Finite Fuzzy Topologies on Boolean Algebras
Abstract
1. Introduction
2. Main Result
- (1)
- Fix a total order on : if .
- (2)
- The columns are ordered according to this order.
- (3)
- Fix a (lexicographical) total order on that keeps the partial order of , as explained above.
- (4)
- These two total orders imply a partial order on that we can extend to a lexicographical total order, as performed for , since the rows have entries.
- (5)
- The rows are ordered according to this total order on .
- (i)
- There is a one-to-one correspondence φ between and .
- (ii)
- , and , that is, the images of the 0-constant and 1-constant mappings in , respectively, are the and mappings in , respectively.
- (iii)
- For any , .
- Let be two mappings from to , (in other words, two subsets of ), , , and . We can now prove that .
- Let , and . It follows that
- On the other hand,because the two vectors in (*) belong to and can be viewed as mappings from to . This the desired result.
3. Fuzzy Topologies with a Small Number of Open Sets
4. Fuzzy Topologies with Large Number of Open Sets
5. Number of Fuzzy Topologies for Small and
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Goguen, J.A. The fuzzy Tychonoff theorem. J. Math. Anal. Appl. 1973, 43, 737–742. [Google Scholar] [CrossRef]
- Chang, C.L. Fuzzy topological spaces. J. Math. Anal. Appl. 1968, 24, 182–189. [Google Scholar] [CrossRef]
- Gantner, T.E.; Steinlage, R.C.; Warren, R.H. Compactness in Fuzzy Topological Spaces. J. Math. Anal. Appl. 1978, 62, 547–562. [Google Scholar] [CrossRef]
- Schnare, P.S. The complementation of the lattice of topologies. Proc. Am. Math. Soc. 1968, 19, 851–855. [Google Scholar]
- Hutton, B.; Reilly, I.L. Fuzzy Topologies Associated with Fuzzy Uniformities. Fuzzy Sets Syst. 1980, 3, 129–140. [Google Scholar]
- Sarkar, M. Fuzzy Neighborhood Spaces. J. Math. Anal. Appl. 1982, 87, 336–348. [Google Scholar]
- Badarad, R. Lattice-Valued Fuzzy Set Theory and Fuzzy Topology. J. Math. Anal. Appl. 1982, 85, 403–415. [Google Scholar]
- Conard, F. Fuzzy Sets and Their Applications; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Höhle, U. Probabilistic topologies induced by Γ-fuzzy sets. Fuzzy Sets Syst. 1985, 15, 251–267. [Google Scholar]
- Höhle, U. Product of probability algebras. Fuzzy Sets Syst. 1985, 17, 297–308. [Google Scholar]
- Rodabaugh, S.E. A categorical accommodation of various notions of fuzzy topology. Fuzzy Sets Syst. 1983, 9, 241–264. [Google Scholar] [CrossRef]
- Lowen, R. Fuzzy Topological Spaces and Fuzzy Compactness. J. Math. Anal. Appl. 1976, 56, 621–633. [Google Scholar] [CrossRef]
- Lowen, R. Initial and Final Fuzzy Topologies and the Fuzzy Tychonoff Theorem. J. Math. Anal. Appl. 1977, 58, 97–106. [Google Scholar] [CrossRef]
- Benoumhani, M.; Jaballah, A. Finite fuzzy topological spaces. Fuzzy Sets Syst. 2017, 321, 101–114. [Google Scholar] [CrossRef]
- Benoumhani, M.; Jaballah, A. Chains in lattices of mappings and finite fuzzy topological spaces. J. Comb. Theory Ser. A 2019, 161, 99–111. [Google Scholar] [CrossRef]
- Benoumhani, M.; Jaballah, A. Finite D-Fuzzy Topologies. Int. J. Fuzzy Syst. 2025, 25, 2532–2544. [Google Scholar] [CrossRef]
- Benoumhani, M. The Number of Topologies on a Finite Set. J. Integer Seq. 2006, 9, 06.2.6. [Google Scholar]
- MBenoumhani; Kolli, M. Finite topologies and partitions. J. Integer Seq. 2010, 13, 10.3.5. [Google Scholar]
- Brinkmann, G.; McKay, B.D. Counting unlabeled topologies and transitive relations. J. Integer Seq. 2005, 8, 05.2.1. [Google Scholar]
- Kolli, M. On the Cardinality of the T0-Topologies on a Finite Set. Int. J. Comb. 2014, 2014, 798074. [Google Scholar] [CrossRef]
- Butnarbu, D. L-Fuzzy Topologies. Bull. Mathématique Société Sci. Mathématiques République Social. Roum. Nouv. Série 1975, 19, 227–236. [Google Scholar]
- Kubiak, T.; Sostak, A. Foundations of the theory of (L,M)-fuzzy topological spaces. In Abstracts of the 30th Linz Seminar on Fuzzy Set Theory; Johannes Kepler Universität: Linz, Austria, 2009; pp. 70–73. [Google Scholar]
- Kumar, V.; Tiwari, S. L-Fuzzy rough point-wise proximity spaces. Appl. Gen. Topol. 2025, 26, 255–270. [Google Scholar] [CrossRef]
- Ramadan, A.A.; Elkordy, E.H.; El-Dardery, M. L-Fuzzy Approximation spaces and L-Fuzzy topological spaces. Iran. J. Fuzzy Syst. 2016, 13, 115–129. [Google Scholar]
- Ramadan, A.A.; Elkordy, E.H.; Kim, Y.C.; Ahmed, K. L-fuzzy pre-proximities and application to L-fuzzy topologies. J. Intell. Fuzzy Syst. 2020, 4, 4049–4060. [Google Scholar] [CrossRef]
- Ramadan, A.A.; Fawakhreh, A.; Elkordy, E. Novel categorical relations between L-fuzzy co-topologies and L-fuzzy ideals. AIMS Math. 2024, 9, 20572–20587. [Google Scholar] [CrossRef]
- Ramadan, A.A.; Fawakhreh, A.J. On L-Fuzzy Preproximity Spaces and L-Fuzzy Ideals. New Math. Nat. Comput. 2025, 21, 867–886. [Google Scholar] [CrossRef]
- Sarkar, M. On L-fuzzy topological spaces. J. Math. Anal. Appl. 1981, 84, 431–442. [Google Scholar] [CrossRef]
- Zhang, Z.; Shi, F.-G.; Li, Q. Continuity and directed completion of topological spaces. Order 2022, 39, 407–420. [Google Scholar] [CrossRef]
- Zhong, Y.; Wu, X.; Šostak, A.; Shi, F.G. (L,M)-fuzzy k-pseudo metric space. Mathematics 2022, 10, 1151. [Google Scholar] [CrossRef]
- Zeng, M.; Wang, L.; Shi, F.-G. A novel approach to the fuzzification of fields. Symmetry 2022, 14, 1190. [Google Scholar] [CrossRef]
- Liang, C.; Shi, F.-G.; Wang, J. (L,M)-fuzzy bornological spaces. Fuzzy Sets Syst. 2023, 467, 108496. [Google Scholar] [CrossRef]
- Dong, Y.; Shi, F.-G. L-cones and L-dual cones. Fuzzy Sets Syst. 2023, 469, 108626. [Google Scholar] [CrossRef]
- Sun, Y.; Shi, F.-G. Representations of L-fuzzy rough approximation operators. Inf. Sci. 2023, 645, 119324. [Google Scholar] [CrossRef]
- Shu, L.; Zha, Y. On the Completion of L-Fuzzy Topological Vector Spaces. In Fuzzy Information and En-gineering 2010, Advances in Intelligent and Soft Computing 2010; Cao, B., Wang, G., Guo, S., Chen, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; p. 78. [Google Scholar]
- Singh, S.; Tiwari, S.P.; Mahato, S. On L-fuzzy automata, coalgebras and dialgebras: Associated categories and L-fuzzy topologies. Fuzzy Sets Syst. 2023, 460, 143–185. [Google Scholar] [CrossRef]
- Tripathi, A.; Tiwarri, S.P. On L-Fuzzy Topological Spaces Determined by Implicators. New Math. Nat. Comput. 2023, 19, 805–830. [Google Scholar] [CrossRef]
- Sostak, A.; Uljane, I. Extending L-Topologies to Bipolar l-Fuzzy Topologies. Axioms 2024, 13, 582. [Google Scholar] [CrossRef]
- Abas, S.E.; Gurlebeck, K. L-fuzzy Topological Spaces. J. Fuzzy Math. 2011, 19, 1–12. Available online: https://www.researchgate.net/publication/267432140_Stratified_L-fuzzy_topological_spaces (accessed on 15 September 2025).
- Papageorgiou, N.S. Fuzzy Multifunctions and the Relaxation of Fuzzy Optimal Control Problems. J. Math. Anal. Appl. 1985, 109, 397–425. [Google Scholar] [CrossRef]
- Alkouri, A.U.; Hazaimeh, M.; Jawarneh, I. Fuzzy Topological Space on Fuzzy Space. arXiv 2021, arXiv:2105.07488v1. [Google Scholar] [CrossRef]
- Kovalevsky, V.A. Finite Topology and Image Analysis. Adv. Electron. Electron Phys. 1992, 84, 197–259. [Google Scholar]
- Saha, P.K.; Udupa, J.K. Fuzzy Digital Topology and Geometry and Their Applications to Medical Imaging. In Recent Advances in Fuzzy Logic and Soft Computing; Murthy, L.N.B., Ed.; Springer: New Delhi, India, 2013; pp. 3–19. [Google Scholar]
- Merrifield, R.E.; Simmons, H.E. Topological Methods in Chemistry; Wiley: New York, NY, USA, 1989. [Google Scholar]
- Gholap, P.S.; Nikumbh, V.E. Fuzzy Topological Spaces On Fuzzy Graphs. Ann. Fuzzy Math. Inform. 2023, 25, 279–291. [Google Scholar]
- Mishra, S.; Srivastava, R. Fuzzy Ideals and Fuzzy Filters on Topologies Generated by Fuzzy Relations. Int. J. Algebra Appl. 2023, 12, 72–84. [Google Scholar]
- Nazaroff, N. Fuzzy Topological Spaces and Optimal Control. J. Math. Anal. Appl. 1976, 56, 478–485. [Google Scholar]
| ∅ | 0 | 0 | 0 | 0 | 0 | 0 | ||||
| b | 1 | 0 | 0 | 0 | 0 | 0 | ||||
| a | 0 | 1 | 0 | 0 | 0 | 0 | ||||
| 1 | 1 | 0 | 0 | 0 | 0 | |||||
| b | 1 | 1 | 1 | 0 | 0 | 0 | ||||
| a | 1 | 1 | 0 | 1 | 0 | 0 | ||||
| 1 | 1 | 1 | 1 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaourar, B.; Benoumhani, M. Finite Fuzzy Topologies on Boolean Algebras. Mathematics 2025, 13, 3469. https://doi.org/10.3390/math13213469
Chaourar B, Benoumhani M. Finite Fuzzy Topologies on Boolean Algebras. Mathematics. 2025; 13(21):3469. https://doi.org/10.3390/math13213469
Chicago/Turabian StyleChaourar, Brahim, and Moussa Benoumhani. 2025. "Finite Fuzzy Topologies on Boolean Algebras" Mathematics 13, no. 21: 3469. https://doi.org/10.3390/math13213469
APA StyleChaourar, B., & Benoumhani, M. (2025). Finite Fuzzy Topologies on Boolean Algebras. Mathematics, 13(21), 3469. https://doi.org/10.3390/math13213469
