Upper Bounds for the Numerical Radius of Off-Diagonal 2 × 2 Operator Matrices
Abstract
1. Introduction
2. Main Results
3. Applications to a Single Operator
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dragomir, S.S. Some inequalities for the norm and the numerical radius of linear operators in Hilbert spaces. Tamkang J. Math. 2008, 39, 1–7. [Google Scholar] [CrossRef]
- Kittaneh, F. Numerical radius inequalities for Hilbert space operators. Studia Math. 2005, 168, 73–80. [Google Scholar] [CrossRef]
- Hirzallah, O.; Kittaneh, F.; Shebrawi, K. Numerical Radius Inequalities for Certain 2 × 2 Operator Matrices. Integr. Equ. Oper. Theory 2011, 71, 129–147. [Google Scholar] [CrossRef]
- Bag, S.; Bhunia, P.; Paul, K. Bounds of numerical radius of bounded linear operators using t-Aluthge transform. Math. Inequal. Appl. 2020, 23, 991–1004. [Google Scholar] [CrossRef]
- Bhunia, P.; Paul, K. Furtherance of numerical radius inequalities of Hilbert space operators. Arch. Math. 2021, 117, 537–546. [Google Scholar] [CrossRef]
- Bhunia, P.; Paul, K. Development of inequalities and characterization of equality conditions for the numerical radius. Linear Algebra Appl. 2021, 630, 306–315. [Google Scholar] [CrossRef]
- Baklouti, H.; Feki, K.; Sid Ahmed, O.A.M. Joint normality of operators in semi-Hilbertian spaces. Linear Multilinear Algebra 2020, 68, 845–866. [Google Scholar] [CrossRef]
- Bhunia, P.; Feki, K.; Paul, K. Generalized A-numerical radius of operators and related inequalities. Bull. Iran. Math. Soc. 2022, 48, 3883–3907. [Google Scholar] [CrossRef]
- Feki, K. Some bounds for the A-numerical radius of certain 2 × 2 operator matrices. Hacet. J. Math. Stat. 2021, 50, 795–810. [Google Scholar] [CrossRef]
- Feki, K. Some numerical radius inequalities for semi-Hilbert space operators. J. Korean Math. Soc. 2021, 58, 1385–1405. [Google Scholar]
- Baklouti, H.; Feki, K. On joint spectral radius of commuting operators in Hilbert spaces. Linear Algebra Appl. 2018, 557, 455–463. [Google Scholar] [CrossRef]
- Baklouti, H.; Feki, K. Commuting tuples of normal operators in Hilbert spaces. Complex Anal. Oper. Theory 2020, 14, 56. [Google Scholar] [CrossRef]
- Bhunia, P.; Paul, K. Proper improvement of well-known numerical radius inequalities and their applications. Results Math. 2021, 76, 177. [Google Scholar] [CrossRef]
- Bhunia, P.; Paul, K. New upper bounds for the numerical radius of Hilbert space operators. Bull. Sci. Math. 2021, 167, 102959. [Google Scholar] [CrossRef]
- Conde, C.; Moradi, H.R.; Sababheh, M. A family of semi-norms between the numerical radius and the operator norm. Results Math. 2024, 79, 36. [Google Scholar] [CrossRef]
- Sababheh, M.; Djordjević, D.S.; Moradi, H.R. Numerical Radius and Norm Bounds via the Moore-Penrose Inverse. Complex Anal. Oper. Theory 2024, 18, 117. [Google Scholar] [CrossRef]
- Nayak, R.K. Weighted numerical radius inequalities for operator and operator matrices. Acta Sci. Math. 2024, 90, 193–206. [Google Scholar] [CrossRef]
- Bhunia, P.; Paul, K. Some improvements of numerical radius inequalities of operators and operator matrices. Linear Multilinear Algebra 2022, 70, 1995–2013. [Google Scholar] [CrossRef]
- Alahmari, A.; Mabrouk, M.; Zamani, A. Further results on the a-numerical range in C*-algebras. Banach J. Math. Anal. 2022, 16, 25. [Google Scholar] [CrossRef]
- Bourhim, A.; Mabrouk, M. a-numerical range on C*-algebras. Positivity 2021, 25, 1489–1510. [Google Scholar] [CrossRef]
- Dragomir, S.S. Some inequalities for the Euclidean operator radius of two operators in Hilbert spaces. Linear Algebra Appl. 2006, 419, 256–264. [Google Scholar] [CrossRef]
- Kittaneh, F.; Moslehian, M.S.; Yamazaki, T. Cartesian decomposition and numerical radius inequalities. Linear Algebra Appl. 2015, 471, 46–53. [Google Scholar] [CrossRef]
- Kittaneh, F. Numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix. Studia Math. 2003, 158, 11–17. [Google Scholar] [CrossRef]
- Moslehian, M.S.; Sattari, M.; Shebrawi, K. Extensions of Euclidean operator radius inequalities. Math. Scand. 2017, 120, 129–144. [Google Scholar] [CrossRef]
- Buzano, M.L. Generalizzatione della disuguaglianza di Cauchy-Schwarz. Rend. Semin. Mat. 1974, 31, 405–409. [Google Scholar]
- Mabrouk, M.; Zamani, A. An extension of the a-numerical radius on C*-algebras. Banach J. Math. Anal. 2023, 17, 42. [Google Scholar] [CrossRef]
- Sababheh, M.; Conde, C.; Moradi, H.R. A Convex-Block Approach to Numerical Radius Inequalities. Funct. Anal. Its Appl. 2023, 57, 26–30. [Google Scholar] [CrossRef]
- Pečarić, J.; Furuta, T.; Mićić Hot, J.; Seo, Y. Mond-Pečarić Method in Operator Inequalities, Inequalities for Bounded Selfadjoint Operators on a Hilbert Space; Monographs in Inequalities; Element: Zagreb, Croatia, 2005. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altwaijry, N.; Dragomir, S.S. Upper Bounds for the Numerical Radius of Off-Diagonal 2 × 2 Operator Matrices. Mathematics 2025, 13, 3459. https://doi.org/10.3390/math13213459
Altwaijry N, Dragomir SS. Upper Bounds for the Numerical Radius of Off-Diagonal 2 × 2 Operator Matrices. Mathematics. 2025; 13(21):3459. https://doi.org/10.3390/math13213459
Chicago/Turabian StyleAltwaijry, Najla, and Silvestru Sever Dragomir. 2025. "Upper Bounds for the Numerical Radius of Off-Diagonal 2 × 2 Operator Matrices" Mathematics 13, no. 21: 3459. https://doi.org/10.3390/math13213459
APA StyleAltwaijry, N., & Dragomir, S. S. (2025). Upper Bounds for the Numerical Radius of Off-Diagonal 2 × 2 Operator Matrices. Mathematics, 13(21), 3459. https://doi.org/10.3390/math13213459
