Embedding-Assisted Genetic Algorithm for Routing Optimization in 6G Networks
Abstract
1. Introduction
2. Related Work
2.1. AI-Assisted Traffic Routing
2.2. Routing Optimization Approaches
3. System Design
3.1. System Model
3.2. Problem Formulation for Service Traffic Routing Optimization
4. Proposed Approach
4.1. Genetic Algorithm Framework for Routing Optimization
4.2. Graph Neural Network Fundamentals for Topology Representation
4.3. Gaussian Mixture Model Convolution for Performance-Aware Topology Embedding
4.4. Embedding-Assisted Initial Population Evaluation for GA-Based Routing
5. Evaluation
5.1. Experiment Environment
- Dijkstra-based routing: A deterministic shortest-path algorithm using operational cost as the edge weight
- Conventional GA (CGA): A genetic algorithm without an initial population evaluation mechanism.
- Embedding-assisted GA (EAGA): The proposed method using a GNN and a FNN to embed network topology and chromosomes, respectively, evaluating initial population in a given network topology.
5.2. Configuration and Tuning of GA-Based Routing Optimization
5.3. Performance Analysis
5.4. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cerroni, W.; Galis, A.; Shiomoto, K.; Zhani, M.F. Network Softwarization and Management. IEEE Commun. Mag. 2020, 58, 14–15. [Google Scholar] [CrossRef]
- Reddy, Y.M.; Raj, V.H.; Thethi, H.P.; Gupta, S.; Maan, P.; Ghani, R.H. Low Earth Orbit (LEO) Satellite Networks: A New Era in Global Communication. In Proceedings of the 2023 10th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Gautam Buddha Nagar, India, 1–3 December 2023; Volume 10, pp. 1563–1568. [Google Scholar]
- Amin, R.; Rojas, E.; Aqdus, A.; Ramzan, S.; Casillas-Perez, D.; Arco, J.M. A survey on machine learning techniques for routing optimization in SDN. IEEE Access 2021, 9, 104582–104611. [Google Scholar] [CrossRef]
- Lambora, A.; Gupta, K.; Chopra, K. Genetic algorithm—A literature review. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; pp. 380–384. [Google Scholar]
- Maaranen, H.; Miettinen, K.; Penttinen, A. On initial populations of a genetic algorithm for continuous optimization problems. J. Glob. Optim. 2007, 37, 405–436. [Google Scholar] [CrossRef]
- Akhter, F.; Near, J.P. Energy Efficient Data Routing for IoT Networks Using Genetic Algorithm. In Proceedings of the 2024 International Conference on Smart Applications, Communications and Networking (SmartNets), Harrisonburg, VA, USA, 28–30 May 2024; pp. 1–8. [Google Scholar]
- Patel, J.; El-Ocla, H. Energy efficient routing protocol in sensor networks using genetic algorithm. Sensors 2021, 21, 7060. [Google Scholar] [CrossRef]
- Wang, N.; Ho, K.H.; Pavlou, G.; Howarth, M. An overview of routing optimization for internet traffic engineering. IEEE Commun. Surv. Tutor. 2008, 10, 36–56. [Google Scholar] [CrossRef]
- Ramasubramanian, V.; Malkhi, D.; Kuhn, F.; Balakrishnan, M.; Gupta, A.; Akella, A. On the treeness of internet latency and bandwidth. In Proceedings of the Eleventh International Joint Conference on Measurement and Modeling of Computer Systems, Seattle, WA, USA, 15–19 June 2009; pp. 61–72. [Google Scholar]
- Hogan, K.; Servan-Schreiber, S.; Newman, Z.; Weintraub, B.; Nita-Rotaru, C.; Devadas, S. Shortor: Improving tor network latency via multi-hop overlay routing. In Proceedings of the 2022 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 22–26 May 2022; pp. 1933–1952. [Google Scholar]
- Bouchmal, O.; Cimoli, B.; Stabile, R.; Vegas Olmos, J.J.; Tafur Monroy, I. From classical to quantum machine learning: Survey on routing optimization in 6G software defined networking. Front. Commun. Netw. 2023, 4, 1220227. [Google Scholar] [CrossRef]
- Vinayakumar, R.; Soman, K.; Poornachandran, P. Applying deep learning approaches for network traffic prediction. In Proceedings of the 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Udupi, India, 13–16 September 2017; pp. 2353–2358. [Google Scholar]
- Yuan, R.; Li, Z.; Guan, X.; Xu, L. An SVM-based machine learning method for accurate internet traffic classification. Inf. Syst. Front. 2010, 12, 149–156. [Google Scholar] [CrossRef]
- Tshakwanda, P.M.; Arzo, S.T.; Devetsikiotis, M. Advancing 6g network performance: Ai/ml framework for proactive management and dynamic optimal routing. IEEE Open J. Comput. Soc. 2024, 5, 303–314. [Google Scholar] [CrossRef]
- Almasan, P.; Xiao, S.; Cheng, X.; Shi, X.; Barlet-Ros, P.; Cabellos-Aparicio, A. ENERO: Efficient real-time WAN routing optimization with Deep Reinforcement Learning. Comput. Netw. 2022, 214, 109166. [Google Scholar] [CrossRef]
- Wei, W.; Gu, H.; Fu, L.; Li, B. Grace: Toward Routing in Dynamic Network Environments with Graph Embedding. IEEE Trans. Netw. 2025, 1–13. [Google Scholar] [CrossRef]
- Ding, M.; Guo, Y.; Huang, Z.; Lin, B.; Luo, H. GROM: A generalized routing optimization method with graph neural network and deep reinforcement learning. J. Netw. Comput. Appl. 2024, 229, 103927. [Google Scholar] [CrossRef]
- Sun, G.; Wang, Y.; Niyato, D.; Wang, J.; Wang, X.; Poor, H.V.; Letaief, K.B. Large language model (llm)-enabled graphs in dynamic networking. IEEE Netw. 2024, 39, 290–301. [Google Scholar] [CrossRef]
- Çavdar, T.; Aymaz, Ş. New approach to dynamic load balancing in software-defined network-based data centers. ETRI J. 2023, 45, 433–447. [Google Scholar] [CrossRef]
- Bhardwaj, A.; El-Ocla, H. Multipath routing protocol using genetic algorithm in mobile ad hoc networks. IEEE Access 2020, 8, 177534–177548. [Google Scholar] [CrossRef]
- Riveros-Rojas, G.J.; Cespedes-Sanchez, P.P.; Pinto-Roa, D.P.; Legal-Ayala, H. Energy-and-blocking-aware routing and device assignment in software-defined networking—A MILP and genetic algorithm approach. Math. Comput. Appl. 2024, 29, 18. [Google Scholar] [CrossRef]
- Agrawal, A.; Pal, A. Adaptive hybrid genetic-ant colony optimization for dynamic self-healing and network performance optimization in 5G/6G networks. Procedia Comput. Sci. 2025, 252, 404–413. [Google Scholar] [CrossRef]
- Tabaeiaghdaei, S.; Scherrer, S.; Kwon, J.; Perrig, A. Carbon-aware global routing in path-aware networks. In Proceedings of the 14th ACM International Conference on Future Energy Systems, Orlando, FL, USA, 20–23 June 2023; pp. 144–158. [Google Scholar]
- Ding, H.; He, F.; Zhang, P.; Zhang, L.; Zhang, X.; Qi, M. Optimal routing and heterogeneous resource allocation for computing-aware networks. ICT Express 2024, 10, 614–619. [Google Scholar] [CrossRef]
- Alanazi, R.; Obayya, M.; Alghamdi, A.M.; Nemri, N.; Alshahrani, S.; Alduaiji, N.; Hasanin, T.; Sorour, S. Machine learning-driven routing optimization for energy-efficient 6G-enabled wireless sensor networks. Alex. Eng. J. 2025, 129, 877–888. [Google Scholar] [CrossRef]
- Lee, D.; Shin, S.; Lee, C.; Na, T.; Kim, T. A Hybrid Auto-Scaling Method for Energy Efficiency of Network Services. In Proceedings of the 2024 15th International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 16–18 October 2024; pp. 1070–1075. [Google Scholar]
- Qi, S.; Moore, H.; Hogade, N.; Milojicic, D.; Bash, C.; Pasricha, S. CASA: A Framework for SLO-and Carbon-Aware Autoscaling and Scheduling in Serverless Cloud Computing. In Proceedings of the 2024 IEEE 15th International Green and Sustainable Computing Conference (IGSC), Austin, TX, USA, 2–3 November 2024; pp. 1–6. [Google Scholar]
- Chen, S.; Chen, J.; Li, H. Joint optimization of UPF placement and traffic routing for 5G core network user plane. Comput. Commun. 2024, 216, 86–94. [Google Scholar] [CrossRef]
- Garey, M.R.; Johnson, D.S. Computers and Intractability; W. H. Freeman and Company: New York, NY, USA, 2002; Volume 29. [Google Scholar]
- Sihotang, J. Analysis of shortest path determination by utilizing breadth first search algorithm. J. Info Sains Inform. Dan Sains 2020, 10, 1–5. [Google Scholar] [CrossRef]
- Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural message passing for quantum chemistry. In Proceedings of the International Conference on Machine Learning, PMLR, Sydney, Australia, 6–11 August 2017; pp. 1263–1272. [Google Scholar]
- Geerts, F.; Mazowiecki, F.; Perez, G. Let’s agree to degree: Comparing graph convolutional networks in the message-passing framework. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 18–24 July 2021; pp. 3640–3649. [Google Scholar]
- Kim, H.G.; Park, S.; Lange, S.; Lee, D.; Heo, D.; Choi, H.; Yoo, J.H.; Hong, J.W.K. Graph neural network-based virtual network function deployment optimization. Int. J. Netw. Manag. 2021, 31, e2164. [Google Scholar] [CrossRef]
- Reynolds, D. Gaussian mixture models. In Encyclopedia of biometrics; Springer: Berlin/Heidelberg, Germany, 2015; pp. 827–832. [Google Scholar]
- Monti, F.; Boscaini, D.; Masci, J.; Rodola, E.; Svoboda, J.; Bronstein, M.M. Geometric deep learning on graphs and manifolds using mixture model CNNs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5115–5124. [Google Scholar]
- Abu-Lebdeh, G.; Benekohal, R.F. Convergence variability and population sizing in micro-genetic algorithms. Comput.-Aided Civ. Infrastruct. Eng. 1999, 14, 321–334. [Google Scholar] [CrossRef]
- Orlowski, S.; Wessäly, R.; Pióro, M.; Tomaszewski, A. SNDlib 1.0—Survivable network design library. Netw. Int. J. 2010, 55, 276–286. [Google Scholar] [CrossRef]









| Category | Type | Value |
|---|---|---|
| Environment | Link capacity | [50, 100, 200] Gbps |
| Link availability | [0.9999, 0.999999] | |
| Link operating cost | [1, 10] | |
| Computing operating cost | [1, 20] | |
| Service demand | Transmission capacity | [0.1, 10] Gbps |
| Maximum delay | [50, 1000] ms | |
| Minimum availability | [0.9, 0.999] | |
| Required resource—CPU | [1, 10] | |
| Required resource—RAM | [1, 100] | |
| Required resource—GPU | [100, 1000] | |
| GA | Population size | 10 |
| Generations | 100 | |
| Stagnation threshold | 5 | |
| Mutation rate | 0.1 | |
| Crossover rate | 0.8 | |
| Weights for penalties | 1.0 | |
| Model training | Hidden layer units | 64 |
| Mini-batch size | 32 | |
| Learning rate | 0.001 | |
| Epochs | 250 | |
| Optimizer | Adam |
| Method | Abilene | GEANT | Janos-US-CA | Giul39 |
|---|---|---|---|---|
| CGA | 0.0122 ( = 0.0016) | 0.0157 ( = 0.0026) | 0.0206 ( = 0.0025) | 0.0237 ( = 0.0082) |
| EAGA | 0.0231 ( = 0.0019) | 0.0292 ( = 0.0036) | 0.0371 ( = 0.0037) | 0.0406 ( = 0.0041) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.; Kim, T. Embedding-Assisted Genetic Algorithm for Routing Optimization in 6G Networks. Mathematics 2025, 13, 3536. https://doi.org/10.3390/math13213536
Lee D, Kim T. Embedding-Assisted Genetic Algorithm for Routing Optimization in 6G Networks. Mathematics. 2025; 13(21):3536. https://doi.org/10.3390/math13213536
Chicago/Turabian StyleLee, Doyoung, and Taeyeon Kim. 2025. "Embedding-Assisted Genetic Algorithm for Routing Optimization in 6G Networks" Mathematics 13, no. 21: 3536. https://doi.org/10.3390/math13213536
APA StyleLee, D., & Kim, T. (2025). Embedding-Assisted Genetic Algorithm for Routing Optimization in 6G Networks. Mathematics, 13(21), 3536. https://doi.org/10.3390/math13213536

