Convergence by Class of Kantorovich-Type q-Szász Operators and Comprehensive Results
Abstract
1. Introduction and Basic Definitions
2. New Operators and Basic Moments
3. Convergence in Weighted Space
4. Order of Convergence
- 1.
- for every and all operators satisfying:
- 2.
- for every and operators satisfying:
5. Approximation in Lipschitz Class
6. Direct Approximation
7. Voronovskaja-Type Approximation Theorems
8. Numerical Illustration and Convergence Behavior
8.1. Graphical Analysis
8.2. Numerical Results
9. Numerical Example and Error Analysis
Discussion
10. Conclusions & Observation
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernstein, S.N. Démonstration du théoréme de Weierstrass fondée sur le calcul des probabilités. Commun. Kharkov Math. Soc. 1912, 13, 1–2. [Google Scholar]
- Lupaş, A. A q-Analogue of the Bernstein Operator; Seminar on Numerical and Statistical Calculus; University of Cluj-Napoca: Cluj-Napoca, Romania, 1987; Volume 9, pp. 85–92. [Google Scholar]
- Phillips, G.M. Bernstein polynomials based on the q-integers, The heritage of P.L. Chebyshev, A Festschrift in honor of the 70th-birthday of Professor T. J. Rivlin. Ann. Numer. Math. 1997, 4, 511–518. [Google Scholar]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus, Universitext; Springer-Verlag: New York, NY, USA, 2002. [Google Scholar]
- Karaa, M.; Sabancigila, P.; Mahmudov, N.I. Generalized Kantorovich type Szász-Mirakjan operators based on q-integers. Filomat 2024, 38, 5141–5160. [Google Scholar] [CrossRef]
- Mahmudov, N.I. On q-parametric Szász-Mirakjan operators. Mediterr. J. Math. 2010, 7, 297–311. [Google Scholar] [CrossRef]
- Ayman-Mursaleen, M.; Rao, N.; Rani, M.; Kiliçman, A.; Al-Abied, A.A.H.A.; Malik, P. A Note on Approximation of Blending Type Bernstein– Schurer–Kantorovich Operators with Shape Parameter α. J. Math. 2023, 2023, 5245806. [Google Scholar] [CrossRef]
- Ayman-Mursaleen, M.; Alshaban, E.; Nasiruzzaman, M. Approximation to Family of α-Bernstein-operators using Shifted knot properties. J. Inequal. Appl. 2025, 2025, 105. [Google Scholar] [CrossRef]
- Mursaleen, M.; Khan, F.; Khan, A. Approximation properties for modified q-Bernstein-Kantorovich operators. Numer. Funct. Anal. Optim. 2015, 36, 1178–1197. [Google Scholar] [CrossRef]
- Özger, F. Weighted statistical approximation properties of univariate and bivariate λ-Kantorovich operators. Filomat 2019, 33, 3473–3486. [Google Scholar] [CrossRef]
- Özger, F.; Deniz, S.; Khennaoui, C.; Özger, Z.Ö. Convergence analysis of a Kantorovich approximation technique for solving fractional Volterra integral equations. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2025, 119, 81. [Google Scholar] [CrossRef]
- Rahman, S.; Mursaleen, M.; Acu, A.M. Approximation properties of λ-Bernstein-Kantorovich operators with shifted knots. Math. Methods Appl. Sci. 2019, 42, 4042–4053. [Google Scholar] [CrossRef]
- Aslan, R. Rate of approximation of blending type modified univariate and bivariate λ-Schurer-Kantorovich operators. Kuwait J. Sci. 2024, 51, 100168. [Google Scholar] [CrossRef]
- Cai, Q.-B.; Aslan, R.; Özger, F.; Srivastava, H.M. Approximation by a new Stancu variant of generalized (λ, μ)-Bernstein operators. Alex. Eng. J. 2024, 107, 205–214. [Google Scholar] [CrossRef]
- Mohiuddine, S.A.; Özger, F. Approximation of functions by Stancu variant of Bernstein-Kantorovich operators based on shape parameter α. Rev. Real Acad. Cienc. Exactas Fis. Nat. A RACSAM 2020, 114, 70. [Google Scholar] [CrossRef]
- Rao, N.; Farid, M.; Raiz, M. Approximation Results: Szász–Kantorovich Operators Enhanced by Frobenius Euler Type Polynomials. Axioms 2025, 14, 252. [Google Scholar] [CrossRef]
- Rao, N.; Farid, M.; Raiz, M. On the Approximations and Symmetric Properties of Frobenius–Euler–Şimşek Polynomials Connecting Szász Operators. Symmetry 2025, 17, 648. [Google Scholar] [CrossRef]
- Kantorovich, L.V. Sur certaines dévelopments suivant les polynômes de la forme de S. Bernstein I–II. C.R. Acad. Sci. USSR A 1930, 20, 563–568. [Google Scholar]
- Gadziev, A.D. Theorems of the type of P.P. Korovkin’s theorems. Mat. Zametki 1976, 20, 781–786. (In Russian) [Google Scholar]
- Korovkin, P.P. Linear Operators and Approximation Theory; Hindustan Publishing Corporation: Delhi, India, 1960. [Google Scholar]
- Gadziev, A.D. The convergence problem for a sequence of positive linear operators on bounded sets and theorems analogous to that of P. P. Korovkin. Dokl. Akad. Nauk SSSR 218. Transl. Soviest Math. Dokl. 1974, 15, 1433–1436. [Google Scholar]
- Shisha, O.; Bond, B. The degree of convergence of sequences of linear positive operators. Proc. Nat. Acad. Sci. USA 1968, 60, 1196–1200. [Google Scholar] [CrossRef]
- Özarslan, M.A.; Aktuğlu, H. Local approximation for certain King type operators. Filomat 2013, 27, 173–181. [Google Scholar] [CrossRef]
- Lenze, B. On Lipschitz type maximal functions and their smoothness spaces. Nederl. Akad. Indag. Math. 1988, 50, 53–63. [Google Scholar] [CrossRef]
- Peetre, J. A theory of interpolation of normed spaces. Noteas de mathematica 39, Rio de Janeiro, Instituto de Mathemática Pura e Applicada, Conselho Nacional de Pesquidas. Math. Meth. Appl. Sci. 2019, 42, 4042–4053. [Google Scholar]
- Ditzian, Z.; Totik, V. Moduli of Smoothness; Springer: New York, NY, USA, 1987. [Google Scholar]
- DeVore, R.A.; Lorentz, G.G. Constructive Approximation; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Barbosu, D. The Voronovskaja theorem for Bernstein-Schurer operators. Bul. Stiint. Univ. Baia Mare Ser. Mat. Inform. 2002, 18, 137–140. [Google Scholar] [CrossRef]
- Ayman-Mursaleen, M. Quadratic function preserving wavelet type Baskakov operators for enhanced function approximation. Comp. Appl. Math. 2025, 44, 395. [Google Scholar] [CrossRef]
- Rao, N.; Farid, M.; Raiz, M. Symmetric Properties of λ-Szász Operators Coupled with Generalized Beta Functions and Approximation Theory. Symmetry 2024, 14, 1703. [Google Scholar] [CrossRef]


| ℘ | ||||
|---|---|---|---|---|
| 0.0 | 1.0000 | 0.9846 | 0.9925 | 0.9961 |
| 0.2 | 0.0685 | 0.0738 | 0.0704 | 0.0691 |
| 0.4 | ||||
| 0.6 | ||||
| 0.8 | 0.0593 | 0.0627 | 0.0608 | 0.0599 |
| 1.0 | 0.1481 | 0.1529 | 0.1500 | 0.1490 |
| 1.2 | 0.0189 | 0.0217 | 0.0201 | 0.0193 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasiruzzaman, M.; Farid, M.; Rao, N. Convergence by Class of Kantorovich-Type q-Szász Operators and Comprehensive Results. Mathematics 2025, 13, 3586. https://doi.org/10.3390/math13223586
Nasiruzzaman M, Farid M, Rao N. Convergence by Class of Kantorovich-Type q-Szász Operators and Comprehensive Results. Mathematics. 2025; 13(22):3586. https://doi.org/10.3390/math13223586
Chicago/Turabian StyleNasiruzzaman, Md., Mohammad Farid, and Nadeem Rao. 2025. "Convergence by Class of Kantorovich-Type q-Szász Operators and Comprehensive Results" Mathematics 13, no. 22: 3586. https://doi.org/10.3390/math13223586
APA StyleNasiruzzaman, M., Farid, M., & Rao, N. (2025). Convergence by Class of Kantorovich-Type q-Szász Operators and Comprehensive Results. Mathematics, 13(22), 3586. https://doi.org/10.3390/math13223586

