Diffusion in Heterogeneous Media with Stochastic Resetting and Pauses
Abstract
1. Introduction
2. Diffusion and Stochastic Resetting



3. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gardiner, C.W. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (Springer Series in Synergetics); Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Risken, H. The Fokker-Planck Equation: Methods of Solution and Applications; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Pekalski, A.; Sznajd-Weron, K. Anomalous Diffusion from Basics to Applications; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Méndez, V.; Campos, D.; Bartumeus, F. Stochastic Foundations in Movement Ecology: Anomalous Diffusion, Front Propagation and Random Searches; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Evangelista, L.R.; Lenzi, E.K. Fractional Diffusion Equations and Anomalous Diffusion; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Havlin, S.; Weiss, G.H. A new class of long-tailed pausing time densities for the CTRW. J. Stat. Phys. 1990, 58, 1267–1273. [Google Scholar] [CrossRef]
- Bodrova, A.S.; Chechkin, A.V.; Cherstvy, A.G.; Metzler, R. Ultraslow scaled Brownian motion. New J. Phys. 2015, 17, 063038. [Google Scholar] [CrossRef]
- Höfling, F.; Franosch, T. Anomalous transport in the crowded world of biological cells. Rep. Prog. Phys. 2013, 76, 046602. [Google Scholar] [CrossRef] [PubMed]
- Klages, R.; Radons, G.; Sokolov, I.M. Anomalous Transport; Wiley Online Library: Hoboken, NJ, USA, 2008. [Google Scholar]
- Zaslavsky, G.M. Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 2002, 371, 461–580. [Google Scholar] [CrossRef]
- Vilk, O.; Charter, M.; Toledo, S.; Barkai, E.; Nathan, R. Strong Anomalous Diffusion for Free-Ranging Birds. PRX Life 2025, 3, 033020. [Google Scholar] [CrossRef]
- Li, Y.; Suleiman, K.; Xu, Y. Anomalous diffusion, non-Gaussianity, nonergodicity, and confinement in stochastic-scaled Brownian motion with diffusing diffusivity dynamics. Phys. Rev. E 2024, 109, 014139. [Google Scholar] [CrossRef]
- Barletta, A.; Rees, D.; Celli, M.; Brandão, P. Open Boundaries, Anomalous Diffusion and the Darcy-Bénard Instability. Transp. Porous Media 2025, 152, 27. [Google Scholar] [CrossRef]
- Bhattacharjee, T.; Datta, S.S. Bacterial hopping and trapping in porous media. Nat. Commun. 2019, 10, 2075. [Google Scholar] [CrossRef]
- Bechinger, C.; Di Leonardo, R.; Löwen, H.; Reichhardt, C.; Volpe, G.; Volpe, G. Active particles in complex and crowded environments. Rev. Mod. Phys. 2016, 88, 045006. [Google Scholar] [CrossRef]
- Havlin, S.; Ben-Avraham, D. Diffusion in disordered media. Adv. Phys. 1987, 36, 695–798. [Google Scholar] [CrossRef]
- Ben-Avraham, D.; Havlin, S. Diffusion and Reactions in Fractals and Disordered Systems; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Méndez, V.; Fedotov, S.; Horsthemke, W. Reaction-Transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities; Springer Science & Business Media: Cham, Switzerland, 2010. [Google Scholar]
- Lenzi, E.K.; Yednak, C.A.R.; Evangelista, L.R. Non-Markovian diffusion and the adsorption-desorption process. Phys. Rev. E 2010, 81, 011116. [Google Scholar] [CrossRef] [PubMed]
- Ledesma-Durán, A.; Hernández, S.; Santamaría-Holek, I. Effect of Surface Diffusion on Adsorption–Desorption and Catalytic Kinetics in Irregular Pores. I. Local Kinetics. J. Phys. Chem. C 2017, 121, 14544–14556. [Google Scholar] [CrossRef]
- Ledesma-Durán, A.; Hernández, S.I.; Santamaría-Holek, I. Effect of Surface Diffusion on Adsorption–Desorption and Catalytic Kinetics in Irregular Pores. II. Macro-Kinetics. J. Phys. Chem. C 2017, 121, 14557–14565. [Google Scholar] [CrossRef]
- Evans, M.R.; Majumdar, S.N. Diffusion with stochastic resetting. Phys. Rev. Lett. 2011, 106, 160601. [Google Scholar] [CrossRef]
- Evans, M.R.; Majumdar, S.N.; Schehr, G. Stochastic resetting and applications. J. Phys. A Math. Theor. 2020, 53, 193001. [Google Scholar] [CrossRef]
- Bressloff, P.C. Search processes with stochastic resetting and multiple targets. Phys. Rev. E 2020, 102, 022115. [Google Scholar] [CrossRef]
- Shkilev, V.P. Continuous-time random walk under time-dependent resetting. Phys. Rev. E 2017, 96, 012126. [Google Scholar] [CrossRef]
- Bénichou, O.; Loverdo, C.; Moreau, M.; Voituriez, R. Intermittent search strategies. Rev. Mod. Phys. 2011, 83, 81–130. [Google Scholar] [CrossRef]
- Fedotov, S. Subdiffusion, chemotaxis, and anomalous aggregation of self-attracting particles. Phys. Rev. E 2011, 83, 021110. [Google Scholar] [CrossRef]
- Belan, S. Restart could optimize the probability of success in a Bernoulli trial. Phys. Rev. Lett. 2018, 120, 080601. [Google Scholar] [CrossRef]
- Stanislavsky, A.; Weron, A. Optimal non-Gaussian search with stochastic resetting. Phys. Rev. E 2021, 104, 014125. [Google Scholar] [CrossRef] [PubMed]
- Roldán, É.; Lisica, A.; Sánchez-Taltavull, D.; Grill, S.W. Stochastic resetting in backtrack recovery by RNA polymerases. Phys. Rev. E 2016, 93, 062411. [Google Scholar] [CrossRef]
- Santra, I. Effect of tax dynamics on linearly growing processes under stochastic resetting: A possible economic model. Europhys. Lett. 2022, 137, 52001. [Google Scholar] [CrossRef]
- Jolakoski, P.; Pal, A.; Sandev, T.; Kocarev, L.; Metzler, R.; Stojkoski, V. A first passage under resetting approach to income dynamics. Chaos Solitons Fractals 2023, 175, 113921. [Google Scholar] [CrossRef]
- O’Shaughnessy, B.; Procaccia, I. Analytical solutions for diffusion on fractal objects. Phys. Rev. Lett. 1985, 54, 455. [Google Scholar] [CrossRef]
- O’Shaughnessy, B.; Procaccia, I. Diffusion on fractals. Phys. Rev. A 1985, 32, 3073. [Google Scholar] [CrossRef] [PubMed]
- Richardson, L.F. Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. Lond. Ser. A Contain. Pap. A Math. Phys. Character 1926, 110, 709–737. [Google Scholar]
- Salazar, J.P.; Collins, L.R. Two-particle dispersion in isotropic turbulent flows. Annu. Rev. Fluid Mech. 2009, 41, 405–432. [Google Scholar] [CrossRef]
- Sandev, T.; Kocarev, L.; Metzler, R.; Chechkin, A. Stochastic dynamics with multiplicative dichotomic noise: Heterogeneous telegrapher’s equation, anomalous crossovers and resetting. Chaos Solitons Fractals 2022, 165, 112878. [Google Scholar] [CrossRef]
- Sandev, T.; Domazetoski, V.; Kocarev, L.; Metzler, R.; Chechkin, A. Heterogeneous diffusion with stochastic resetting. J. Phys. A Math. Theor. 2022, 55, 074003. [Google Scholar] [CrossRef]
- Ray, S. Space-dependent diffusion with stochastic resetting: A first-passage study. J. Chem. Phys. 2020, 153. [Google Scholar] [CrossRef] [PubMed]
- Hanggi, P. Nonlinear fluctuations: The problem of deterministic limit and reconstruction of stochastic dynamics. Phys. Rev. A 1982, 25, 1130. [Google Scholar] [CrossRef]
- Klimontovich, Y.L. Ito, Stratonovich and kinetic forms of stochastic equations. Physica A 1990, 163, 515–532. [Google Scholar] [CrossRef]
- Volpe, G.; Wehr, J. Effective drifts in dynamical systems with multiplicative noise: A review of recent progress. Rep. Prog. Phys. 2016, 79, 053901. [Google Scholar] [CrossRef]
- Wyld, H.W.; Powell, G. Mathematical Methods for Physics; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lenzi, E.K.; da Silva, L.R.; Lenzi, M.K. Diffusion in Heterogeneous Media with Stochastic Resetting and Pauses. Mathematics 2025, 13, 3537. https://doi.org/10.3390/math13213537
Lenzi EK, da Silva LR, Lenzi MK. Diffusion in Heterogeneous Media with Stochastic Resetting and Pauses. Mathematics. 2025; 13(21):3537. https://doi.org/10.3390/math13213537
Chicago/Turabian StyleLenzi, Ervin K., Luciano R. da Silva, and Marcelo K. Lenzi. 2025. "Diffusion in Heterogeneous Media with Stochastic Resetting and Pauses" Mathematics 13, no. 21: 3537. https://doi.org/10.3390/math13213537
APA StyleLenzi, E. K., da Silva, L. R., & Lenzi, M. K. (2025). Diffusion in Heterogeneous Media with Stochastic Resetting and Pauses. Mathematics, 13(21), 3537. https://doi.org/10.3390/math13213537

