First Integrals and Invariants of Systems of Ordinary Differential Equations
Abstract
1. Introduction
2. Preliminaries
3. Monomial First Integrals
| Algorithm 1: Hilbert basis of and generators of |
Input: A vector of algebraic elements Output: Hilbert basis of and a minimal generating set of
|
| Algorithm 2: Generating Set of the -Module |
Input: Hilbert basis Output: Generating set of the -module
|
4. Invariants
5. Normal Forms
| Algorithm 3: Minimal generating set of |
Input: A vector of algebraic elements Output: A minimal generating set for
|
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
- Macaulay2, version 1.24.11-1695-gf35df1017f (vanilla)with packages:ConwayPolynomials,Elimination,IntegralClosure,...
- K = ZZ/31991;K[n,t,x_1..x_5,y_1..y_5, MonomialOrder => Lex];h = ideal (x_1-y_1*n, x_2-y_2*t,n*t*x_3-y_3,n^2*x_4-y_4,x_5-y_5*n^3);H = gens gb hQ = entries HtoString Q
- {{x_4^3*x_5^2-y_4^3*y_5^2, x_2*x_3*y_4^2*y_5-x_4^2*x_5*y_2*y_3,x_2*x_3*x_4*x_5-y_2*y_3*y_4*y_5, x_2^2*x_3^2*y_4-x_4*y_2^2*y_3^2,x_2^3*x_3^3*x_5-y_2^3*y_3^3*y_5, x_1*y_4*y_5-x_4*x_5*y_1,x_1*y_2^2*y_3^2*y_5-x_2^2*x_3^2*x_5*y_1, x_1*x_4*y_2*y_3-x_2*x_3*y_1*y_4,x_1*x_4^2*x_5-y_1*y_4^2*y_5, x_1*x_2*x_3-y_1*y_2*y_3,x_1^2*y_2*y_3*y_5-x_2*x_3*x_5*y_1^2, x_1^2*x_4-y_1^2*y_4,x_1^3*y_5-x_5*y_1^3,t*y_2-x_2, t*x_3*y_4^2*y_5-x_4^2*x_5*y_3,t*x_3*y_1*y_4-x_1*x_4*y_3, t*x_3*x_5*y_1^2-x_1^2*y_3*y_5,t*x_3*x_4*x_5-y_3*y_4*y_5, t*x_2*x_3^2*y_4-x_4*y_2*y_3^2,t*x_2*x_3^2*x_5*y_1-x_1*y_2*y_3^2*y_5, t*x_2^2*x_3^3*x_5-y_2^2*y_3^3*y_5,t*x_1*x_3-y_1*y_3, t^2*x_3^2*y_4-x_4*y_3^2,t^2*x_3^2*x_5*y_1-x_1*y_3^2*y_5, t^2*x_2*x_3^3*x_5-y_2*y_3^3*y_5,t^3*x_3^3*x_5-y_3^3*y_5, n*y_4*y_5-x_4*x_5, n*y_3^2*y_5-t^2*x_3^2*x_5,n*y_1-x_1, n*x_4*y_3-t*x_3*y_4, n*x_4^2*x_5-y_4^2*y_5, n*x_2*x_3-y_2*y_3,n*x_1*y_3*y_5-t*x_3*x_5*y_1, n*x_1*x_4-y_1*y_4, n*x_1^2*y_5-x_5*y_1^2,n*t*x_3-y_3, n^2*y_3*y_5-t*x_3*x_5, n^2*x_4-y_4, n^2*x_1*y_5-x_5*y_1,n^3*y_5-x_5}}
Appendix B
- N = matrix(ZZ,[[0,0,0,3,2],[0,1,1,1,1],[0,3,3,0,1],[1,0,0,2,1],[1,1,1,0,0],[2,0,0,1,0]])N.column_space()
- Free module of degree 6 and rank 3 over Integer RingEchelon basis matrix:[ 1 0 −1 0 −1 −1][ 0 1 3 0 1 0][ 0 0 0 1 1 2]
Appendix C
- x_14, x_12, x_11, x_10^2*x_15, x_10^2*x_13, x_9, x_8, x_7*x_10*x_15,x_7*x_10*x_13, x_7^2*x_15, x_7^2*x_13, x_6*x_10*x_15, x_6*x_10*x_13,x_6*x_7*x_15, x_6*x_7*x_13, x_6^2*x_15, x_6^2*x_13, x_5*x_10^4,x_5*x_7*x_10^3, x_5*x_7^2*x_10^2, x_5*x_7^3*x_10, x_5*x_7^4,x_5*x_6*x_10^3, x_5*x_6*x_7*x_10^2, x_5*x_6*x_7^2*x_10,x_5*x_6*x_7^3, x_5*x_6^2*x_10^2, x_5*x_6^2*x_7*x_10, x_5*x_6^2*x_7^2,x_5*x_6^3*x_10, x_5*x_6^3*x_7, x_5*x_6^4, x_4, x_3*x_10^4,x_3*x_7*x_10^3, x_3*x_7^2*x_10^2, x_3*x_7^3*x_10, x_3*x_7^4,x_3*x_6*x_10^3, x_3*x_6*x_7*x_10^2, x_3*x_6*x_7^2*x_10, x_3*x_6*x_7^3,x_3*x_6^2*x_10^2, x_3*x_6^2*x_7*x_10, x_3*x_6^2*x_7^2, x_3*x_6^3*x_10,x_3*x_6^3*x_7, x_3*x_6^4, x_2, x_1*x_10^4, x_1*x_7*x_10^3,x_1*x_7^2*x_10^2, x_1*x_7^3*x_10, x_1*x_7^4, x_1*x_6*x_10^3,x_1*x_6*x_7*x_10^2, x_1*x_6*x_7^2*x_10, x_1*x_6*x_7^3,x_1*x_6^2*x_10^2, x_1*x_6^2*x_7*x_10, x_1*x_6^2*x_7^2, x_1*x_6^3*x_10,x_1*x_6^3*x_7, x_1*x_6^4
Appendix D
- K = ZZ/31991;R = K[n,x_1..x_15, y_1..y_15, MonomialOrder => Lex];h = ideal (x_1-y_1*n^4, x_2-y_2, x_3-y_3*n^4, x_4-y_4, x_5-y_5*n^4,n*x_6-y_6,n*x_7-y_7, x_8-y_8, x_9-y_9, n*x_10-y_10, x_11-y_11, x_12-y_12,x_13-y_13*n^2, x_14-y_14, x_15-y_15*n^2);H = gens gb hQ = entries HtoString Q
Appendix E
- K = ZZ/31991;K[s,t,x_0,x_1..x_5,z_0,z_1..z_5, MonomialOrder => Lex]h=ideal(s*x_0-z_0,x_1-z_1*s,x_2-z_2*t,s*t*x_3-z_3,s^2*x_4-z_4,x_5-z_5*s^3)H = gens gb hQ = entries HtoString Q
- {{x_4^3*x_5^2-z_4^3*z_5^2, x_2*x_3*z_4^2*z_5-x_4^2*x_5*z_2*z_3,x_2*x_3*x_4*x_5-z_2*z_3*z_4*z_5, x_2^2*x_3^2*z_4-x_4*z_2^2*z_3^2,x_2^3*x_3^3*x_5-z_2^3*z_3^3*z_5, x_1*z_4*z_5-x_4*x_5*z_1,x_1*z_2^2*z_3^2*z_5-x_2^2*x_3^2*x_5*z_1, x_1*x_4*z_2*z_3-x_2*x_3*z_1*z_4,x_1*x_4^2*x_5-z_1*z_4^2*z_5, x_1*x_2*x_3-z_1*z_2*z_3,x_1^2*z_2*z_3*z_5-x_2*x_3*x_5*z_1^2, x_1^2*x_4-z_1^2*z_4,x_1^3*z_5-x_5*z_1^3, x_0*z_4^2*z_5-x_4^2*x_5*z_0, x_0*z_2*z_3-x_2*x_3*z_0,x_0*z_1*z_4-x_1*x_4*z_0, x_0*x_5*z_1^2-x_1^2*z_0*z_5,x_0*x_4*x_5-z_0*z_4*z_5, x_0*x_2*x_3*z_4-x_4*z_0*z_2*z_3,x_0*x_2*x_3*x_5*z_1-x_1*z_0*z_2*z_3*z_5,x_0*x_2^2*x_3^2*x_5-z_0*z_2^2*z_3^2*z_5, x_0*x_1-z_0*z_1,x_0^2*z_4-x_4*z_0^2, x_0^2*x_5*z_1-x_1*z_0^2*z_5,x_0^2*x_2*x_3*x_5-z_0^2*z_2*z_3*z_5, x_0^3*x_5-z_0^3*z_5,t*z_2-x_2, t*x_3*z_4^2*z_5-x_4^2*x_5*z_3, t*x_3*z_1*z_4-x_1*x_4*z_3,t*x_3*z_0-x_0*z_3, t*x_3*x_5*z_1^2-x_1^2*z_3*z_5,t*x_3*x_4*x_5-z_3*z_4*z_5, t*x_2*x_3^2*z_4-x_4*z_2*z_3^2,t*x_2*x_3^2*x_5*z_1-x_1*z_2*z_3^2*z_5, t*x_2^2*x_3^3*x_5-z_2^2*z_3^3*z_5,t*x_1*x_3-z_1*z_3, t*x_0*x_3*z_4-x_4*z_0*z_3,t*x_0*x_3*x_5*z_1-x_1*z_0*z_3*z_5, t*x_0*x_2*x_3^2*x_5-z_0*z_2*z_3^2*z_5,t*x_0^2*x_3*x_5-z_0^2*z_3*z_5, t^2*x_3^2*z_4-x_4*z_3^2,t^2*x_3^2*x_5*z_1-x_1*z_3^2*z_5, t^2*x_2*x_3^3*x_5-z_2*z_3^3*z_5,t^2*x_0*x_3^2*x_5-z_0*z_3^2*z_5, t^3*x_3^3*x_5-z_3^3*z_5,s*z_4*z_5-x_4*x_5, s*z_3^2*z_5-t^2*x_3^2*x_5,s*z_1-x_1, s*z_0*z_3*z_5-t*x_0*x_3*x_5, s*z_0^2*z_5-x_0^2*x_5,s*x_4*z_3-t*x_3*z_4, s*x_4*z_0-x_0*z_4, s*x_4^2*x_5-z_4^2*z_5,s*x_2*x_3-z_2*z_3, s*x_1*z_3*z_5-t*x_3*x_5*z_1, s*x_1*z_0*z_5-x_0*x_5*z_1,s*x_1*x_4-z_1*z_4, s*x_1^2*z_5-x_5*z_1^2, s*x_0-z_0, s*t*x_3-z_3,s^2*z_3*z_5-t*x_3*x_5, s^2*z_0*z_5-x_0*x_5, s^2*x_4-z_4,s^2*x_1*z_5-x_5*z_1, s^3*z_5-x_5}}
References
- Aziz, W. Integrability and linearizability problems of three-dimensional Lotka-Volterra equations of rank-2. Qual. Theory Dyn. Syst. 2019, 18, 1113–1134. [Google Scholar] [CrossRef]
- Aziz, W.; Christopher, C. Local integrability and linearizability of three-dimensional Lotka-Volterra systems. Appl. Math. Comput. 2012, 219, 4067–4081. [Google Scholar] [CrossRef]
- Bibikov, Y.N. Local Theory of Nonlinear Analytic Ordinary Differential Equations; Lecture Notes in Mathematics; Springer: New York, NY, USA; London, UK, 1979; Volume 702. [Google Scholar]
- Brjuno, A.D. A Local Method of Nonlinear Analysis for Differential Equations; Nauka: Moscow, Russia, 1979. [Google Scholar]
- Bruno, A.D. Local Methods in Nonlinear Differential Equations; Springer: Berlin, Germany, 1989. [Google Scholar]
- Llibre, J.; Pantazi, C.; Walcher, S. First integrals of local analytic differential systems. Bull. Sci. Math. 2012, 136, 342–359. [Google Scholar] [CrossRef]
- Yan, Y.; Zhou, Z. The first integrals and related properties of a class of quintic systems with a uniform isochronous center. J. Nonlinear Model. Anal. 2022, 4, 488–501. [Google Scholar]
- Zhang, X. Integrability of Dynamical Systems: Algebra and Analysis; Springer Nature: Singapore, 2017. [Google Scholar]
- Kruff, N.; Walcher, S.; Zhang, X. Centralizers and normalizers of local analytic and formal vector fields. J. Lie Theory 2021, 31, 751–796. [Google Scholar]
- Stolovitch, L. Singular complete integrability. Publ. MathéMatiques l’IHÉS 2000, 91, 133–210. [Google Scholar] [CrossRef]
- Walcher, S. On differential equations in normal form. Math. Ann. 1991, 291, 293–314. [Google Scholar] [CrossRef]
- Sibirsky, K.S. Algebraic Invariants of Differential Equations and Matrices; Shtiintsa: Kishinev, Moldova, 1976. (In Russian) [Google Scholar]
- Sibirsky, K.S. Introduction to the Algebraic Theory of Invariants of Differential Equations; Manchester University Press: Manchester, UK, 1988. [Google Scholar]
- Artés, J.C.; Llibre, J.; Schlomiuk, D.; Vulpe, N. Geometric Configurations of Singularities of Planar Polynomial Differential Systems: A Global Classification in the Quadratic Case; Birkhäuser: Berlin, Germany, 2021. [Google Scholar]
- Liu, Y.R.; Li, J.B. Theory of values of singular point in complex autonomous differential systems. Sci. China Ser. 1989, 33, 10–23. [Google Scholar]
- Jarrah, A.; Laubenbacher, R.; Romanovski, V.G. The Sibirsky component of the center variety of polynomial differential systems. J. Symb. Comput. 2003, 35, 577–589. [Google Scholar] [CrossRef]
- Romanovski, V.G.; Shafer, D.S. The Center and Cyclicity Problems: A Computational Algebra Approach; Birkhäuser: Boston, MA, USA, 2009. [Google Scholar]
- Poincaré, H. Mémoire sur les courbes définies par une équation différentielle. J. Math. Pures Appl. 1881, 7, 375–422. [Google Scholar]
- Dulac, H. Recherches sur les points singuliers des equations différentielles. J. L’école Polytech. Série 1904, 9, 1–25. [Google Scholar]
- Walcher, S. On transformations into normal form. J. Math. Anal. Appl. 1993, 180, 617–632. [Google Scholar] [CrossRef]
- Algaba, A.; Freire, E.; Gamero, E. Characterizing and computing normal forms using Lie transforms: A survey. Dyn. Contin. Discret. Impuls. Syst. Ser. Math. Anal. 2001, 8, 449–475. [Google Scholar]
- Murdock, J. Normal Forms and Unfolding for Local Dynamical Systems; Springer Monographs in Mathematics; Springer: New York, NY, USA, 2003. [Google Scholar]
- Miller, E.; Sturmfels, B. Combinatorial Commutative Algebra. In Graduate Texts in Mathematics; Springer: New York, NY, USA, 2005; Volume 227. [Google Scholar]
- Golubitsky, M.; Schaeffer, D.G. Singularities and Groups in Bifurcation Theory, Volume I; Applied Mathematical Sciences, 51; Springer: New York, NY, USA, 1985. [Google Scholar]
- Contejean, E.; Devie, H. An Efficient Incremental Algorithm for Solving Systems of Linear Diophantine Equations. Inf. Comput. 1994, 113, 143–172. [Google Scholar] [CrossRef]
- Pisón-Casares, P.; Vigneron-Tenorio, A. N-solutions to linear systems over Z. Linear Algebra Its Appl. 2004, 384, 135–154. [Google Scholar] [CrossRef]
- Domenjoud, E. Solving systems of linear diophantine equations: An algebraic approach. In Mathematical Foundations of Computer Science; Tarlecki, A., Ed.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 141–150. [Google Scholar]
- Sturmfels, B. Algorithms in Invariant Theory; Springer: New York, NY, USA, 1993. [Google Scholar]
- Faugére, J.-C. A new efficient algorithm for computing Gröbner bases (F4). J. Pure Appl. Algebra 1999, 139, 61–88. [Google Scholar] [CrossRef]
- Faugére, J.-C. A New Efficient Algorithm for Computing Gröbner Bases Without Reduction to Zero (F5). In Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, Lille, France, 7–10 July 2002; pp. 75–83. [Google Scholar]
- Eder, C.; Faugère, J.-C. A Survey on Signature-based Algorithms for Computing Gröbner Bases. J. Symb. Comput. 2017, 80, 719–784. [Google Scholar] [CrossRef]
- Grayson, D.; Stillman, M. Macaulay2, a Software System for Research in Algebraic Geometry. Available online: http://www2.macaulay2.com (accessed on 4 September 2025).
- SageMath. the Sage Mathematics Software System (Version 10.7). Available online: https://www.sagemath.org (accessed on 4 September 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grašič, M.; Jarrah, A.S.; Romanovski, V.G. First Integrals and Invariants of Systems of Ordinary Differential Equations. Mathematics 2025, 13, 3485. https://doi.org/10.3390/math13213485
Grašič M, Jarrah AS, Romanovski VG. First Integrals and Invariants of Systems of Ordinary Differential Equations. Mathematics. 2025; 13(21):3485. https://doi.org/10.3390/math13213485
Chicago/Turabian StyleGrašič, Mateja, Abdul Salam Jarrah, and Valery G. Romanovski. 2025. "First Integrals and Invariants of Systems of Ordinary Differential Equations" Mathematics 13, no. 21: 3485. https://doi.org/10.3390/math13213485
APA StyleGrašič, M., Jarrah, A. S., & Romanovski, V. G. (2025). First Integrals and Invariants of Systems of Ordinary Differential Equations. Mathematics, 13(21), 3485. https://doi.org/10.3390/math13213485

