A Study on the Semi-Discrete KP Equation: Bilinear Bäcklund Transformation, Lax Pair and Periodic Wave Solutions
Abstract
1. Introduction
2. Bilinear Bäcklund Transformation and the Nonlinear Superposition Formula
3. One-Periodic Wave Solution of the sdKP Equation and Its Asymptotic Property
3.1. One-Periodic Wave Solution
3.2. Asymptotic Properties of the One-Periodic Wave Solution
4. Two-Periodic Wave Solution of the sdKP Equation and Its Asymptotic Property
4.1. Two-Periodic Wave Solution
4.2. Asymptotic Properties of the Two-Periodic Wave Solution
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baxter, R.J. Exactly Solved Models in Statistical Mechanics; Academic Press: London, UK, 1982. [Google Scholar]
- Kuniba, A.; Nakanishi, T.; Suzuki, J. T-systems and Y-systems in integrable systems. J. Phys. A Math. Theor. 2011, 44, 103001. [Google Scholar] [CrossRef]
- Ljubotina, M.; Znidaric, M.; Prosen, T. Spin diffusion from an inhomogeneous quench in an integrable system. Nat. Commun. 2017, 8, 16117. [Google Scholar] [CrossRef]
- Doyon, B. Generalized hydrodynamics of the classical Toda system. J. Math. Phys. 2019, 60, 073302. [Google Scholar] [CrossRef]
- Takahashi, D.; Matsukidaira, J. On discrete soliton equations related to cellular automata. Phys. Lett. A 1995, 209, 184–188. [Google Scholar] [CrossRef]
- Nakamura, Y. A new approach to numerical algorithms in terms of integrable systems. In Proceedings of the International Conference on Informatics Research for Development of Knowledge Society Infrastructure, Washington, DC, USA, 1–2 March 2004; Ibaraki, T., Inui, T., Tanaka, K., Eds.; ACM Publication: New York, NY, USA, 2004; pp. 194–205. [Google Scholar]
- Zhang, Y.N.; Tian, L.X. An integrable semi-discretization of the Boussinesq equation. Phys. Lett. A 2016, 380, 3575–3582. [Google Scholar] [CrossRef]
- Suris, Y.B. Discrete time Toda systems. J. Phys. A Math. Theor. 2018, 51, 333001. [Google Scholar] [CrossRef]
- Shinjo, M.; Fukuda, A.; Kondo, K.; Yamamoto, Y.; Ishiwata, E.; Iwasaki, M.; Nakamura, Y. Discrete hungry integrable systems-40 years from the Physica D paper by WW Symes. Phys. D 2022, 439, 133422. [Google Scholar] [CrossRef]
- Doliwa, A. Non-autonomous multidimensional Toda system and multiple interpolation problem. J. Phys. A Math. Theor. 2022, 55, 505202. [Google Scholar] [CrossRef]
- Doliwa, A.; Siemaszko, A. Integrability and geometry of the Wynn recurrence. Numer. Algorithms 2023, 92, 571–596. [Google Scholar] [CrossRef]
- Amjad, Z.; Haider, B.; Ma, W.X. Integrable discretization and multi-soliton solutions of negative order AKNS equation. Qual. Theory Dyn. Syst. 2024, 23 (Suppl. S1), 280. [Google Scholar] [CrossRef]
- Miwa, T. On Hirota’s difference equations. Proc. Jpn. Acad. A Math. Sci. 1982, 58, 9–12. [Google Scholar] [CrossRef]
- Date, E.; Jimbo, M.; Miwa, T. Method for generating discrete solution equations. J. Phys. Soc. Jpn. 1982, 51, 4116–4124. [Google Scholar] [CrossRef]
- Case, K.M. Benjamin-Ono-related equations and their solutions. Proc. Natl. Acad. Sci. USA 1979, 76, 1–3. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Clarkson, P.A. Solitons, Nonlinear Evolution Equation and Inverse Scattering; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Hirota, R. The Direct Method in Soliton Theory; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Li, C.X.; Lafortune, S.; Shen, S.F. A semi-discrete Kadomtsev-Petviashvili equation and its coupled integrable system. J. Math. Phys. 2017, 57, 053503. [Google Scholar] [CrossRef]
- Nakamura, A. A direct method of calculating periodic wave solutions to nonlinear evolution equations. I. exact two-periodic wave solution. J. Phy. Soc. Jpn. 1979, 47, 1701–1705. [Google Scholar] [CrossRef]
- Nakamura, A. A direct method of calculating periodic-wave solutions to nonlinear evolution equations. II. exact I-periodic and 2-periodic wave solutions of the coupled bilinear equations. J. Phys. Soc. Jpn. 1980, 48, 1365–1370. [Google Scholar] [CrossRef]
- Dubrovin, B.A. Theta functions and nonlinear equations. Russ. Math. Surv. 1981, 36, 11. [Google Scholar] [CrossRef]
- Hirota, R.; Masaaki, I. A direct approach to multi-periodic wave solutions to nonlinear evolution equations. J. Phys. Soc. Jpn. 1981, 50, 338–342. [Google Scholar] [CrossRef]
- Fan, E.G. Quasi-periodic waves and an asymptotic property for the asymmetrical Nizhnik-Novikov-Veselov equation. J. Phys. A Math. Theor. 2009, 42, 095206. [Google Scholar] [CrossRef]
- Ma, W.X.; Zhou, R.G.; Gao, L. Exact one-periodic and two-periodic wave solutions to Hirota bilinear equations in (2+1)dimensions. Mod. Phys. Lett. A 2009, 24, 1677–1688. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Hu, X.B.; Sun, J.Q. A numerical study of the 3-periodic wave solutions to KdV-type equations. J. Comp. Phys. 2018, 355, 566–581. [Google Scholar] [CrossRef]
- Fokou, M.; Kofane, T.C.; Mohamadou, A.; Yomba, E. Lump periodic wave, soliton periodic wave, and breather periodic wave solutions for third-order (2+1)-dimensional equation. Phys. Scr. 2021, 96, 055223. [Google Scholar] [CrossRef]
- Yue, J.; Zhao, Z.L. Solitons, breather-wave transitions, quasi-periodic waves abd asymptotic behaviors for a (2+1)-dimensional Boussinesq-type equation. Eur. Phys. J. Plus 2022, 137, 914. [Google Scholar] [CrossRef]
- Geng, X.G.; Zeng, X. Algebro-geometric quasi-periodic solutions to the Satsuma–Hirota hierarchy. Phys. D 2023, 448, 133738. [Google Scholar] [CrossRef]
- Alharbi, M.; Elmandouh, A.; Elbrolosy, M. Study of Soliton Solutions, Bifurcation, Quasi-Periodic, and Chaotic Behaviour in the Fractional Coupled Schrödinger Equation. Mathematics 2025, 13, 3174. [Google Scholar] [CrossRef]
- Zhang, W.G.; Guo, Y.L.; Zhang, X. Periodic wave solutions and solitary wave solutions of Kundu equation. Phys. Scr. 2025, 100, 035217. [Google Scholar] [CrossRef]
- Geng, X.G.; Dai, H.H.; Zhu, J.Y. Decomposition of the discrete Ablowitz-Ladik hierarchy. Stud. Appl. Math. 2007, 118, 281–312. [Google Scholar] [CrossRef]
- Hon, Y.C.; Fan, E.G.; Qin, Z.Y. A kind of explicit quasi-periodic solution and its limit for the Toda lattice equation. Mod. Phys. Lett. B 2008, 22, 547–553. [Google Scholar] [CrossRef]
- Wu, G.C.; Xia, T.C. Uniformly constructing exact discrete soliton solutions and periodic solutions to differential-difference equations. Comput. Math. Appl. 2009, 58, 2351–2354. [Google Scholar]
- Luo, L. Exact periodic wave solutions for the differntial-difference KP equation. Rep. Math. Phys. 2010, 66, 403–417. [Google Scholar]
- Zhao, Q.L.; Li, C.X.; Li, X.Y. Quasi-periodic solutions of a discrete integrable equation with a finite-dimensional integrable symplectic structure. Phys. D 2024, 458, 133992. [Google Scholar] [CrossRef]
- Wan, L.S. Nonlinear Superposition Formula of a Semi-Discrete KP Equation and Its Exact Solutions. Master’s Thesis, Capital Normal University, Beiing, China, 2024. [Google Scholar]
- Zhang, Y.N.; Hu, X.B.; Sun, J.Q. A numerical study of the 3-periodic wave solutions to Toda-type equations. Commun. Comput. Phys. 2019, 26, 579–598. [Google Scholar] [CrossRef]
- Si, Z.Z.; Wang, Y.Y.; Dai, C.Q. Switching, explosion, and chaos of multi-wavelength soliton states in ultrafast fiber lasers. Sci. China-Phys. Mech. Astron. 2024, 67, 274211. [Google Scholar] [CrossRef]
- SI, Z.Z.; Ju, Z.T.; Ren, L.F.; Wang, X.P.; Malomed, B.A.; Dai, C.Q. Polarization-Induced Buildup and Switching Mechanisms for Soliton Molecules Composed of Noise-Like-Pulse Transition States. Laser Photonics Rev. 2025, 19, 2401019. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Wan, L.; Wang, H. A Study on the Semi-Discrete KP Equation: Bilinear Bäcklund Transformation, Lax Pair and Periodic Wave Solutions. Mathematics 2025, 13, 3492. https://doi.org/10.3390/math13213492
Li C, Wan L, Wang H. A Study on the Semi-Discrete KP Equation: Bilinear Bäcklund Transformation, Lax Pair and Periodic Wave Solutions. Mathematics. 2025; 13(21):3492. https://doi.org/10.3390/math13213492
Chicago/Turabian StyleLi, Chunxia, Linshuo Wan, and Hongyan Wang. 2025. "A Study on the Semi-Discrete KP Equation: Bilinear Bäcklund Transformation, Lax Pair and Periodic Wave Solutions" Mathematics 13, no. 21: 3492. https://doi.org/10.3390/math13213492
APA StyleLi, C., Wan, L., & Wang, H. (2025). A Study on the Semi-Discrete KP Equation: Bilinear Bäcklund Transformation, Lax Pair and Periodic Wave Solutions. Mathematics, 13(21), 3492. https://doi.org/10.3390/math13213492

