28) | 93.83 (0.24) | 1.115 | 1.274 | 1.183 | 1.273 | |
| 300 | 90.19 (0.30) | 90.90 (0.29) | 93.21 (0.25) | 93.37 (0.25) | 95.48 (0.21) | 1.109 | 1.187 | 1.115 | 1.196 | |
| 500 | 91.17 (0.28) | 92.03 (0.27) | 93.84 (0.24) | 93.82 (0.24) | 95.90 (0.20) | 1.108 | 1.157 | 1.095 | 1.174 | |
| 1000 | 92.96 (0.26) | 93.31 (0.25) | 94.90 (0.22) | 94.70 (0.22) | 95.92 (0.20) | 1.107 | 1.124 | 1.074 | 1.151 | |
| 50 | 82.52 (0.38) | 83.97 (0.37) | 88.21 (0.32) | 88.38 (0.32) | 90.84 (0.29) | 1.124 | 1.354 | 1.253 | 1.338 | |
| 100 | 87.13 (0.33) | 88.26 (0.32) | 91.52 (0.28) | 91.88 (0.27) | 94.20 (0.23) | 1.115 | 1.274 | 1.183 | 1.271 | |
| 300 | 91.80 (0.27) | 92.10 (0.27) | 94.58 (0.23) | 94.62 (0.23) | 96.02 (0.20) | 1.109 | 1.187 | 1.114 | 1.195 | |
| 500 | 92.93 (0.26) | 93.52 (0.25) | 95.19 (0.21) | 95.04 (0.22) | 96.25 (0.19) | 1.108 | 1.157 | 1.094 | 1.174 | |
| 1000 | 93.78 (0.24) | 94.12 (0.24) | 95.60 (0.21) | 95.21 (0.21) | 96.15 (0.19) | 1.107 | 1.124 | 1.074 | 1.151 | |
| Log-logistic(2.1,1) | 50 | 84.44 (0.36) | 86.48 (0.34) | 91.34 (0.28) | 91.51 (0.28) | 94.40 (0.23) | 1.124 | 1.354 | 1.253 | 1.339 |
| 100 | 87.46 (0.33) | 88.93 (0.31) | 92.76 (0.26) | 93.11 (0.25) | 95.79 (0.20) | 1.115 | 1.274 | 1.183 | 1.271 | |
| 300 | 89.87 (0.30) | 90.96 (0.29) | 93.25 (0.25) | 93.67 (0.24) | 96.11 (0.19) | 1.109 | 1.187 | 1.115 | 1.196 | |
| 500 | 90.51 (0.29) | 91.44 (0.28) | 93.56 (0.25) | 94.01 (0.24) | 96.03 (0.20) | 1.108 | 1.157 | 1.094 | 1.173 | |
| 1000 | 91.07 (0.29) | 92.13 (0.27) | 93.50 (0.25) | 93.63 (0.24) | 95.73 (0.20) | 1.107 | 1.124 | 1.074 | 1.151 | |
| Log-normal(0,1.3) | 50 | 85.31 (0.35) | 86.86 (0.34) | 91.08 (0.29) | 91.30 (0.28) | 93.71 (0.24) | 1.124 | 1.354 | 1.253 | 1.339 |
| 100 | 87.54 (0.33) | 88.64 (0.32) | 92.31 (0.27) | 92.41 (0.26) | 94.78 (0.22) | 1.115 | 1.274 | 1.183 | 1.272 | |
| 300 | 91.70 (0.28) | 92.39 (0.27) | 94.64 (0.23) | 94.70 (0.22) | 96.19 (0.19) | 1.109 | 1.187 | 1.115 | 1.196 | |
| 500 | 92.17 (0.27) | 92.90 (0.26) | 94.89 (0.22) | 94.73 (0.22) | 96.24 (0.19) | 1.108 | 1.157 | 1.094 | 1.173 | |
| 1000 | 93.25 (0.25) | 93.82 (0.24) | 95.35 (0.21) | 95.17 (0.21) | 96.43 (0.19) | 1.107 | 1.124 | 1.074 | 1.151 | |
| 50 | 87.93 (0.33) | 89.24 (0.31) | 93.45 (0.25) | 93.52 (0.25) | 95.64 (0.20) | 1.124 | 1.354 | 1.253 | 1.339 | |
| 100 | 89.61 (0.31) | 90.57 (0.29) | 94.10 (0.24) | 94.27 (0.23) | 96.36 (0.19) | 1.115 | 1.274 | 1.183 | 1.272 | |
| 300 | 91.90 (0.27) | 92.13 (0.27) | 94.75 (0.22) | 94.82 (0.22) | 96.45 (0.19) | 1.109 | 1.187 | 1.114 | 1.196 | |
| 500 | 92.22 (0.27) | 92.91 (0.26) | 94.85 (0.22) | 94.94 (0.22) | 96.76 (0.18) | 1.108 | 1.157 | 1.094 | 1.173 | |
| 1000 | 93.54 (0.25) | 93.85 (0.24) | 95.41 (0.21) | 95.36 (0.21) | 96.80 (0.18) | 1.107 | 1.124 | 1.074 | 1.151 | |
| Half-t(3) | 50 | 90.98 (0.29) | 91.77 (0.27) | 95.75 (0.20) | 95.62 (0.20) | 97.30 (0.16) | 1.124 | 1.354 | 1.253 | 1.339 |
| 100 | 91.99 (0.27) | 92.86 (0.26) | 96.11 (0.19) | 96.03 (0.20) | 97.57 (0.15) | 1.115 | 1.274 | 1.183 | 1.272 | |
| 300 | 93.66 (0.24) | 93.92 (0.24) | 96.33 (0.19) | 96.09 (0.19) | 97.06 (0.17) | 1.109 | 1.187 | 1.115 | 1.196 | |
| 500 | 93.89 (0.24) | 94.13 (0.24) | 96.08 (0.19) | 95.77 (0.20) | 96.78 (0.18) | 1.108 | 1.157 | 1.095 | 1.174 | |
| 1000 | 94.11 (0.24) | 94.51 (0.23) | 96.06 (0.19) | 95.49 (0.21) | 96.32 (0.19) | 1.107 | 1.124 | 1.074 | 1.151 | |
| SymPareto(2,1) | 50 | 95.12 (0.22) | 95.45 (0.21) | 99.10 (0.09) | 98.17 (0.13) | 97.86 (0.14) | 1.124 | 1.354 | 1.253 | 1.339 |
| 100 | 95.51 (0.21) | 95.34 (0.21) | 98.56 (0.12) | 97.41 (0.16) | 97.10 (0.17) | 1.115 | 1.274 | 1.183 | 1.271 | |
| 300 | 95.33 (0.21) | 95.26 (0.21) | 97.96 (0.14) | 96.69 (0.18) | 96.33 (0.19) | 1.109 | 1.187 | 1.115 | 1.196 | |
| 500 | 95.62 (0.20) | 95.67 (0.20) | 97.89 (0.14) | 96.62 (0.18) | 96.37 (0.19) | 1.108 | 1.157 | 1.094 | 1.173 | |
| 1000 | 95.35 (0.21) | 95.20 (0.21) | 97.12 (0.17) | 96.04 (0.20) | 95.96 (0.20) | 1.106 | 1.123 | 1.074 | 1.151 | |
| 50 | 94.80 (0.22) | 95.29 (0.21) | 98.99 (0.10) | 98.09 (0.14) | 97.84 (0.15) | 1.123 | 1.354 | 1.253 | 1.339 | |
| 100 | 95.02 (0.22) | 95.02 (0.22) | 98.40 (0.13) | 97.37 (0.16) | 97.03 (0.17) | 1.115 | 1.274 | 1.183 | 1.272 | |
| 300 | 95.11 (0.22) | 95.22 (0.21) | 97.77 (0.15) | 96.49 (0.18) | 96.14 (0.19) | 1.109 | 1.187 | 1.115 | 1.196 | |
| 500 | 94.85 (0.22) | 95.17 (0.21) | 97.25 (0.16) | 95.98 (0.20) | 95.96 (0.20) | 1.108 | 1.157 | 1.094 | 1.174 | |
| 1000 | 94.87 (0.22) | 94.86 (0.22) | 96.60 (0.18) | 95.36 (0.21) | 95.40 (0.21) | 1.107 | 1.124 | 1.074 | 1.151 | |
| Distribution | |||||||
|---|---|---|---|---|---|---|---|
| Pareto(2,1) | NA | 1.590 | 83.74 | 85.66 | 89.51 | 89.94 | 93.16 |
| Weibull(0.4,1) | 8.700 | 1.429 | 86.04 | 87.77 | 90.98 | 91.27 | 93.83 |
| InverseNormal(7,1) | 8.574 | 1.247 | 87.13 | 88.26 | 91.52 | 91.88 | 94.20 |
| Log-logistic(2.1,1) | 9.365 | 1.232 | 87.46 | 88.93 | 92.76 | 93.11 | 95.79 |
| Log-normal(0,1.3) | 8.310 | 1.138 | 87.54 | 88.64 | 92.31 | 92.41 | 94.78 |
| Frechet(2.5) | 8.215 | 0.974 | 89.61 | 90.57 | 94.10 | 94.27 | 96.36 |
| Half-t(3) | 7.922 | 0.603 | 91.99 | 92.86 | 96.11 | 96.03 | 97.57 |
| SymPareto(2,1) | NA | 0.451 | 95.51 | 95.34 | 98.56 | 97.41 | 97.10 |
| t(3) | 6.186 | 0.328 | 95.02 | 95.02 | 98.40 | 97.37 | 97.03 |
| Distribution | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Pareto(2,1) | 50 | 1.334 | 88.65 | 87.08 (98.595) | 1.57 | 1.426 | 92.05 | 88.59 (99.133) | 3.46 |
| 100 | 0.966 | 89.94 | 87.82 (97.959) | 2.12 | 1.038 | 93.16 | 89.71 (98.734) | 3.45 | |
| 300 | 0.614 | 91.83 | 90.20 (97.108) | 1.63 | 0.658 | 94.64 | 91.74 (98.092) | 2.90 | |
| 500 | 0.481 | 91.81 | 90.13 (96.803) | 1.68 | 0.516 | 94.77 | 91.84 (97.857) | 2.93 | |
| 1000 | 0.357 | 92.74 | 91.54 (96.472) | 1.20 | 0.382 | 95.34 | 92.93 (97.591) | 2.41 | |
| Weibull(0.4,1) | 50 | 6.001 | 87.99 | 86.62 (98.590) | 1.37 | 6.412 | 90.89 | 87.84 (99.128) | 3.05 |
| 100 | 4.249 | 91.27 | 89.88 (97.962) | 1.39 | 4.570 | 93.83 | 91.14 (98.738) | 2.69 | |
| 300 | 2.479 | 93.37 | 92.50 (97.109) | 0.87 | 2.660 | 95.48 | 93.66 (98.092) | 1.82 | |
| 500 | 1.917 | 93.82 | 93.10 (96.806) | 0.72 | 2.056 | 95.90 | 94.42 (97.856) | 1.48 | |
| 1000 | 1.355 | 94.70 | 94.42 (96.476) | 0.28 | 1.452 | 95.92 | 95.77 (97.596) | 0.15 | |
| InverseNormal(7,1) | 50 | 11.086 | 88.38 | 87.00 (98.591) | 1.38 | 11.845 | 90.84 | 88.02 (99.129) | 2.82 |
| 100 | 7.857 | 91.88 | 90.55 (97.955) | 1.33 | 8.446 | 94.20 | 91.68 (98.730) | 2.52 | |
| 300 | 4.534 | 94.62 | 93.78 (97.102) | 0.84 | 4.864 | 96.02 | 94.89 (98.086) | 1.13 | |
| 500 | 3.469 | 95.04 | 94.52 (96.804) | 0.52 | 3.721 | 96.25 | 95.53 (97.856) | 0.72 | |
| 1000 | 2.434 | 95.21 | 95.10 (96.472) | 0.11 | 2.609 | 96.15 | 96.19 (97.593) | −0.04 | |
| Log-logistic(2.1,1) | 50 | 1.252 | 91.51 | 90.09 (98.594) | 1.42 | 1.338 | 94.40 | 91.41 (99.132) | 2.99 |
| 100 | 0.918 | 93.11 | 91.53 (97.955) | 1.58 | 0.987 | 95.79 | 92.96 (98.727) | 2.83 | |
| 300 | 0.548 | 93.67 | 92.38 (97.109) | 1.29 | 0.588 | 96.11 | 93.82 (98.093) | 2.29 | |
| 500 | 0.439 | 94.01 | 92.63 (96.804) | 1.38 | 0.471 | 96.03 | 94.02 (97.855) | 2.01 | |
| 1000 | 0.319 | 93.63 | 92.84 (96.475) | 0.79 | 0.342 | 95.73 | 94.34 (97.596) | 1.39 | |
| Log-normal(0,1.3) | 50 | 2.808 | 91.30 | 89.88 (98.596) | 1.42 | 3.001 | 93.71 | 91.06 (99.134) | 2.65 |
| 100 | 1.962 | 92.41 | 91.31 (97.959) | 1.10 | 2.109 | 94.78 | 92.69 (98.735) | 2.09 | |
| 300 | 1.153 | 94.70 | 93.92 (97.107) | 0.78 | 1.237 | 96.19 | 95.02 (98.090) | 1.17 | |
| 500 | 0.880 | 94.73 | 94.03 (96.803) | 0.70 | 0.944 | 96.24 | 95.21 (97.854) | 1.03 | |
| 1000 | 0.626 | 95.17 | 94.74 (96.476) | 0.43 | 0.671 | 96.43 | 96.03 (97.596) | 0.40 | |
| Frechet(2.5) | 50 | 0.813 | 93.52 | 92.37 (98.593) | 1.15 | 0.869 | 95.64 | 93.50 (99.132) | 2.14 |
| 100 | 0.564 | 94.27 | 93.29 (97.961) | 0.98 | 0.607 | 96.36 | 94.45 (98.736) | 1.91 | |
| 300 | 0.330 | 94.82 | 94.09 (97.105) | 0.73 | 0.354 | 96.45 | 95.27 (98.090) | 1.18 | |
| 500 | 0.255 | 94.94 | 94.22 (96.801) | 0.72 | 0.274 | 96.76 | 95.35 (97.850) | 1.41 | |
| 1000 | 0.182 | 95.36 | 94.87 (96.472) | 0.49 | 0.195 | 96.80 | 95.98 (97.592) | 0.82 | |
| Half-t(3) | 50 | 0.834 | 95.62 | 94.98 (98.596) | 0.64 | 0.891 | 97.30 | 95.80 (99.134) | 1.50 |
| 100 | 0.571 | 96.03 | 95.42 (97.959) | 0.61 | 0.614 | 97.57 | 96.52 (98.735) | 1.05 | |
| 300 | 0.321 | 96.09 | 95.80 (97.109) | 0.29 | 0.344 | 97.06 | 96.85 (98.093) | 0.21 | |
| 500 | 0.246 | 95.77 | 95.66 (96.807) | 0.11 | 0.264 | 96.78 | 96.80 (97.858) | −0.02 | |
| 1000 | 0.172 | 95.49 | 95.65 (96.474) | −0.16 | 0.185 | 96.32 | 96.91 (97.596) | −0.59 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhardwaj, S.; Gallanosa, J.; Martsynyuk, Y.V. Asymptotic Confidence Intervals for the Mean with Increased Finite-Sample Coverage Probabilities. Mathematics 2025, 13, 3931. https://doi.org/10.3390/math13243931
Bhardwaj S, Gallanosa J, Martsynyuk YV. Asymptotic Confidence Intervals for the Mean with Increased Finite-Sample Coverage Probabilities. Mathematics. 2025; 13(24):3931. https://doi.org/10.3390/math13243931
Chicago/Turabian StyleBhardwaj, Shivani, Jervis Gallanosa, and Yuliya V. Martsynyuk. 2025. "Asymptotic Confidence Intervals for the Mean with Increased Finite-Sample Coverage Probabilities" Mathematics 13, no. 24: 3931. https://doi.org/10.3390/math13243931
APA StyleBhardwaj, S., Gallanosa, J., & Martsynyuk, Y. V. (2025). Asymptotic Confidence Intervals for the Mean with Increased Finite-Sample Coverage Probabilities. Mathematics, 13(24), 3931. https://doi.org/10.3390/math13243931
