A Review of Theories and Numerical Methods in Nanomechanics for the Analysis of Nanostructures
Abstract
1. Introduction
2. Overview of Nanomechanics Theories
2.1. NET
2.2. Strain Gradient Theory
2.3. CST/MCST
2.4. NSGT
2.5. Surface Elasticity
2.6. Micropolar (Cosserat) Elasticity
2.7. Peridynamics
3. Numerical and Mathematical Methods
3.1. Analytical and Semi-Analytical Methods
3.2. Differential Methods
3.3. Energy-Based Approaches
3.4. Finite Element Extensions
3.5. Integral Formulations
3.6. Atomistic and Multiscale Methods
3.7. Semi-Analytical Special Techniques
4. Applications of Nanostructures
5. Case Studies of Nanostructure Analyses
5.1. Static Analyses in Nanomechanics
5.2. Buckling Analyses in Nanomechanics
5.3. Vibration and Dynamics Analyses
6. Machine Learning (ML) Applications in Nanomechanics
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nasrollahzadeh, M.; Sajadi, S.M.; Sajjadi, M.; Issaabadi, Z. An Introduction to Nanotechnology. In Interface Science and Technology; Nasrollahzadeh, M., Sajadi, S.M., Sajjadi, M., Issaabadi, Z., Atarod, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Chapter 1; Volume 28, pp. 1–27. [Google Scholar]
- Blandón-González, B.; Trompeta, A.F.; Mercader-Moyano, P. Advanced materials: Introduction to nanotechnology. In Life Cycle Analysis Based on Nanoparticles Applied to the Construction Industry: A Comprehensive Curriculum; Mercader-Moyano, P., Porras-Pereira, P., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 61–73. [Google Scholar]
- Kumari, S.; Raturi, S.; Kulshrestha, S.; Chauhan, K.; Dhingra, S.; András, K.; Thu, K.; Khargotra, R.; Singh, T. A comprehensive review on various techniques used for synthesizing nanoparticles. J. Mater. Res. Technol. 2023, 27, 1739–1763. [Google Scholar] [CrossRef]
- Roudbari, M.A.; Jorshari, T.D.; Lü, C.; Ansari, R.; Kouzani, A.Z.; Amabili, M. A review of size-dependent continuum mechanics models for micro- and nano-structures. Thin-Walled Struct. 2022, 170, 108562. [Google Scholar] [CrossRef]
- Eringen, A.C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 1983, 54, 4703–4710. [Google Scholar] [CrossRef]
- Mindlin, R.D. Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 1964, 16, 51–78. [Google Scholar] [CrossRef]
- Fleck, N.A.; Hutchinson, J.W. A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 2001, 49, 2245–2271. [Google Scholar] [CrossRef]
- Yan, Z.; Jiang, L. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review. Nanomaterials 2017, 7, 27. [Google Scholar] [CrossRef]
- Yang, F.; Chong, A.C.M.; Lam, D.C.C.; Tong, P. Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 2002, 39, 2731–2743. [Google Scholar] [CrossRef]
- Gurtin, M.E.; Ian Murdoch, A. A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 1975, 57, 291–323. [Google Scholar] [CrossRef]
- Silling, S.A. Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 2000, 48, 175–209. [Google Scholar] [CrossRef]
- Braides, A.; Causin, A.; Solci, M.; Truskinovsky, L. Beyond the Classical Cauchy–Born Rule. Arch. Ration. Mech. Anal. 2023, 247, 107. [Google Scholar] [CrossRef]
- Tadmor, E.B.; Ortiz, M.; Phillips, R. Quasicontinuum analysis of defects in solids. Philos. Mag. A 1996, 73, 1529–1563. [Google Scholar] [CrossRef]
- Barretta, R.; Marotti de Sciarra, F.; Vaccaro, M.S. Nonlocal Elasticity for Nanostructures: A Review of Recent Achievements. Encyclopedia 2023, 3, 279–310. [Google Scholar] [CrossRef]
- Eltaher, M.A.; Khater, M.E.; Emam, S.A. A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Appl. Math. Model. 2016, 40, 4109–4128. [Google Scholar] [CrossRef]
- Thai, H.-T.; Vo, T.P.; Nguyen, T.-K.; Kim, S.-E. A review of continuum mechanics models for size-dependent analysis of beams and plates. Compos. Struct. 2017, 177, 196–219. [Google Scholar] [CrossRef]
- Farajpour, A.; Ghayesh, M.H.; Farokhi, H. A review on the mechanics of nanostructures. Int. J. Eng. Sci. 2018, 133, 231–263. [Google Scholar] [CrossRef]
- Ghayesh, M.H.; Farajpour, A. A review on the mechanics of functionally graded nanoscale and microscale structures. Int. J. Eng. Sci. 2019, 137, 8–36. [Google Scholar] [CrossRef]
- Nuhu, A.A.; Safaei, B. A comprehensive review on the vibration analyses of small-scaled plate-based structures by utilizing the nonclassical continuum elasticity theories. Thin-Walled Struct. 2022, 179, 109622. [Google Scholar] [CrossRef]
- Khaniki, H.B.; Ghayesh, M.H.; Amabili, M. A review on the statics and dynamics of electrically actuated nano and micro structures. Int. J. Non-Linear Mech. 2021, 129, 103658. [Google Scholar] [CrossRef]
- Yee, K.; Ghayesh, M.H. A review on the mechanics of graphene nanoplatelets reinforced structures. Int. J. Eng. Sci. 2023, 186, 103831. [Google Scholar] [CrossRef]
- Imani Yengejeh, S.; Kazemi, S.A.; Öchsner, A. Advances in mechanical analysis of structurally and atomically modified carbon nanotubes and degenerated nanostructures: A review. Compos. Part B Eng. 2016, 86, 95–107. [Google Scholar] [CrossRef]
- Soni, S.K.; Thomas, B.; Swain, A.; Roy, T. Functionally graded carbon nanotubes reinforced composite structures: An extensive review. Compos. Struct. 2022, 299, 116075. [Google Scholar] [CrossRef]
- Sayyad, A.S.; Hadji, L.; Tounsi, A. On the mechanics of FG nanobeams: A review with numerical analysis. Forces Mech. 2023, 12, 100219. [Google Scholar] [CrossRef]
- Qin, Q. Research Progress and Applications of Carbon Nanotubes, Black Phosphorus, and Graphene-Based Nanomaterials: Insights from Computational Simulations. Comput. Mater. Contin. 2025, 85, 1–39. [Google Scholar] [CrossRef]
- Torkaman-Asadi, M.A.; Kouchakzadeh, M.A. Atomistic simulations of mechanical properties and fracture of graphene: A review. Comput. Mater. Sci. 2022, 210, 111457. [Google Scholar] [CrossRef]
- Chandel, V.S.; Wang, G.; Talha, M. Advances in modelling and analysis of nano structures: A review. Nanotechnol. Rev. 2020, 9, 230–258. [Google Scholar] [CrossRef]
- Xu, D.; Xu, J.; Xiong, S.; Chen, L.; He, Q.; Wang, B.; Li, R. Hamiltonian system-based analytic thermal buckling solutions of orthotropic rectangular plates. Int. J. Mech. Sci. 2024, 267, 108987. [Google Scholar] [CrossRef]
- Zheng, X.; Huang, M.; An, D.; Zhou, C.; Li, R. New analytic bending, buckling, and free vibration solutions of rectangular nanoplates by the symplectic superposition method. Sci. Rep. 2021, 11, 2939. [Google Scholar] [CrossRef]
- Singh, P.P.; Azam, M.S. Free vibration and buckling analysis of elastically supported transversely inhomogeneous functionally graded nanoplate in thermal environment using Rayleigh–Ritz method. J. Vib. Control 2020, 27, 2835–2847. [Google Scholar] [CrossRef]
- Karami, B.; Janghorban, M.; Tounsi, A. Galerkin’s approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions. Eng. Comput. 2019, 35, 1297–1316. [Google Scholar] [CrossRef]
- Li, Y.-D.; Tang, Z.-C.; Fu, Z.-J. Generalized Finite Difference Method for Plate Bending Analysis of Functionally Graded Materials. Mathematics 2020, 8, 1940. [Google Scholar] [CrossRef]
- Malekzadeh, P.; Shojaee, M. A two-variable first-order shear deformation theory coupled with surface and nonlocal effects for free vibration of nanoplates. J. Vib. Control 2013, 21, 2755–2772. [Google Scholar] [CrossRef]
- Belarbi, M.-O.; Benounas, S.; Li, L.; Van Vinh, P.; Garg, A. Vibration of a Functionally Graded Doubly Curved Shallow Nanoshell: An Improved FSDT Model and its Nonlocal Finite Element Implement. J. Vib. Eng. Technol. 2025, 13, 93. [Google Scholar] [CrossRef]
- Bian, P.-L.; Qing, H. Structural analysis of nonlocal nanobeam via FEM using equivalent nonlocal differential model. Eng. Comput. 2023, 39, 2565–2581. [Google Scholar] [CrossRef]
- Le, T.S.; Dang, H.T.; Tran, T.T.; Du, N.V.; Luong, H.G.; Pham, Q.H. Isogeometric free vibration analysis of tri-directional functionally graded nanoplates based on non-local elasticity theory. J. Braz. Soc. Mech. Sci. Eng. 2025, 47, 263. [Google Scholar] [CrossRef]
- Le, H.Q.; Khatir, S.; Cuong-Le, T. NURBS-based isogeometric analysis for layerwise local behavior of nano-laminated plates based on refined zigzag and nonlocal strain gradient theories. Compos. Struct. 2025, 354, 118766. [Google Scholar] [CrossRef]
- Abdoh, D.A.; Yin, B.B.; Kodur, V.K.R.; Liew, K.M. Computationally efficient and effective peridynamic model for cracks and fractures in homogeneous and heterogeneous materials. Comput. Methods Appl. Mech. Eng. 2022, 399, 115318. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, J.; Xu, Z. Surface Effect on Vibration of Timoshenko Nanobeam Based on Generalized Differential Quadrature Method and Molecular Dynamics Simulation. Nano Manuf. Metrol. 2021, 4, 298–313. [Google Scholar] [CrossRef]
- Latif, A.; Latif, A.; Mohsin, M.; Bhatti, I.A. Density functional theory for nanomaterials: Structural and spectroscopic applications—A review. J. Mol. Model. 2025, 31, 211. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, C.; Hu, X.; Ni, Y. Shape Effect of Surface Defects on Nanohardness by Quasicontinuum Method. Micromachines 2020, 11, 909. [Google Scholar] [CrossRef]
- Xia, C.; Xu, W.; Nie, G. Dynamic quasi-continuum model for plate-type nano-materials and analysis of fundamental frequency. Appl. Math. Mech. 2021, 42, 85–94. [Google Scholar] [CrossRef]
- Hughes, K.J.; Iyer, K.A.; Bird, R.E.; Ivanov, J.; Banerjee, S.; Georges, G.; Zhou, Q.A. Review of Carbon Nanotube Research and Development: Materials and Emerging Applications. ACS Appl. Nano Mater. 2024, 7, 18695–18713. [Google Scholar] [CrossRef]
- Li, Q.; Niu, X.; Pan, Z.; Zhang, J. Nonlinear buckling and post-buckling of multilayered piezoelectric graded porous circular nanoplates considering of surface/interface effects. Thin-Walled Struct. 2025, 212, 113236. [Google Scholar] [CrossRef]
- Akpınar, M.; Kafkas, U.; Uzun, B.; Yaylı, M.Ö. Size-dependent longitudinal vibration of embedded FG Bishop nanotubes by incorporating deformable boundary conditions. Int. J. Mech. Mater. Des. 2025. [Google Scholar] [CrossRef]
- Kadioglu, H.G.; Yayli, M.O. Axial Vibration of a Viscoelastic FG Nanobeam with Arbitrary Boundary Conditions. J. Vib. Eng. Technol. 2025, 13, 96. [Google Scholar] [CrossRef]
- Yayli, M.Ö. Buckling analysis of a microbeam embedded in an elastic medium with deformable boundary conditions. Micro Nano Lett. 2016, 11, 741–745. [Google Scholar] [CrossRef]
- Yayli, M.Ö. Axial vibration analysis of a Rayleigh nanorod with deformable boundaries. Microsyst. Technol. 2020, 26, 2661–2671. [Google Scholar] [CrossRef]
- Darban, H. MD benchmarks: Size-dependent tension, bending, buckling, and vibration of nanobeams. Int. J. Mech. Sci. 2025, 296, 110316. [Google Scholar] [CrossRef]
- Civalek, Ö.; Uzun, B.; Yaylı, M.Ö. Nonlocal Free Vibration of Embedded Short-Fiber-Reinforced Nano-/Micro-Rods with Deformable Boundary Conditions. Materials 2022, 15, 6803. [Google Scholar] [CrossRef]
- Kafkas, U.; Uzun, B.; Yaylı, M.Ö.; Güçlü, G. Thermal vibration of perforated nanobeams with deformable boundary conditions via nonlocal strain gradient theory. Z. Für Naturforschung Sect. A J. Phys. Sci. 2023, 78, 681–701. [Google Scholar] [CrossRef]
- Hutapea, J.A.; Manik, Y.G.; Ndruru, S.T.; Huang, J.; Goei, R.; Tok, A.I.; Siburian, R. Comprehensive Review of Graphene Synthesis Techniques: Advancements, Challenges, and Future Directions. Micro 2025, 5, 40. [Google Scholar] [CrossRef]
- Ali, Z.; Yaqoob, S.; Yu, J.; D’Amore, A. Critical review on the characterization, preparation, and enhanced mechanical, thermal, and electrical properties of carbon nanotubes and their hybrid filler polymer composites for various applications. Compos. Part C Open Access 2024, 13, 100434. [Google Scholar] [CrossRef]
- Gul, U.; Aydogdu, M. Longitudinal vibration of Bishop nanorods model based on nonlocal strain gradient theory. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 377. [Google Scholar] [CrossRef]
- Juntarasaid, C.; Pulngern, T.; Chucheepsakul, S. A variational method for post-buckling analysis of end-supported nanorods under self-weight with surface stress effect. Arch. Appl. Mech. 2021, 91, 1021–1035. [Google Scholar] [CrossRef]
- Uzun, B.; Kafkas, U.; Deliktaş, B.; Yaylı, M.Ö. Size-Dependent Vibration of Porous Bishop Nanorod with Arbitrary Boundary Conditions and Nonlocal Elasticity Effects. J. Vib. Eng. Technol. 2023, 11, 809–826. [Google Scholar] [CrossRef]
- Prasittikulwat, S.; Pulngern, T.; Chucheepsakul, S.; Phungpaingam, B. Large Deflection and Post-Buckling Analysis of Cantilever Nanorods Including Effects of Couple and Surface Stresses by Intrinsic Coordinate Finite Elements. Int. J. Struct. Stab. Dyn. 2023, 24, 2450211. [Google Scholar] [CrossRef]
- Juntarasaid, C.; Pulngern, T.; Chucheepsakul, S. Postbuckling Analysis of a Nonlocal Nanorod Under Self-Weight. Int. J. Appl. Mech. 2020, 12, 2050035. [Google Scholar] [CrossRef]
- Ahmadi, I.; Sladek, V.; Sladek, J. Instability and buckling analysis of bi-directional FG multiple nanobeam system in thermal environment by a meshless method. Arch. Appl. Mech. 2025, 95, 181. [Google Scholar] [CrossRef]
- Hamed, M.A.; Mohamed, N.A.; Eltaher, M.A. Stability buckling and bending of nanobeams including cutouts. Eng. Comput. 2022, 38, 209–230. [Google Scholar] [CrossRef]
- Hosseini, S.A.H.; Rahmani, O. Surface Effects on Buckling of Double Nanobeam System Based on Nonlocal Timoshenko Model. Int. J. Struct. Stab. Dyn. 2016, 16, 1550077. [Google Scholar] [CrossRef]
- Nazmul, I.M.; Devnath, I. Analytical buckling analysis of bidirectional functionally graded nonlocal nanobeams. Int. J. Comput. Mater. Sci. Eng. 2024, 15, 2450024. [Google Scholar] [CrossRef]
- Yan, X.; Li, Y. Size-dependent buckling behaviors of a rotating nanobeam using the integral form of Eringen’s nonlocal theory. Mech. Adv. Mater. Struct. 2024, 31, 5437–5453. [Google Scholar] [CrossRef]
- Thang, P.T. Buckling analysis of graphene nanoplatelets/polymer composite sandwich cylindrical shells with auxetic honeycomb core under external pressure. Mech. Based Des. Struct. Mach. 2025, 53, 6722–6748. [Google Scholar] [CrossRef]
- Wang, W.; Yin, H.; Zhang, J.; Sun, J.; Zhou, Z.; Xu, X. Nonlinear stability characteristics of piezoelectric cylindrical shells with flexoelectric effects. Acta Mech. Sin. 2024, 41, 424412. [Google Scholar] [CrossRef]
- Avey, M.; Fantuzzi, N.; Sofiyev, A.H. Analytical Solution of Stability Problem of Nanocomposite Cylindrical Shells under Combined Loadings in Thermal Environments. Mathematics 2023, 11, 3781. [Google Scholar] [CrossRef]
- Sofiyev, A.H. Modeling and solution of eigenvalue problems of laminated cylindrical shells consisting of nanocomposite plies in thermal environments. Arch. Appl. Mech. 2024, 94, 3071–3099. [Google Scholar] [CrossRef]
- Shi, S.; Fan, X. Size-dependent thermoelastic dissipation and frequency shift in micro/nano cylindrical shell based on surface effect and dual-phase lag heat conduction model. Acta Mech. 2024, 235, 7855–7879. [Google Scholar] [CrossRef]
- Zhou, H.; Jing, C.; Li, P. Generalized thermoelastic damping in micro/nano-ring resonators undergoing out-of-plane vibration. Int. J. Mech. Sci. 2024, 278, 109490. [Google Scholar] [CrossRef]
- Wang, C.M.; Xiang, Y.; Yang, J.; Kitipornchai, S. Buckling of nano-rings/arches based on nonlocal elasticity. Int. J. Appl. Mech. 2012, 4, 1250025. [Google Scholar] [CrossRef]
- Sadeghian, M.; Palevicius, A.; Janusas, G. Nonlocal Strain Gradient Model for the Nonlinear Static Analysis of a Circular/Annular Nanoplate. Micromachines 2023, 14, 1052. [Google Scholar] [CrossRef]
- Duc, D.H.; Thom, D.V.; Cong, P.H.; Minh, P.V.; Nguyen, N.X. Vibration and static buckling behavior of variable thickness flexoelectric nanoplates. Mech. Based Des. Struct. Mach. 2023, 51, 7102–7130. [Google Scholar] [CrossRef]
- Phuc, P.Q.; Van Dong, P.; Hai, N.T.; Thien, L.G. Forced vibration of composite nanoplates taking into the structural drag phenomenon. Structures 2025, 75, 108633. [Google Scholar] [CrossRef]
- Eringen, A.C.; Edelen, D.G.B. On nonlocal elasticity. Int. J. Eng. Sci. 1972, 10, 233–248. [Google Scholar] [CrossRef]
- Ceballes, S.; Larkin, K.; Rojas, E.; Ghaffari, S.S.; Abdelkefi, A. Nonlocal elasticity and boundary condition paradoxes: A review. J. Nanoparticle Res. 2021, 23, 66. [Google Scholar] [CrossRef]
- Romano, G.; Barretta, R.; Diaco, M.; Marotti de Sciarra, F. Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. Int. J. Mech. Sci. 2017, 121, 151–156. [Google Scholar] [CrossRef]
- Kaplunov, J.; Prikazchikov, D.A.; Prikazchikova, L. On integral and differential formulations in nonlocal elasticity. Eur. J. Mech. A/Solids 2023, 100, 104497. [Google Scholar] [CrossRef]
- Challamel, N.; Zhang, Z.; Wang, C.M.; Reddy, J.N.; Wang, Q.; Michelitsch, T.; Collet, B. On nonconservativeness of Eringen’s nonlocal elasticity in beam mechanics: Correction from a discrete-based approach. Arch. Appl. Mech. 2014, 84, 1275–1292. [Google Scholar] [CrossRef]
- Romano, G.; Barretta, R. Nonlocal elasticity in nanobeams: The stress-driven integral model. Int. J. Eng. Sci. 2017, 115, 14–27. [Google Scholar] [CrossRef]
- Patnaik, S.; Sidhardh, S.; Semperlotti, F. Displacement-driven approach to nonlocal elasticity. Eur. J. Mech. A/Solids 2022, 92, 104434. [Google Scholar] [CrossRef]
- Vaccaro, M.S.; Pinnola, F.P.; de Sciarra, F.M.; Barretta, R. Limit behaviour of Eringen’s two-phase elastic beams. Eur. J. Mech. -A/Solids 2021, 89, 104315. [Google Scholar] [CrossRef]
- Shaat, M. An iterative nonlocal residual constitutive model for nonlocal elasticity. arXiv 2018, arXiv:1803.08646. [Google Scholar] [CrossRef]
- Romano, G.; Diaco, M. On formulation of nonlocal elasticity problems. Meccanica 2021, 56, 1303–1328. [Google Scholar] [CrossRef]
- Romano, G.; Barretta, R. Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. Compos. Part B Eng. 2017, 114, 184–188. [Google Scholar] [CrossRef]
- Ding, W. Advancing Integral Nonlocal Elasticity via Fractional Calculus: Theory, Modeling, and Applications. Ph.D. Thesis, Purdue University Graduate School, West Lafayette, IN, USA, 2024. [Google Scholar]
- Aifantis, E.C. Strain gradient interpretation of size effects. Int. J. Fract. 1999, 95, 299–314. [Google Scholar] [CrossRef]
- Hosseini, M.; Dini, A.; Eftekhari, M. Strain gradient effects on the thermoelastic analysis of a functionally graded micro-rotating cylinder using generalized differential quadrature method. Acta Mech. 2017, 228, 1563–1580. [Google Scholar] [CrossRef]
- Sadeghi, H.; Baghani, M.; Naghdabadi, R. Strain gradient elasticity solution for functionally graded micro-cylinders. Int. J. Eng. Sci. 2012, 50, 22–30. [Google Scholar] [CrossRef]
- Wu, C.-P.; Chang, T.-Y. A Review of Modified/Consistent Couple Stress and Strain Gradient Theories for Analyzing Static and Dynamic Behaviors of Functionally Graded Microscale Plates and Shells. Materials 2025, 18, 4475. [Google Scholar] [CrossRef]
- Kong, S. A Review on the Size-Dependent Models of Micro-beam and Micro-plate Based on the Modified Couple Stress Theory. Arch. Comput. Methods Eng. 2022, 29, 1–31. [Google Scholar] [CrossRef]
- Hadjesfandiari, A.R.; Dargush, G.F. Couple stress theories: Theoretical underpinnings and practical aspects from a new energy perspective. arXiv 2016, arXiv:1611.10249. [Google Scholar] [CrossRef]
- Hadjesfandiari, A.R. The Character of Couples and Couple Stresses in Continuum Mechanics. Symmetry 2024, 16, 1046. [Google Scholar] [CrossRef]
- Park, S.K.; Gao, X.L. Variational formulation of a modified couple stress theory and its application to a simple shear problem. Z. Für Angew. Math. Phys. 2008, 59, 904–917. [Google Scholar] [CrossRef]
- Münch, I.; Neff, P.; Madeo, A.; Ghiba, I.D. The modified indeterminate couple stress model: Why Yang et al.’s arguments motivating a symmetric couple stress tensor contain a gap and why the couple stress tensor may be chosen symmetric nevertheless. Z. Für Angew. Math. Mech. 2017, 97, 1524–1554. [Google Scholar] [CrossRef]
- Mohammad-Abadi, M.; Daneshmehr, A.R. Modified couple stress theory applied to dynamic analysis of composite laminated beams by considering different beam theories. Int. J. Eng. Sci. 2015, 87, 83–102. [Google Scholar] [CrossRef]
- Hadjesfandiari, A.R.; Dargush, G.F. An Assessment of Couple Stress Theories. Preprints 2018. [Google Scholar]
- Trabelssi, M.; El-Borgi, S.; Friswell, M.I. Application of nonlocal strain gradient theory for the analysis of bandgap formation in metamaterial nanobeams. Appl. Math. Model. 2024, 127, 281–296. [Google Scholar] [CrossRef]
- Zaera, R.; Serrano, Ó.; Fernández-Sáez, J. On the consistency of the nonlocal strain gradient elasticity. Int. J. Eng. Sci. 2019, 138, 65–81. [Google Scholar] [CrossRef]
- Shaat, M. Infeasibility of the nonlocal strain gradient theory for applied physics. arXiv 2017, arXiv:1711.09938. [Google Scholar] [CrossRef]
- Barretta, R.; Faghidian, S.A.; Marotti de Sciarra, F.; Vaccaro, M.S. Nonlocal strain gradient torsion of elastic beams: Variational formulation and constitutive boundary conditions. Arch. Appl. Mech. 2020, 90, 691–706. [Google Scholar] [CrossRef]
- Aifantis, E.C. A concise review of gradient models in mechanics and physics. Front. Phys. 2020, 7, 239. [Google Scholar] [CrossRef]
- Gortsas, T.; Aggelis, D.G.; Polyzos, D. The strain gradient elasticity via nonlocal considerations. Int. J. Solids Struct. 2023, 269, 112177. [Google Scholar] [CrossRef]
- Fonseca Gonçalves, G.; Rodrigues Lopes, I.A.; Couto Carneiro, A.M.; Andrade Pires, F.M. A critical comparison of gradient and integral nonlocal damage models: Formulation, numerical predictions and computational aspects. Finite Elem. Anal. Des. 2025, 248, 104358. [Google Scholar] [CrossRef]
- Mogilevskaya, S.G.; Zemlyanova, A.Y.; Mantič, V. The use of the Gurtin-Murdoch theory for modeling mechanical processes in composites with two-dimensional reinforcements. Compos. Sci. Technol. 2021, 210, 108751. [Google Scholar] [CrossRef]
- Hassanpour, S.; Heppler, G.R. Micropolar elasticity theory: A survey of linear isotropic equations, representative notations, and experimental investigations. Math. Mech. Solids 2015, 22, 224–242. [Google Scholar] [CrossRef]
- Barbhuiya, S.; Jivkov, A.; Das, B.B. A review of multi-scale modelling of concrete deterioration: Fundamentals, techniques and perspectives. Constr. Build. Mater. 2023, 406, 133472. [Google Scholar] [CrossRef]
- Phuc, P.Q.; Van Dong, P.; Hai, N.T.; Zenkour, A.M.; Thien, L.G. The application of novel shear deformation theory and nonlocal elasticity theory to study the mechanical response of composite nanoplates. Compos. Struct. 2025, 352, 118646. [Google Scholar] [CrossRef]
- Li, S.; Cheng, Y. Study on wave dispersion behavior in an embedded triclinic microscale plate based on Eringen’s nonlocal elasticity theory. Mech. Based Des. Struct. Mach. 2025, 1–21. [Google Scholar] [CrossRef]
- Siddique, M.U.M.; Nazmul, I.M. Static bending analysis of BDFG nanobeams by nonlocal couple stress theory and nonlocal strain gradient theory. Forces Mech. 2024, 17, 100289. [Google Scholar] [CrossRef]
- Kong, L.; Zhang, B.; Li, C. Thermal Buckling and Postbuckling Behaviors of Couple Stress and Surface Energy-Enriched FG-CNTR Nanobeams. Symmetry 2022, 14, 2228. [Google Scholar] [CrossRef]
- Togun, N.; Bağdatli, S.M. Application of Modified Couple-Stress Theory to Nonlinear Vibration Analysis of Nanobeam with Different Boundary Conditions. J. Vib. Eng. Technol. 2024, 12, 6979–7008. [Google Scholar] [CrossRef]
- Wolfer, W.G. Elastic properties of surfaces on nanoparticles. Acta Mater. 2011, 59, 7736–7743. [Google Scholar] [CrossRef]
- Khater, M.E.; Eltaher, M.A.; Abdel-Rahman, E.; Yavuz, M. Surface and thermal load effects on the buckling of curved nanowires. Eng. Sci. Technol. Int. J. 2014, 17, 279–283. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, J. Analytical solutions of bending analysis and vibration of rectangular nano laminates with surface effects. Appl. Math. Model. 2022, 110, 663–673. [Google Scholar] [CrossRef]
- Allahyari, E.; Fadaee, M. Analytical investigation on free vibration of circular double-layer graphene sheets including geometrical defect and surface effects. Compos. Part B Eng. 2016, 85, 259–267. [Google Scholar] [CrossRef]
- Sadeghian, M.; Palevicius, A.; Janusas, G. Nonlinear Thermal/Mechanical Buckling of Orthotropic Annular/Circular Nanoplate with the Nonlocal Strain Gradient Model. Micromachines 2023, 14, 1790. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Dabbagh, A. Application of the nonlocal strain gradient elasticity on the wave dispersion behaviors of inhomogeneous nanosize beams. Eur. Phys. J. Plus 2019, 134, 112. [Google Scholar] [CrossRef]
- Liu, X.; Bie, Z.; Yu, P.; Zheng, B.; Shi, X.; Fan, Y.; He, X.; Lu, C. Peridynamics for the fracture study on multi-layer graphene sheets. Compos. Struct. 2024, 332, 117926. [Google Scholar] [CrossRef]
- Izadi, R.; Das, R.; Fantuzzi, N.; Trovalusci, P. Fracture properties of green nano fibrous network with random and aligned fiber distribution: A hierarchical molecular dynamics and peridynamics approach. Int. J. Eng. Sci. 2024, 204, 104136. [Google Scholar] [CrossRef]
- Thai, C.H.; Fereira, A.M.J.; Nguyen-Xuan, H.; Hung, P.T.; Phung-Van, P. A nonlocal strain gradient isogeometric model for free vibration analysis of magneto-electro-elastic functionally graded nanoplates. Compos. Struct. 2023, 316, 117005. [Google Scholar] [CrossRef]
- Rajasekaran, S. Numerical investigation of non-local elasticity theory for free vibration of polymer embedded multi-layer graphene sheets. Mater. Today Commun. 2024, 39, 108669. [Google Scholar] [CrossRef]
- Orlandini, G.; Turro, F. Integral Transform Methods: A Critical Review of Various Kernels. Few-Body Syst. 2017, 58, 76. [Google Scholar] [CrossRef]
- Moreno-García, P.; dos Santos, J.V.A.; Lopes, H. A Review and Study on Ritz Method Admissible Functions with Emphasis on Buckling and Free Vibration of Isotropic and Anisotropic Beams and Plates. Arch. Comput. Methods Eng. 2018, 25, 785–815. [Google Scholar] [CrossRef]
- Zhou, P.-B. Finite difference method. In Numerical Analysis of Electromagnetic Fields; Zhou, P.-B., Ed.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 63–94. [Google Scholar]
- Wu, T.Y.; Liu, G.R. A Differential Quadrature as a numerical method to solve differential equations. Comput. Mech. 1999, 24, 197–205. [Google Scholar] [CrossRef]
- Shu, C. Application of differential quadrature method to structural and vibration analysis. In Differential Quadrature and Its Application in Engineering; Shu, C., Ed.; Springer: London, UK, 2000; pp. 186–223. [Google Scholar]
- Palacz, M. Spectral Methods for Modelling of Wave Propagation in Structures in Terms of Damage Detection—A Review. Appl. Sci. 2018, 8, 1124. [Google Scholar] [CrossRef]
- Hesthaven, J.S. Spectral methods for hyperbolic problems. This revised and updated chapter is based partly on work from the author’s original article first published in the Journal of computational and applied mathematics, Volume 128, Gottlieb and Hesthaven, Elsevier, 2001. In Handbook of Numerical Analysis; Abgrall, R., Shu, C.-W., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Chapter 17; Volume 17, pp. 441–466. [Google Scholar]
- Gabbasov, R.; Filatov, V.; Dao, N.K.; Quyen Hoang, T.L. Analysis of bending plates with mixed boundary conditions using generalized equations of finite difference method. IOP Conf. Ser. Mater. Sci. Eng. 2020, 913, 022018. [Google Scholar] [CrossRef]
- Jankowski, J.; Kotełko, M.; Ungureanu, V. Numerical and Experimental Analysis of Buckling and Post-Buckling Behaviour of TWCFS Lipped Channel Section Members Subjected to Eccentric Compression. Materials 2024, 17, 2874. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, C.M.; Challamel, N. Modelling vibrating nano-strings by lattice, finite difference and Eringen’s nonlocal models. J. Sound Vib. 2018, 425, 41–52. [Google Scholar] [CrossRef]
- Monge, J.C.; Mantari, J.L. 3D nonlocal solution with layerwise approach and DQM for multilayered functionally graded shallow nanoshells. Mech. Adv. Mater. Struct. 2025, 32, 1352–1362. [Google Scholar] [CrossRef]
- Al Mukahal, F.H.H.; Sobhy, M.; Al-Ali, A.H.K. Magneto-Hygrothermal Deformation of FG Nanocomposite Annular Sandwich Nanoplates with Porous Core Using the DQM. Crystals 2025, 15, 827. [Google Scholar] [CrossRef]
- Tepe, A. Vibration analysis of SWCNTs resting on an elastic foundation using the initial values method. J. Eng. Math. 2025, 152, 20. [Google Scholar] [CrossRef]
- Monge, J.C.; Mantari, J.L. Semi-analytical layerwise solutions for FG MEE complex shell structures. Eur. J. Mech. A/Solids 2025, 109, 105446. [Google Scholar] [CrossRef]
- Li, C.; Wei, P.; Guo, X. The spectral methods for the propagation of thermoelastic waves in multilayer cylinders based on nonlocal strain gradient elasticity. Acta Mech. 2024. [Google Scholar] [CrossRef]
- Yi, X.; Li, B.; Wang, Z. Vibration Analysis of Fluid Conveying Carbon Nanotubes Based on Nonlocal Timoshenko Beam Theory by Spectral Element Method. Nanomaterials 2019, 9, 1780. [Google Scholar] [CrossRef]
- Jalali, S.K.; Heshmati, M. Buckling analysis of circular sandwich plates with tapered cores and functionally graded carbon nanotubes-reinforced composite face sheets. Thin-Walled Struct. 2016, 100, 14–24. [Google Scholar] [CrossRef]
- Oden, J.T.; Reddy, J.N. Variational principles in continuum mechanics. In Variational Methods in Theoretical Mechanics; Oden, J.T., Reddy, J.N., Eds.; Springer: Berlin/Heidelberg, Germany, 1976; pp. 139–214. [Google Scholar]
- Agrawal, V.; Gautam, S.S. IGA: A Simplified Introduction and Implementation Details for Finite Element Users. J. Inst. Eng. Ser. C 2019, 100, 561–585. [Google Scholar] [CrossRef]
- Anjomshoa, A.; Tahani, M. Vibration analysis of orthotropic circular and elliptical nano-plates embedded in elastic medium based on nonlocal Mindlin plate theory and using Galerkin method. J. Mech. Sci. Technol. 2016, 30, 2463–2474. [Google Scholar] [CrossRef]
- Liu, X.; He, X.; Lu, C.; Oterkus, E. Peridynamic modeling at nano-scale. In Peridynamic Modeling, Numerical Techniques, and Applications; Oterkus, E., Oterkus, S., Madenci, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Chapter 16; pp. 355–370. [Google Scholar]
- Li, S.; Urata, S. An atomistic-to-continuum molecular dynamics: Theory, algorithm, and applications. Comput. Methods Appl. Mech. Eng. 2016, 306, 452–478. [Google Scholar] [CrossRef]
- Boichuk, O.; Chuiko, S.; Diachenko, D.y. Adomian’s Decomposition Method in the Theory of Nonlinear Autonomous Boundary-Value Problems. Ukr. Math. J. 2024, 75, 1203–1218. [Google Scholar] [CrossRef]
- Mohamed, S.A.; Shanab, R.A.; Seddek, L.F. Vibration analysis of Euler–Bernoulli nanobeams embedded in an elastic medium by a sixth-order compact finite difference method. Appl. Math. Model. 2016, 40, 2396–2406. [Google Scholar] [CrossRef]
- Tian, Z.F.; Yu, P.X. An efficient compact difference scheme for solving the streamfunction formulation of the incompressible Navier–Stokes equations. J. Comput. Phys. 2011, 230, 6404–6419. [Google Scholar] [CrossRef]
- Karami, B.; Janghorban, M.; Dimitri, R.; Tornabene, F. Free Vibration Analysis of Triclinic Nanobeams Based on the Differential Quadrature Method. Appl. Sci. 2019, 9, 3517. [Google Scholar] [CrossRef]
- Jena, S.K.; Chakraverty, S.; Tornabene, F. Buckling Behavior of Nanobeams Placed in Electromagnetic Field Using Shifted Chebyshev Polynomials-Based Rayleigh-Ritz Method. Nanomaterials 2019, 9, 1326. [Google Scholar] [CrossRef]
- Torkashvand, Z.; Shayeganfar, F.; Ramazani, A. Nanomaterials Based Micro/Nanoelectromechanical System (MEMS and NEMS) Devices. Micromachines 2024, 15, 175. [Google Scholar] [CrossRef] [PubMed]
- Pruchnik, B.; Kwoka, K.; Piasecki, T.; Ghourichaei, M.J.; Kerimzade, U.; Aydin, O.; Aksoy, B.; Aydogan, C.; Nadar, G.; Rangelow, I.W.; et al. Characterization of a hybrid nanowire-MEMS force sensor using direct actuation. Meas. Sci. Technol. 2025, 36, 075024. [Google Scholar] [CrossRef]
- Xiao, Y.; Luo, F.; Zhang, Y.; Hu, F.; Zhu, M.; Qin, S. A Review on Graphene-Based Nano-Electromechanical Resonators: Fabrication, Performance, and Applications. Micromachines 2022, 13, 215. [Google Scholar] [CrossRef]
- Ke, T.V.; Minh, P.V.; Thom, D.V.; Duc, N.D. Static and dynamic analysis of doubly-curved functionally graded porous nanoshells integrated with piezoelectric surface layers and flexoelectric effect. Comput. Struct. 2025, 312, 107737. [Google Scholar] [CrossRef]
- Omar, I.; Marhoon, T.; Babadoust, S.; Najm, A.S.; Pirmoradian, M.; Salahshour, S.; Sajadi, S.M. Static stability of functionally graded porous nanoplates under uniform and non-uniform in-plane loads and various boundary conditions based on the nonlocal strain gradient theory. Results Eng. 2025, 25, 103612. [Google Scholar] [CrossRef]
- Brischetto, S.; Cesare, D. A 3D shell model for static and free vibration analysis of multilayered magneto-elastic structures. Thin-Walled Struct. 2025, 206, 112620. [Google Scholar] [CrossRef]
- Anh, V.T.T.; Dat, N.D.; Nguyen, P.D.; Duc, N.D. A nonlocal higher-order shear deformation approach for nonline ar static analysis of magneto-electro-elastic sandwich Micro/Nano-plates with FG-CNT core in hygrothermal environment. Aerosp. Sci. Technol. 2024, 147, 109069. [Google Scholar] [CrossRef]
- Genel, Ö.E.; Koç, H.; Tüfekci, E. In-Plane Static Analysis of Curved Nanobeams Using Exact-Solution-Based Finite Element Formulation. Comput. Mater. Contin. 2025, 82, 2043–2059. [Google Scholar] [CrossRef]
- Wu, J.; Song, L.; Huang, K. Nonlinear static behaviors of nonlocal nanobeams incorporating longitudinal linear temperature gradient. Int. J. Therm. Sci. 2025, 208, 109421. [Google Scholar] [CrossRef]
- Behnam-Rasouli, M.-S.; Challamel, N.; Karamodin, A.; Sani, A.A. Application of the Green’s function method for static analysis of nonlocal stress-driven and strain gradient elastic nanobeams. Int. J. Solids Struct. 2024, 295, 112794. [Google Scholar] [CrossRef]
- Zheng, Y.-F.; Qu, D.-Y.; Liu, L.-C.; Chen, C.-P. Size-dependent nonlinear bending analysis of nonlocal magneto-electro-elastic laminated nanobeams resting on elastic foundation. Int. J. Non-Linear Mech. 2023, 148, 104255. [Google Scholar] [CrossRef]
- Soltani, M.; Momenian, M.H.; Civalek, O. Stability analysis of sandwich double nanobeam-system with varying cross-section interconnected by Kerr-type three-parameter elastic layer. Thin-Walled Struct. 2024, 204, 112249. [Google Scholar] [CrossRef]
- Ren, Y.; Qing, H. Bending and buckling analysis of functionally graded Timoshenko nanobeam using Two-Phase Local/Nonlocal piezoelectric integral model. Compos. Struct. 2022, 300, 116129. [Google Scholar] [CrossRef]
- Barretta, R.; Luciano, R.; Marotti de Sciarra, F.; Vaccaro, M.S. On torsion of FG elastic nanobeams on nonlocal foundations. Compos. Struct. 2024, 340, 118146. [Google Scholar] [CrossRef]
- Alghanmi, R.A. Size-dependent static response of a functionally graded nanobeam attached to a piezoelectric fibre-reinforced composite actuator. Sci. Rep. 2025, 15, 28734. [Google Scholar] [CrossRef] [PubMed]
- Tuna, M.; Kirca, M. Exact solution of Eringen’s nonlocal integral model for bending of Euler–Bernoulli and Timoshenko beams. Int. J. Eng. Sci. 2016, 105, 80–92. [Google Scholar] [CrossRef]
- Ma, W.; Li, X. A higher-order beam theory for analyzing the static and dynamic behaviors of box and tubular beam-columns with the higher-order effect of axial force. Acta Mech. Sin. 2025, 42, 524391. [Google Scholar] [CrossRef]
- Tuyen, B.V.; Du, N.D. Analytic solutions for static bending and free vibration analysis of FG nanobeams in thermal environment. J. Therm. Stress. 2023, 46, 871–894. [Google Scholar] [CrossRef]
- Zhaowei, Z.; Zhiqiang, S.; Aiyun, L.; Habibi, M.; Albaijan, I.; Zhang, D. Static responses for Graphene nanoplatlet reinforced aerobic sport plate. Adv. Nano Res. 2025, 18, 565. [Google Scholar]
- Hoai, L.; Trai, V.K.; Tran, V.K.; Nguyen Thi Thu, H. Static and dynamic response of bidirectional functionally graded porous nanoplate taking into account surface effect using isogeometric approach. Mech. Based Des. Struct. Mach. 2025, 1–44. [Google Scholar] [CrossRef]
- Van Thom, D.; Chinh, V.M.; Van Minh, P.; Anh Vu, N.D. Mechanical responses of nanoplates resting on viscoelastic foundations in multi-physical environments. Eur. J. Mech. A/Solids 2024, 106, 105309. [Google Scholar] [CrossRef]
- Altekin, M.; Karatas, E.E.; Yükseler, R.F. Stress-driven nonlocal theory on nonlinear static analysis of annular nanoplates. Mech. Based Des. Struct. Mach. 2025, 53, 6283–6328. [Google Scholar] [CrossRef]
- Jafarinezhad, M.; Sburlati, R.; Cianci, R. Static and free vibration analysis of functionally graded annular plates using stress-driven nonlocal theory. Eur. J. Mech. A/Solids 2023, 99, 104955. [Google Scholar] [CrossRef]
- Tho, N.C.; Tien, D.M.; Thom, D.V.; Minh, P.V.; Doan, D.V. A new approach to the static bending problem of organic nanoplates. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2025, 239, 3052–3064. [Google Scholar] [CrossRef]
- Tang, F.; He, S.; Shi, S.; Dong, F.; Xiao, X.; Liu, S. Mechanical behavior of nanocircular plates under coupled surface and nonlocal effects by using molecular dynamics simulations. Phys. Lett. A 2024, 500, 129380. [Google Scholar] [CrossRef]
- Bab, Y.; Dorduncu, M.; Kutlu, A.; Markert, B. Nonlocal static modeling of laminated composite shells using peridynamic differential operator in a higher-order shear deformation framework. Eng. Anal. Bound. Elem. 2025, 179, 106384. [Google Scholar] [CrossRef]
- Reddy, J.N.; Liu, C. A Higher-Order Theory for Geometrically Nonlinear Analysis of Composite Laminates; NASA: Washington, DC, USA, 1987.
- Guo, Y.; Alam, M. Nonlinear bending and thermal postbuckling of magneto-electro-elastic nonlocal strain-gradient beam including surface effects. Appl. Math. Model. 2025, 142, 115955. [Google Scholar] [CrossRef]
- Van Lieu, P. Thermal buckling of organic nanobeams resting on viscous elastic foundation. Eur. J. Mech. A/Solids 2025, 109, 105455. [Google Scholar] [CrossRef]
- Sahmani, S.; Kotrasova, K.; Zareichian, M.; Sun, J.; Safaei, B. Nonlinear asymmetric thermomechanical buckling of shallow nanoscale arches having dissimilar end conditions embracing nonlocality and strain gradient size dependencies. Def. Technol. 2025, 47, 67–82. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, P.; Peng, J.; Liu, H.; Peng, G.; Zhang, Y. Buckling instability of graphyne nanosheets under local indentation. Mech. Mater. 2025, 200, 105206. [Google Scholar] [CrossRef]
- Hou, G.; Al-Mussawi, W.; Khidhir, D.M.; Singh, N.S.S.; Saeidlou, S.; Al-Bahrani, M.; Salahshour, S.; Sajadi, S.M.; Hasanabad, A.M. Investigating the effect of variable heat flux on buckling of carbon nanotube using non-equilibrium molecular dynamic simulation. Int. Commun. Heat Mass Transf. 2025, 167, 109300. [Google Scholar] [CrossRef]
- Yang, F.; Deng, Y.; Wang, J.; Huo, J.; Zhang, T. Post buckling behavior of porous magneto-electro-elastic nanoplates using nonlocal strain gradient theory. Results Eng. 2025, 27, 106446. [Google Scholar] [CrossRef]
- Sahmani, S.; Rabczuk, T.; Song, J.-H.; Safaei, B. Unified nonlocal surface elastic-based thermal induced asymmetric nonlinear buckling of inhomogeneous nano-arches subjected to dissimilar end conditions. Compos. Struct. 2025, 357, 118961. [Google Scholar] [CrossRef]
- Tekin Atacan, A.; Yükseler, R.F. Size-dependent snap buckling behavior of functionally graded sinusoidal shallow nano-arches supported by elastic horizontal springs using the stress-driven nonlocal approach. Mech. Res. Commun. 2025, 148, 104487. [Google Scholar] [CrossRef]
- Van Lieu, P.; Zenkour, A.M.; Luu, G.T. Static bending and buckling of FG sandwich nanobeams with auxetic honeycomb core. Eur. J. Mech. A/Solids 2024, 103, 105181. [Google Scholar] [CrossRef]
- Tang, Y.; Bian, P.-L.; Qing, H. Buckling and vibration analysis of axially functionally graded nanobeam based on local stress- and strain-driven two-phase local/nonlocal integral models. Thin-Walled Struct. 2024, 202, 112162. [Google Scholar] [CrossRef]
- Georgantzinos, S.K.; Antoniou, P.A.; Stamoulis, K.P.; Spitas, C. Influence of microstructural and environmental factors on the buckling performance of carbon nanotube-enhanced laminated composites: A multiscale analysis. Eng. Fail. Anal. 2024, 158, 108055. [Google Scholar] [CrossRef]
- Hafed, Z.S. Effects of new nonlinear curvature models and non-local elasticity on buckling investigation of FG tapered nano-beams locating on elastic foundations. J. Eng. Res. 2024. [Google Scholar] [CrossRef]
- Sahmani, S.; Safaei, B.; Rabczuk, T. On the Role of Nonlocal Strain Gradient Elasticity in Nonlinear Buckling of FG Porous Reinforced Curved Nanobeams Having Different Degrees of Curvature. Int. J. Struct. Stab. Dyn. 2024, 25, 2550134. [Google Scholar] [CrossRef]
- Dang Van, H.; Nguyen Thi, H.; Nguyen Thi Kim, T. Size-dependent buckling analysis of functionally graded carbon nanotubes-reinforced composite nano-plates based on nonlocal strain gradient theory. Struct. Eng. Mech. 2025, 94, 335–350. [Google Scholar] [CrossRef]
- Buğday, M.; Kafalı, A.; Esen, İ. Effect of the honeycomb structure on the thermo mechanical buckling of sandwich nanoplates exposed to magnetic and thermal fields. Mech. Adv. Mater. Struct. 2025, 1–22. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, J.; Xia, X. Buckling and post-buckling behavior of nano-laminates considering surface effects. Arch. Appl. Mech. 2024, 94, 3469–3488. [Google Scholar] [CrossRef]
- Yıldız, T. Comprehensive study on the determination of thermal buckling of functionally graded nano sandwich plates with auxetic butterfly cores. Mech. Based Des. Struct. Mach. 2025, 1–25. [Google Scholar] [CrossRef]
- Penna, R.; Lovisi, G.; Feo, L. Buckling analysis of functionally graded nanobeams via surface stress-driven model. Int. J. Eng. Sci. 2024, 205, 104148. [Google Scholar] [CrossRef]
- Sofiyev, A.H.; Avey, M.; Aslanova, N.M. A Mathematical Approach to the Buckling Problem of Axially Loaded Laminated Nanocomposite Cylindrical Shells in Various Environments. Math. Comput. Appl. 2025, 30, 10. [Google Scholar] [CrossRef]
- Gui, Y.; Wu, R. A novel buckling model for layered cylindrical nanoshells incorporates interfacial effect. Appl. Math. Model. 2026, 150, 116417. [Google Scholar] [CrossRef]
- Gholami, R.; Ansari, R.; Aghdasi, P.; Sahmani, S. Buckling and postbuckling of embedded sandwich moderately thick plates with functionally graded graphene nanoplatelet-reinforced porous core and metallic face sheets. Thin-Walled Struct. 2025, 210, 113063. [Google Scholar] [CrossRef]
- Salari, E.; Sadough Vanini, S.A. Nonlocal nonlinear static/dynamic snap-through buckling and vibration of thermally post-buckled imperfect functionally graded circular nanoplates. Waves Random Complex Media 2025, 35, 3805–3851. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, X.; Pan, Z.; Zhang, J. Nonlinear post-buckling of graded porous circular nanoplate with surface stress subjected to follower force. Mech. Adv. Mater. Struct. 2025, 32, 341–354. [Google Scholar] [CrossRef]
- Atacan, A.T.; Yükseler, R.F. Nonlinear buckling and post-buckling analyses of functionally graded circular shallow arches. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2023, 238, 4768–4789. [Google Scholar] [CrossRef]
- Songsuwan, W.; Thai, S.; Wattanasakulpong, N. Buckling and post-buckling behavior of ideal and non-ideal FG-GPLRC beams in thermal environment. Acta Mech. Sin. 2024, 41, 424374. [Google Scholar] [CrossRef]
- Sajjadi, M.S.; Shaterzadeh, A.R. Thermal and mechanical post-buckling analysis of the composite truncated conical shells reinforced with the lattice core. Acta Mech. 2025. [Google Scholar] [CrossRef]
- Bochkarev, A. Buckling of a nano-rod with taken into account of surface effect. Z. Für Angew. Math. Mech. 2024, 104, e202300738. [Google Scholar] [CrossRef]
- Wang, W.; Qi, Q.; Zhang, J.; Wang, Z.; Sun, J.; Zhou, Z.; Xu, X. A size-dependent electro-mechanical buckling analysis of flexoelectric cylindrical nanoshells. Thin-Walled Struct. 2024, 202, 112118. [Google Scholar] [CrossRef]
- Ozdemir, M.T.; Das, T.; Esen, I. Effect of the hexachiral auxetic structure on the thermal buckling behaviour of the magneto electro elastic sandwich smart nano plate using nonlocal strain gradient elasticity. Int. J. Mech. Mater. Des. 2025, 130. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Barati, M.R. Buckling analysis of nonlocal strain gradient axially functionally graded nanobeams resting on variable elastic medium. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2017, 232, 2067–2078. [Google Scholar] [CrossRef]
- Li, L.; Hu, Y. Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects. Int. J. Mech. Sci. 2017, 120, 159–170. [Google Scholar] [CrossRef]
- Khaniki, H.B.; Hosseini-Hashemi, S. Buckling analysis of tapered nanobeams using nonlocal strain gradient theory and a generalized differential quadrature method. Mater. Res. Express 2017, 4, 065003. [Google Scholar] [CrossRef]
- Zhang, B.; Shen, H.; Liu, J.; Wang, Y.; Zhang, Y. Deep postbuckling and nonlinear bending behaviors of nanobeams with nonlocal and strain gradient effects. Appl. Math. Mech. 2019, 40, 515–548. [Google Scholar] [CrossRef]
- Bochkarev, A.O.; Grekov, M.A. Influence of Surface Stresses on the Nanoplate Stiffness and Stability in the Kirsch Problem. Phys. Mesomech. 2019, 22, 209–223. [Google Scholar] [CrossRef]
- Grekov, M.A.; Bochkarev, A.O. Buckling of a stretched nanoplate with a nanohole incorporating surface energy. Int. J. Eng. Sci. 2024, 199, 104075. [Google Scholar] [CrossRef]
- Wang, A.; Li, J. Surface effects on buckling of nanotubes under uniaxial compression. Mater. Lett. 2025, 387, 138196. [Google Scholar] [CrossRef]
- Alrubea, N.A.; Abouelregal, A.E. Thermoelastic dynamics of viscoelastic nanobeams on elastic foundations under multi-physics interactions. Results Eng. 2025, 27, 106154. [Google Scholar] [CrossRef]
- Sur, A.; Mondal, S.; Das, S. Size-dependent vibrations of piezo-thermoelastic microbeam using dual-scale nonlocal strain gradient and memory-dependent thermoelasticity theories. Contin. Mech. Thermodyn. 2025, 37, 78. [Google Scholar] [CrossRef]
- Ren, Y.-M.; Qing, H. Size-dependent buckling and vibration of functionally graded magneto-electro-thermo-elastic Timoshenko nanobeams using general stress-driven two-phase local/nonlocal integral model. Thin-Walled Struct. 2025, 215, 113480. [Google Scholar] [CrossRef]
- Das, B.; Ussorio, D.; Vaccaro, M.S.; Barretta, R.; Luciano, R. Dynamics of FG nanobeams on nonlocal medium. Compos. Struct. 2025, 366, 119057. [Google Scholar] [CrossRef]
- Koç, M.A.; Esen, İ.; Eroğlu, M. Thermal and Mechanical Vibration Response of Auxetic Core Sandwich Smart Nanoplate. Adv. Eng. Mater. 2024, 26, 2400797. [Google Scholar] [CrossRef]
- Zou, Y.; Kiani, Y. Vibrations of Nonlocal Polymer-GPL Plates at Nanoscale: Application of a Quasi-3D Plate Model. Mathematics 2023, 11, 4109. [Google Scholar] [CrossRef]
- Cuong-Le, T.; Le, M.H.; Linh-Nguyen, T.T.; Luong, V.H.; Khatir, S.; Tran, M.T.; Nguyen, T.-B. A Nonlocal Numerical Solution Based on Carrera Unified Formulation for Static and Free Vibration Analysis of Laminated Composite Nanoplate. Int. J. Struct. Stab. Dyn. 2024, 25, 2550060. [Google Scholar] [CrossRef]
- Hoan, P.V.; Anh, N.D.; Thom, D.V.; Minh, P.V. Nonlinear vibration of nanobeams in thermal environment. Mech. Based Des. Struct. Mach. 2025, 53, 5690–5716. [Google Scholar] [CrossRef]
- Binh, V.H.; Anh, N.D.; Van Thom, D.; Minh, P.V.; Dung, H.T. Vibration response of nanobeams subjected to random reactions. Eur. J. Mech. A/Solids 2025, 109, 105489. [Google Scholar] [CrossRef]
- Ahmad, H.; Abouelregal, A.E.; Benhamed, M.; Alotaibi, M.F.; Jendoubi, A. Vibration analysis of nanobeams subjected to gradient-type heating due to a static magnetic field under the theory of nonlocal elasticity. Sci. Rep. 2022, 12, 1894. [Google Scholar] [CrossRef] [PubMed]
- Herisanu, N.; Marinca, B.; Marinca, V. Longitudinal–Transverse Vibration of a Functionally Graded Nanobeam Subjected to Mechanical Impact and Electromagnetic Actuation. Symmetry 2023, 15, 1376. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Y. Vibration of piezoelectric nanobeams with flexoelectric effect carrying an attached mass. Acta Mech. 2025. [Google Scholar] [CrossRef]
- Uzun, B.; Kafkas, U.; Yaylı, M.Ö.; Güçlü, G. Torsional vibration behavior of a restrained non-circular nanowire in an elastic matrix. Mech. Based Des. Struct. Mach. 2024, 52, 8216–8248. [Google Scholar] [CrossRef]
- Kadıoğlu, H.G.; Yaylı, M.Ö. Analysis of torsional vibration in viscoelastic functionally graded nanotubes with viscoelastic constraints using doublet mechanics theory. Int. J. Mech. Mater. Des. 2025, 1–23. [Google Scholar] [CrossRef]
- Kadioglu, H.G.; Uzun, B.; Yayli, M.O. Size-dependent vibration analysis of a FG viscoelastic nanotube attached with the time-dependent boundary conditions using NLSGT. Z. Für Angew. Math. Und Mech. 2025, 105, e202400934. [Google Scholar] [CrossRef]
- Akpınar, M.; Kafkas, U.; Uzun, B.; Yaylı, M.Ö. On the torsional vibration of a porous nanorod with arbitrary boundary conditions considering nonlocal lam strain gradient theory. Eur. J. Mech. A/Solids 2025, 111, 105610. [Google Scholar] [CrossRef]
- Li, Y.; Han, Y.; Gao, J.; Li, M. Investigation on torsional dynamic behavior of imperfect multi-walled carbon nanotube-strengthened nanocomposite beams. Mech. Based Des. Struct. Mach. 2025, 53, 4620–4635. [Google Scholar] [CrossRef]
- Uzun, B.; Yaylı, M.Ö.; Civalek, Ö. An investigation on the torsional vibration of a FG strain gradient nanotube. . Für Angew. Math. Und Mech. 2024, 104, e202301093. [Google Scholar] [CrossRef]
- Welles, N.W.; Ma, M.; Ekinci, K.; Paul, M.R. Theoretical modeling of the dynamic range of an elastic nanobeam under tension with a geometric nonlinearity. J. Appl. Phys. 2025, 138. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, R.; Zhang, J. Dynamic Stability of Nanobeams Based on the Reddy’s Beam Theory. Materials 2023, 16, 1626. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, D.A.; Hussein, N.A. Nonlinear Nonlocal Torsional Vibration Analysis of Temperature-Dependent Viscoelastic Carbon Nanotubes Embedded in a Viscoelastic Medium Using Kelvin-Voigt Model. J. Vib. Eng. Technol. 2025, 13, 303. [Google Scholar] [CrossRef]
- Jayan, M.M.S.; Wang, L.; Selvamani, R.; Ramya, N. Analysis of Vibrational Properties of Horn-Shaped Magneto-Elastic Single-Walled Carbon Nanotube Mass Sensor Conveying Pulsating Viscous Fluid Using Haar Wavelet Technique. Acta Mech. Solida Sin. 2024, 37, 685–699. [Google Scholar] [CrossRef]
- Akpınar, M.; Uzun, B.; Kadıoğlu, H.G.; Yaylı, M.Ö. Dynamic analysis of restrained short-fiber-reinforced and functionally graded nanobeams via stress-driven model. Z. Für Angew. Math. Mech. 2025, 105, e70133. [Google Scholar] [CrossRef]
- Kafali, A.; Kartaltepe, O.; Esen, İ. Vibration analysis of smart sandwich nanoplate incorporating butterfly auxetic core and piezoelectric face layers under thermal field. Acta Mech. 2025, 236, 3515–3541. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, K. Free Vibration of Graphene Nanoplatelet-Reinforced Porous Double-Curved Shells of Revolution with a General Radius of Curvature Based on a Semi-Analytical Method. Mathematics 2024, 12, 3060. [Google Scholar] [CrossRef]
- Fang, K.; Huang, G.; Yu, G.; Xu, W.; Yuan, W. Free vibration analysis of graphene origami-reinforced nano cylindrical shell. Mech. Adv. Mater. Struct. 2024, 31, 12099–12111. [Google Scholar] [CrossRef]
- Numanoğlu, H.M.; Civalek, Ö. On shear-dependent vibration of nano frames. Int. J. Eng. Sci. 2024, 195, 103992. [Google Scholar] [CrossRef]
- Tran, L.V.; Tran, D.B.; Phan, P.T.T. Free vibration analysis of stepped FGM nanobeams using nonlocal dynamic stiffness model. J. Low Freq. Noise Vib. Act. Control 2023, 42, 997–1017. [Google Scholar] [CrossRef]
- Wang, P.; Xu, J.; Zhang, X.; Lv, Y. Free vibration of nanobeams with surface and dynamic flexoelectric effects. Sci. Rep. 2024, 14, 30192. [Google Scholar] [CrossRef]
- Natsuki, J.; Lei, X.-W.; Wu, S.; Natsuki, T. Modeling and Vibration Analysis of Carbon Nanotubes as Nanomechanical Resonators for Force Sensing. Micromachines 2024, 15, 1134. [Google Scholar] [CrossRef]
- Karamanli, A.; Nguyen, N.-D.; Lee, S.; Vo, T.P. Improved FSDT for forced vibration analysis of nanobeams under moving concentrated loads via doublet mechanics. Mech. Based Des. Struct. Mach. 2025, 1–24. [Google Scholar] [CrossRef]
- Padhiyar, M.; Karsh, P.K.; Bandhania, G.K. Deterministic and stochastic free vibration analysis of CNT reinforced functionally graded cantilever plates. Sci. Rep. 2025, 15, 31761. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, P.; Żur, K.K. Steady-state vibration of nanocomposite structures with discontinuities. Aerosp. Sci. Technol. 2026, 168, 110885. [Google Scholar] [CrossRef]
- Uzun, B.; Yaylı, M.Ö. Free Vibration of a Carbon Nanotube-Reinforced Nanowire/Nanobeam with Movable Ends. J. Vib. Eng. Technol. 2024, 12, 6847–6863. [Google Scholar] [CrossRef]
- Alizadeh, A.; Shishehsaz, M.; Shahrooi, S.; Reza, A. Free vibration characteristics of viscoelastic nano-disks based on modified couple stress theory. J. Strain Anal. Eng. Des. 2022, 58, 270–296. [Google Scholar] [CrossRef]
- Dinh, T.B.; Van Lien, T. Free vibration analysis of multiple-cracked functionally graded nanostructures. Acta Mech. 2025. [Google Scholar] [CrossRef]
- Tang, Y.; Bian, P.-L.; Qing, H. Isogeometric analysis for free vibration of axially functionally graded Timoshenko nanobeams based on stress-driven local/nonlocal models. Mech. Based Des. Struct. Mach. 2025, 1–24. [Google Scholar] [CrossRef]
- Feo, L.; Lovisi, G.; Penna, R. Free vibration analysis of functionally graded nanobeams based on surface stress-driven nonlocal model. Mech. Adv. Mater. Struct. 2024, 31, 10391–10399. [Google Scholar] [CrossRef]
- Abasi, M.; Hosseini, S.A. Exact solution for force vibration of Timoshenko nanobeam via acceleration moving load. Mech. Based Des. Struct. Mach. 2025, 1–23. [Google Scholar] [CrossRef]
- Zhao, T.Y.; Wang, Y.X.; Chen, L. Mathematical modeling and vibration analysis of rotating functionally graded porous spacecraft systems reinforced by graphene nanoplatelets. Math. Methods Appl. Sci. 2025, 48, 7514–7538. [Google Scholar] [CrossRef]
- Hoai Nam, V.; Tien Tu, B.; Van Doan, C.; Nhu Nam, P.; Minh Duc, V. A new semi-analytical approach for nonlinear dynamic responses of functionally graded porous graphene platelet-reinforced circular plates and spherical shells. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2024, 239, 730–742. [Google Scholar] [CrossRef]
- Atanasov, M.S.; Pavlović, I.R.; Simonović, J.; Borzan, C.; Păcurar, A.; Păcurar, R. Forced Dynamics of Elastically Connected Nano-Plates and Nano-Shells in Winkler-Type Elastic Medium. Appl. Sci. 2025, 15, 2765. [Google Scholar] [CrossRef]
- Tariq, A.; Uzun, B.; Deliktaş, B.; Yaylı, M.Ö. Application of machine learning methodology for investigating the vibration behavior of functionally graded porous nanobeams. J. Strain Anal. Eng. Des. 2024, 60, 131–151. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, A.; Ranjan Kumar, D. Buckling response of CNT based hybrid FG plates using finite element method and machine learning method. Compos. Struct. 2023, 319, 117204. [Google Scholar] [CrossRef]
- Mazari, M.Y.; Hamza, B.; Dehbi, F.; Cheikh, A.; Saimi, A.; Bensaid, I. Hybrid Galerkin-machine learning approach for dynamic analysis of nanocomposite beams under thermal effects. Mech. Based Des. Struct. Mach. 2025, 1–18. [Google Scholar] [CrossRef]
- Lal, H.P.; Abhiram, B.R.; Ghosh, D. Prediction of nonlocal elasticity parameters using high-throughput molecular dynamics simulations and machine learning. Eur. J. Mech. A/Solids 2024, 103, 105175. [Google Scholar] [CrossRef]
- Orts Mercadillo, V.; Ijije, H.; Chaplin, L.; Kinloch, I.A.; Bissett, M.A. Novel techniques for characterising graphene nanoplatelets using Raman spectroscopy and machine learning. 2D Mater. 2023, 10, 025018. [Google Scholar] [CrossRef]
- Yan, C.A.; Vescovini, R.; Fantuzzi, N. A neural network-based approach for bending analysis of strain gradient nanoplates. Eng. Anal. Bound. Elem. 2023, 146, 517–530. [Google Scholar] [CrossRef]



| Theory | Main Idea | Some Applications | Limitations |
|---|---|---|---|
| NET, Eringen | Stress at a point depends on the strain field of surrounding points. | Vibration [107], buckling [107], and wave propagation [108] in nanobeams, nanoplates, and CNTs. | Only predicts stiffness softening; The nonlocal effect reduces at larger scales. |
| CST/MCST | Characteristic length introduced through internal moments. | Bending [109], buckling [110], and vibration [111] of nanobeams, nanoplates, and CNTs. | Determining characteristic length experimentally is difficult; limited to simple geometries. |
| Surface Elasticity (Gurtin–Murdoch Model) | Surface/interface energy incorporated into constitutive relations. | Nanoparticles [112], nanowires [113], thin films [114], graphene sheets [115]. | Surface elastic constants must be extracted from MD/DFT or experiments. |
| NSGT | Combination of NET and SGT to capture both softening and hardening. | More accurate prediction of vibration, buckling [116], bending [71], and wave dispersion [117] in nanostructures. | Higher computational cost; multiple parameters to calibrate. |
| Peridynamics | Integral-based nonlocal formulation without spatial derivatives. | Fracture [118], crack initiation and propagation [119] in nanostructures. | High computational demand; tricky boundary conditions. |
| Theory | Parameters | Physical Meaning | Typical Range |
|---|---|---|---|
| NET [121] | Nonlocal parameter () | Defines the range of long-range interatomic interactions; e0 is dimensionless, and a is the internal characteristic length. | |
| CST [110] | Length-scale parameter () | Characterizes rotational gradients and couple-stress effects; relates to internal bending resistance at microscale. | |
| NSGT [120] | Nonlocal parameter () and gradient parameter (ls) | Combines long-range nonlocal softening and short-range strain gradient hardening. | , |
| Method | Main Principle | Advantages | Disadvantages | Typical Applications |
|---|---|---|---|---|
| FDM | Approximates derivatives by finite differences on a discrete grid. | Simple to implement; suitable for regular geometries; easy to program; low memory demand. | Accuracy depends on mesh density; less effective for complex geometries or irregular boundaries; difficulties with higher-order derivatives. | Bending [129], buckling [130], and vibration [131] of usually simple geometries such as beams and plates. |
| DQM | Approximates derivatives using weighted sums of function values at all grid points. | Very high accuracy with few grid points; efficient for higher-order PDEs; good convergence. | Produces dense coefficient matrices; less efficient for large or irregular domains; boundary treatment can be complex. | Bending [132], buckling [133], vibration [134] of beams, plates, shells, or complex structures [135]. |
| Spectral Methods | Expands the solution in orthogonal basis functions (e.g., Chebyshev or Fourier series). | Spectrally high accuracy (“exponential convergence”); excellent for smooth solutions; handles periodic domains naturally. | Requires smooth geometry; less effective for discontinuities or complex boundaries; implementation is more mathematical. | Wave propagation [136], vibration [137], and stability of nanostructures with regular boundaries [138]. |
| μ | Boundary | β | NSGT (ls = 1.0) | NSGT (ls = 0.5) | NSGT (ls = 0) | NCST (lc = 1.0) | NCST (lc = 0.5) | NCST (lc = 0) |
|---|---|---|---|---|---|---|---|---|
| 0 | S-S | 0.5 | 0.00130 | 0.00135 | 0.00138 | 0.00025 | 0.00064 | 0.00138 |
| 1.0 | 0.00102 | 0.00107 | 0.00109 | 0.00019 | 0.00050 | 0.00109 | ||
| 1.5 | 0.00081 | 0.00085 | 0.00086 | 0.00015 | 0.00040 | 0.00086 | ||
| C-C | 0.5 | 0.00019 | 0.00025 | 0.00027 | 0.00005 | 0.00013 | 0.00027 | |
| 1.0 | 0.00015 | 0.00019 | 0.00021 | 0.00004 | 0.00010 | 0.00021 | ||
| 1.5 | 0.00012 | 0.00015 | 0.00016 | 0.00003 | 0.00008 | 0.00016 | ||
| 1 | S-S | 0.5 | 0.00143 | 0.00149 | 0.00151 | 0.00027 | 0.00070 | 0.00151 |
| 1.0 | 0.00113 | 0.00117 | 0.00119 | 0.00021 | 0.00055 | 0.00119 | ||
| 1.5 | 0.00090 | 0.00093 | 0.00095 | 0.00017 | 0.00044 | 0.00095 | ||
| C-C | 0.5 | 0.00019 | 0.00025 | 0.00027 | 0.00005 | 0.00013 | 0.00027 | |
| 1.0 | 0.00015 | 0.00019 | 0.00021 | 0.00004 | 0.00010 | 0.00021 | ||
| 1.5 | 0.00012 | 0.00015 | 0.00016 | 0.00003 | 0.00008 | 0.00016 |
| Ref. | Type of Analysis | Type of Theory | Numerical/Analytical Method | Key Findings |
|---|---|---|---|---|
| [162] | Static torsional analysis of FG nanobeams | Stress-driven nonlocal integral elasticity | analytical–semi-analytical | New nonlocal foundation model overcomes Eringen–Wieghardt inconsistencies; accurately captures size-dependent torsional behavior; torsional rotation increases with foundation nonlocal parameter (softening effect); simplified equivalent formulation reduces computational cost |
| [163] | Static bending of FG nanobeam under electromechanical loading | NSGT | Analytical Navier solution | Static response strongly influenced by applied voltage, power-law index, and scale parameters; positive voltage increases deflection. |
| [156] | In-plane static bending of curved nanobeams | NET (Eringen’s differential form) | Exact-solution-based curved finite element formulation with circular elements | Proposed FE formulation inherits analytical accuracy of nonlocal theory; provides high accuracy at low computational cost. |
| [164] | Static bending of Euler–Bernoulli and Timoshenko beams | Eringen’s nonlocal integral elasticity model | Analytical closed-form solution | First exact closed-form solution of Eringen’s nonlocal integral beam model; integral form predicts consistent softening with nonlocality. |
| [165] | Static bending, buckling, wave propagation, and vibration of hollow-core beams | Higher-order beam theory | Exact analytical solutions; FEM | HOE of axial force influences deflection, buckling, frequencies, and wave dispersion; tensile axial force raises, compressive lowers natural frequencies |
| [166] | Static bending and free vibration of FG nanobeams under temperature fields | Nonlocal elasticity and cubic shear strain theory | Closed-form solutions via direct integration and Navier series | Temperature rise increases deflection, lowers frequencies; nonlocality softens response; FG distribution changes stiffness significantly |
| [167] | Static bending of copper–graphene nanocomposite plate under thermal and mechanical loads | Refined shear-deformable plate kinematics; micromechanical modeling | Analytical via virtual work principle; material properties from experimental/statistical models | Displacements rise with higher thermal loads and folding parameters; decreasing graphene volume fraction lowers stiffness. |
| [168] | Static bending, free vibration, dynamic response | Nonlocal elasticity + modified couple stress + surface elasticity | IGA with NURBS | Porosity reduces stiffness; surface effects enhance it; IGA accurately captures static and dynamic behavior |
| [169] | Static bending, thermal buckling, free and forced vibration | Plate theory + nonlocal elasticity; viscoelastic/multiphysics coupling | Analytical Navier-type solution | Thermal loads reduce stiffness and buckling loads; viscoelastic foundation increases damping and modifies vibration; multiphysics strongly influences nanoplate behavior |
| [170] | Nonlinear static bending of annular nanoplates | Stress-driven theory (SDT) with nonlinear plate formulation | FDM, DQM, Newton–Raphson iteration | Nonlocal stiffening observed; larger scale parameter increases rigidity; SDT provides stable and well-posed formulation for annular nanoplates |
| [171] | Static bending and free vibration of FG annular nanoplates | Stress-driven theory (SDT) + FGM power-law distribution | Analytical solutions with special functions; Galerkin FEM validation | Increasing nonlocal parameter reduces static deflection and raises natural frequencies; SDT avoids paradoxes of differential nonlocal theory |
| [172] | Static bending of organic nanoplates in thermal environment | Novel shear deformation plate theory and NET | Closed-form analytical solution with single governing displacement variable | Bending response strongly affected by temperature; reduced-order model with high efficiency; accurate predictions compared with FEM |
| [173] | Mechanical behavior of nanocircular plates under surface and nonlocal effects | NET + Surface elasticity theory (Gurtin–Murdoch model) | MD simulations and analytical plate model | Surface effects and nonlocal effects strongly affect bending and deflection. Tensile surface stress increases deflection, compressive stress reduces it, and nonlocality decreases deflection. Effects are stronger for smaller thickness. |
| Theory | R/a | 0°/90° | 0°/90°/0° | 0°/90°/90°/0° |
|---|---|---|---|---|
| PD-HSDT [174] | 5 | 11.0779 | 6.7510 | 6.7834 |
| FSDT [175] | 5 | 11.429 | 6.4253 | 6.3623 |
| HSDT [175] | 5 | 11.166 | 6.7688 | 6.7865 |
| PD-HSDT [174] | 10 | 11.7985 | 7.0136 | 7.0508 |
| FSDT [175] | 10 | 12.123 | 6.6247 | 6.5595 |
| HSDT [175] | 10 | 11.896 | 7.0325 | 7.0536 |
| PD-HSDT [174] | 20 | 11.9887 | 7.0825 | 7.1209 |
| FSDT [175] | 20 | 12.309 | 6.6756 | 6.6099 |
| HSDT [175] | 20 | 12.094 | 7.1016 | 7.1237 |
| Ref. | Type of Analysis | Type of Theory | Numerical/Analytical Method | Key Findings |
|---|---|---|---|---|
| [191] | Buckling and post-buckling of nano-laminates | Surface elasticity theory with Kirchhoff and Mindlin plate theories | Analytical solutions and Galerkin method | Surface/interface energy strongly affects stability. Positive surface elasticity increases critical load, negative decreases. Residual stress improves stability. Shear deformation reduces stability. |
| [192] | Thermal buckling of FG nano-sandwich plates with auxetic butterfly cores | HSDT and NSGT | Hamilton’s principle and Von Kármán relations, and Halpin–Tsai micromechanics | Graphene reinforcement, FG index, and foam structure improve resistance. Nonlocal effects add flexibility. Useful for aerospace and thermal shielding designs. |
| [193] | Buckling of FG Bernoulli-Euler nanobeams | Surface stress-driven nonlocal elasticity model and surface elasticity theory | Virtual work principle; parametric numeric study | Coupled surface stress and nonlocal effects significantly influence critical buckling loads. Surface residual stress and stiffness alter stability. Cross-sectional shape and FG index strongly affect buckling. |
| [194] | Buckling of laminated cylindrical shells in elastic and thermal environments | Extended FSDT and Classical Theory | Extended rule of mixture and MD, and analytical derivations | Elastic foundation and thermal environment influence axial buckling load. CNT distribution patterns and r/h ratio strongly affect resistance. FSDT is more accurate than Classical Theory. |
| [195] | Buckling of layered cylindrical nanoshells | Refined Zigzag Theory and NSGT and Gurtin–Murdoch surface/interface elasticity | analytical formulation | Interfacial and scale effects significantly influence buckling. |
| [196] | Buckling and post-buckling of FG-sandwich plates | Reddy’s TSDT and von Kármán assumptions | Eigenvalue analysis and pseudo arc-length and Newton–Raphson | Critical loads and post-buckling paths highly dependent on porosity, GPL distribution, core-to face thickness ratio. |
| [197] | Static/dynamic snap-through of FG circular nanoplates | NET and von Kármán nonlinearity | Chebyshev–Ritz and Newmark and Budiansky-Roth | Imperfections, gradient index, and boundary conditions strongly affect static/dynamic snap-through. |
| [198] | Nonlinear post-buckling of porous circular nanoplates | Gurtin–Murdoch surface elasticity | Shooting method | Surface elastic modulus and residual stresses critically influence post-buckling and yield strength. |
| [199] | Nonlinear buckling and post-buckling of FG circular shallow arches | Geometric nonlinear theory | Analytical solution | Snap-through and post-buckling depend strongly on FG index, slenderness ratio, and modulus ratio. |
| [200] | Thermal buckling and post-buckling of FG nanobeams | TSDT | Jacobi–Ritz and Newton–Raphson | Layered vs. smooth GPL distributions alter results; differences reduce with more layers. |
| [201] | Thermal and mechanical post-buckling of truncated conical shells | Classical shell theory and nonlinear stress–strain | Galerkin method | Helical stiffener patterns offer best thermal buckling resistance; imperfections strongly affect response. |
| [202] | Buckling of nano-rod with surface effect | Gurtin–Murdoch and Steigmann–Ogden surface elasticity | Ritz method with Euler–Bernoulli and Timoshenko beam models | Surface effects and chosen elasticity model significantly alter critical load predictions. |
| [203] | Electro-mechanical buckling of flexoelectric cylindrical nanoshells | Flexoelectricity and HSDT | Galerkin’s method with new displacement functions; nonlinear pre-buckling considered | Size-dependent critical stresses and buckling modes obtained. Boundary conditions, geometry, and applied electric voltage strongly affect stability. Pre-buckling deformation improves accuracy vs. linear theory. |
| [204] | Thermal buckling of magneto-electro-elastic (MEE) sandwich nanoplates with hexachiral auxetic core | NSGT and HSDT | Hamilton’s principle; derived motion equations including MEE effects | Auxetic hexachiral core enhances thermal buckling resistance. Electric potential softens (reduces buckling temp); magnetic field hardens (increases stability). Useful for aerospace and sensor applications. |
| Structure | Nonlocal Elasticity | Strain Gradient | Couple Stress | Nonlocal–Gradient |
|---|---|---|---|---|
| Nanobeam | Decreases critical buckling load | Increases critical buckling load | Increases critical buckling load | Variable (depends on parameters) |
| Nanoplate | Decreases critical buckling load | Increases critical buckling load (stiffening) | Increases critical buckling load | Variable (depends on parameters) |
| Cylindrical shell | Decreases critical buckling load | Increases critical buckling load | Increases critical buckling load | Variable (depends on parameters) |
| Cross-Section | Porosity Distribution | Vfiber = 0 | 0.025 | 0.050 | 0.075 |
|---|---|---|---|---|---|
| Elliptical | Uniform porosity distribution | 7.7455 | 9.4250 | 10.1085 | 10.2965 |
| Symmetry porosity distribution-1 | 7.7515 | 9.4324 | 10.1163 | 10.3045 | |
| Symmetry porosity distribution-2 | 7.7641 | 9.4477 | 10.1328 | 10.3213 | |
| Rectangular | Uniform porosity distribution | 9.6823 | 11.7818 | 12.6361 | 12.8712 |
| Symmetry porosity distribution-1 | 9.6898 | 11.7909 | 12.6459 | 12.8812 | |
| Symmetry porosity distribution-2 | 9.7055 | 11.8101 | 12.6665 | 12.9021 | |
| Triangular | Uniform porosity distribution | 7.4994 | 9.1256 | 9.7873 | 9.9694 |
| Symmetry porosity distribution-1 | 7.5052 | 9.1327 | 9.7949 | 9.9772 | |
| Symmetry porosity distribution-2 | 7.5174 | 9.1475 | 9.8109 | 9.9934 |
| Ref. | Type of Analysis | Type of Theory | Numerical/Analytical Method | Key Findings |
|---|---|---|---|---|
| [234] | Free lateral vibration of short-fiber-reinforced and FG nanobeams | Stress-driven model (SDM), viscoelastic (Kelvin–Voigt) | Fourier sine series and Stokes transform | Nonlocal and boundary conditions significantly affect frequencies. Damping lowers vibrations. |
| [235] | Thermomechanical vibration of smart sandwich nanoplates | HSDT and NSGT | Analytical (Hamilton’s principle, Navier approach) | Rising temperature softens materials, causes lower natural frequencies, and causes early buckling. Nonlocal effects change dynamic response. |
| [236] | Free vibration of GPL-reinforced porous double-curved shells of revolution | FSDT | Semi-analytical method (domain decomposition, MVP, Fourier and Chebyshev expansions) | Natural frequencies depend strongly on porosity, GPL distribution, and shell curvature. SAM matches FEM results, offering efficient accuracy. |
| [237] | Free vibration of graphene origami-reinforced cylindrical nanoshells | Shear deformable shell theory, Hamilton’s principle | Analytical solution (Navier and Galerkin methods) | Frequencies increase with graphene origami fraction, decrease with thermal load, and with folding degree. Clamped–clamped BC yields highest frequencies. Origami design provides tunable vibration. |
| [238] | Free vibration of nanoframes considering shear deformation | NET and Timoshenko beam theory | Finite element (matrix displacement method) | Shear deformation lowers frequencies. Nonlocal parameter reduces them further, especially in thin frames. Mode sensitivity varies with size effects. |
| [239] | Free vibration of multiple-cracked FG nanostructures | NET and Timoshenko beam theory | Dynamic Stiffness Method (DSM) | Proposed exact DSM resolves nonlocal paradox in cantilever beams. Efficient computation of cracked FGM nanostructures. Crack severity, material gradation, and nonlocal effects strongly influence vibration. |
| [240] | Free vibration of piezoelectric nanobeams with surface and flexoelectric effects | Timoshenko and Euler–Bernoulli beam theories and flexoelectricity | Analytical (Navier method) | Dynamic flexoelectric effect has stronger size dependence than surface effect. Competing mechanisms change natural frequencies. Surface and flexoelectricity must be considered in nanoscale design. |
| [241] | Vibration analysis of CNTs as nanomechanical resonators | NET and Continuum mechanics | Analytical modeling | Resonant frequency decreases with axial force; nonlocal effects reduce stiffness, lowering resonance frequency. Results guide design of ultrasensitive CNT nanosensors. |
| [242] | Forced vibration of nanobeams under moving concentrated loads | Improved FSDT and Doublet Mechanics | Analytical solution and numerical simulation | Incorporating length scale increases stiffness, reduces deflection. Moving load velocity strongly affects peak amplification. Matches MD results. |
| [243] | Deterministic and stochastic free vibration of CNT-reinforced FGM cantilever plates | FSDT | FEM and Monte Carlo Simulation | Natural frequencies influenced by CNT distribution, thickness, power-law index, and temperature. Stochastic analysis shows dispersion sensitivity. |
| [244] | Steady-state vibration of GPL-reinforced beams with discontinuities | Euler–Lagrange formulation and micromechanical Halpin-Tsai/Voigt–Reuss | Fourier series and Cholesky method | Discontinuities and GPL distribution cause coupled axial–torsional–transverse vibrations. Natural frequencies shift due to cracks and filler percentages. |
| [245] | Free vibration of CNT-reinforced nanowires/nanobeams with movable ends | MCST | Fourier sine series and Stokes’ transform | Movable boundary conditions strongly influence frequencies. CNT distribution, volume fraction, and rotary inertia significantly affect dynamic response. |
| [246] | Free vibration of viscoelastic nano-disks | MCST and the Zener viscoelastic model | Hamilton’s principle, and Galerkin method, and Laplace transform | Viscoelastic damping lowers real and imaginary parts of eigenfrequencies. Size effects are more important at small h/l ratios. Boundary conditions alter responses. |
| [247] | Free vibration of multiple-cracked FGM nanostructures | NET and Timoshenko beam theory | Dynamic Stiffness Method (DSM) | Proposed exact DSM resolves nonlocal paradox in cracked FGMs. Crack depth, position, and gradation strongly affect frequencies. |
| [248] | Free vibration of axially FG Timoshenko nanobeams | Stress-driven two-phase local/nonlocal integral model | IGA using NURBS-based FEM | Nonlocal parameter, AFG index, and length-to-height ratio significantly affect vibration. |
| [249] | Free vibration of FG nanobeams with surface effects | Surface stress-driven nonlocal model and Bernoulli–Euler beam theory | Hamilton’s principle with analytical modeling | Surface elasticity, residual stress, and density strongly influence vibration; model captures surface energy effects and provides design tool. |
| [250] | Forced vibration of Timoshenko nanobeam under accelerating moving load | NET (size-dependent) | Laplace transform analytical solution | Provides first exact solution for accelerated moving force; acceleration, deceleration, and nonlocal parameters alter deflection and transient response. |
| [251] | Mathematical modeling and vibration analysis of rotating FG porous spacecraft shafts reinforced with GPLs | Euler–Bernoulli beam theory and Kirchhoff plate theory | Assumed modes and Substructure modal synthesis | Rotation speed, GPL content/distribution, porosity patterns, and support conditions greatly influence vibration; enhancing spacecraft shaft design. |
| [252] | Nonlinear dynamic responses of FG porous beams | Reddy’s HSDT | New semi-analytical approach (Galerkin method and perturbation technique) | Porosity distributions and gradation indexes significantly affect nonlinear vibrations. Semi-analytical method is efficient for dynamic response prediction. |
| [253] | Forced dynamics of elastically connected nano-plates and nano-shells | NET and Kirchhoff–Love plate theory and Novozhilov shallow shell theory | Coupled PDE system solved by modal analysis | Developed novel ECSNPS model. Nonlocal parameter, curvature, damping, and external excitation strongly influence vibration amplitudes. Useful for nano-sensors adaptable to curved surfaces. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadeghian, M.; Palevicius, A.; Janusas, G. A Review of Theories and Numerical Methods in Nanomechanics for the Analysis of Nanostructures. Mathematics 2025, 13, 3626. https://doi.org/10.3390/math13223626
Sadeghian M, Palevicius A, Janusas G. A Review of Theories and Numerical Methods in Nanomechanics for the Analysis of Nanostructures. Mathematics. 2025; 13(22):3626. https://doi.org/10.3390/math13223626
Chicago/Turabian StyleSadeghian, Mostafa, Arvydas Palevicius, and Giedrius Janusas. 2025. "A Review of Theories and Numerical Methods in Nanomechanics for the Analysis of Nanostructures" Mathematics 13, no. 22: 3626. https://doi.org/10.3390/math13223626
APA StyleSadeghian, M., Palevicius, A., & Janusas, G. (2025). A Review of Theories and Numerical Methods in Nanomechanics for the Analysis of Nanostructures. Mathematics, 13(22), 3626. https://doi.org/10.3390/math13223626

