Enhancing Postpartum Haemorrhage Prediction Through the Integration of Classical Logistic Regression and Machine Learning Algorithms
Abstract
1. Introduction
2. Recent Advances in Postpartum Haemorrhage Research
3. Materials and Methods
3.1. Study Population
3.2. Potential Risk Factors
3.3. Statistical Analysis
3.3.1. Multiple Imputation by Chained Equations
3.3.2. K-Means
3.3.3. Classical Binary Logistic Regression
- is the probability that the i-th observation has haemoglobin difference ≥ 2 g/dL;
- is the intercept;
- are the regression coefficients;
- are the values of the independent variables for observation i.
3.3.4. Machine Learning Approaches
- Ridge logistic regression model
- Random forest
- For classification: ;
- For regression: .
4. Results & Discussion
4.1. K-Means
4.2. Classification
4.2.1. Multivariable Classical Logistic Regression
4.2.2. Machine Learning Approaches
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Sample Characteristics
| Parameter | Total Sample |
|---|---|
| Maternal age (years) | 31.40 ± 6.23 |
| Body mass index () | 29.76 (26.74–33.34) |
| Gestational age (weeks) | 39.40 ± 1.20 |
| Deliveries (n) | 0.00 (0.00–1.00) |
| Birthweight (g) | 3285.00 (2985.00–3515.00) |
| Blood type, n (%) | |
| O | 55 (37.4%) |
| Other | 92 (62.6%) |
| Ethnicity | |
| Caucasian | 96 (65.3%) |
| Other | 51 (34.7%) |
| Haematocrit (%) | 35 (33–37) |
| Leukocytes (count) | 11,400 (8750–14,700) |
| Platelets ( L) | 224.21 ± 64.65 |
| International normalised ratio (n) | 0.92 (0.90–0.97) |
| APTT ratio (n) | 0.90 (0.86–0.93) |
| D-dimers (µg/mL) | 1.98 (1.46–2.68) |
| Factor XIII (%) | 0.73 ± 0.15 |
| Fibrin monomers (µg/mL) | 5.25 (4.11–10.05) |
| Fibrinogen (mg/dL) | 467.73 ± 76.31 |
| Creatinine (mg/dL) | 0.55 (0.48–0.65) |
| Urea (mg/dL) | 18.00 (15.00–22.00) |
| Glomerular filtration rate (mL/min) | 127.00 (119.00–133.00) |
| C-reactive protein (mg/dL) | 0.68 (0.35–1.58) |
| Lactate dehydrogenase (uni/L) | 192.00 (171.00–214.00) |
| Type of delivery, n (%) | |
| Unassisted vaginal delivery | 55 (37.4%) |
| Instrumental vaginal delivery | 30 (20.4%) |
| Caesarean delivery | 62 (42.2%) |
| First-degree laceration, n (%) | 29 (34.1%) |
| Second-degree laceration, n (%) | 17 (20.0%) |
| Episiotomy, n (%) | 11 (12.9%) |
| Gestational hypertension, n (%) | 8 (5.4%) |
| Preeclampsia, n (%) | 4 (2.7%) |
| Gestational diabetes, n (%) | 19 (12.9%) |
| Hypothiroidism, n (%) | 11 (7.5%) |
| Previous uterine incision, n (%) | 23 (15.6%) |
| Multiple pregnancy, n (%) | 4 (2.7%) |
| >4 Previous vaginal deliveries, n (%) | 1 (0.7%) |
| History of coagulopathy, n (%) | 3 (2.0%) |
| History of postpartum haemorrhage, n (%) | 4 (2.7%) |
| Uterine fibroids, n (%) | 6 (4.1%) |
| Chorioamnionitis, n (%) | 4 (2.7%) |
| Placenta previa, n (%) | 5 (3.4%) |
| Low-lying placenta, n (%) | 1 (0.7%) |
| Placenta accreta, n (%) | 1 (0.7%) |
| Hemoglobin < 10 g/dL, n (%) | 11 (7.5%) |
| Platelets < 100,000/, n (%) | 1 (0.7%) |
| Haemorrhage on admission, n (%) | 1 (0.7%) |
| History of fetal death, n (%) | 3 (2.0%) |
| Estimated neonatal weight > 4 kg, n (%) | 2 (1.4%) |
| In vitro fertilization, n (%) | 10 (6.8%) |
| Smoker, n (%) | 16 (10.9%) |
Appendix A.2. Characterization of Clusters (Mean Values)
| Cluster | Gestational Age (Weeks) | Deliveries (n) | Leukocytes (n) | Birthweight (g) | |
|---|---|---|---|---|---|
| 1 | 38.955 | 1.683 | 9870.732 | 3345.732 | |
| 2 | 39.515 | 0.275 | 11,872.549 | 3341.667 | |
| 3 | 39.629 | 0.255 | 13,578.182 | 3215.091 | |
| Cluster | Haematocrit (%) | LDH (U/L) | Fibrin Monomers (µg/mL) | Platelets ( L) | |
| 1 | 33.468 | 185.049 | 28.489 | 226.756 | |
| 2 | 36.208 | 206.588 | 15.740 | 192.745 | |
| 3 | 34.996 | 193.455 | 12.366 | 251.491 | |
| Cluster | INR (n) | APTT Ratio (n) | Fibrinogen (mg/dL) | D-Dimers (µg/mL) | Pregnancies (n) |
| 1 | 0.937 | 0.885 | 424.756 | 3.122 | 3.488 |
| 2 | 0.894 | 0.884 | 464.431 | 2.673 | 1.706 |
| 3 | 0.962 | 0.912 | 502.836 | 1.969 | 1.455 |
| Cluster | Factor XIII (%) | Creatinine (mg/dL) | Urea (mg/dL) | CRP (mg/dL) | GFR (mL/min) |
| 1 | 71.122 | 0.501 | 15.585 | 0.650 | 128.366 |
| 2 | 71.667 | 0.698 | 24.431 | 1.222 | 112.255 |
| 3 | 74.945 | 0.532 | 17.745 | 1.311 | 132.891 |
Appendix A.3. Laboratory Procedures
Appendix A.4. Quantification of Maternal Blood Loss
References
- Say, L.; Chou, D.; Gemmill, A.; Tunçalp, O.; Moller, A.B.; Daniels, J.; Gülmezoglu, A.M.; Temmerman, M.; Alkema, L. Global causes of maternal death: A WHO systematic analysis. Lancet Glob. Health 2014, 2, e323–e333. [Google Scholar] [CrossRef]
- Samayamuthu, M.J.; Kravchenko, O.; Lo-Ciganic, W.H.; Sadhu, E.M.; Yang, S.; Visweswaran, S.; Gopalakrishnan, V. Trends in Postpartum Hemorrhage Prevalence and Comorbidity Burden: Insights from the ENACT Network Aggregated Electronic Health Record Data. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Sangara, R.N.; Matsushima, K.; Matsuzaki, S.; Yao, J.A.; Yu, E.; Mandelbaum, R.S.; Grubbs, B.H.; Incerpi, M.H.; Ouzounian, J.G.; Matsuo, K. Temporal trends of obstetric hemorrhage and product-specific blood transfusion at time of delivery. Am. J. Obstet. Gynecol. 2024, 231, e139–e145. [Google Scholar] [CrossRef]
- Huang, C.; Xue, B.; Gao, Y.; Yue, S.; Redding, S.R.; Wang, R.; Ouyang, Y. Incidence and risk factors for postpartum hemorrhage after vaginal delivery: A systematic review and meta-analysis. J. Obstet. Gynaecol. Res. 2023, 49, 1663–1676. [Google Scholar] [CrossRef] [PubMed]
- Corbetta-Rastelli, C.M.; Friedman, A.M.; Sobhani, N.C.; Arditi, B.; Goffman, D.; Wen, T. Postpartum Hemorrhage Trends and Outcomes in the United States, 2000–2019. Obstet. Gynecol. 2023, 141, 152–161. [Google Scholar] [CrossRef]
- Fitzgerald, I.; Corcoran, P.; McKernan, J.; Connell, R.O.; Greene, R.A. Trends, causes and factors associated with primary Postpartum Haemorrhage (PPH) in Ireland: A review of one million hospital childbirths. Eur. J. Obstet. Gynecol. Reprod. Biol. 2024, 301, 258–263. [Google Scholar] [CrossRef]
- Pettersen, S.; Falk, R.S.; Vangen, S.; Nyfløt, L.T. Exploring trends of severe postpartum haemorrhage: A hospital-based study. BMC Pregnancy Childbirth 2023, 23, 363. [Google Scholar] [CrossRef] [PubMed]
- Ueda, A.; Nakakita, B.; Chigusa, Y.; Mogami, H.; Ohtera, S.; Kato, G.; Mandai, M.; Kondoh, E. Impact of efforts to prevent maternal deaths due to obstetric hemorrhage on trends in epidemiology and management of severe postpartum hemorrhage in Japan: A nationwide retrospective study. BMC Pregnancy Childbirth 2022, 22, 496. [Google Scholar] [CrossRef]
- Ladfors, L.; Muraca, G.; Zetterqvist, J.; Butwick, A.; Stephansson, O. Postpartum haemorrhage trends in Sweden using the Robson ten group classification system: A population-based cohort study. BJOG Int. J. Obstet. Gynaecol. 2022, 129, 562–571. [Google Scholar] [CrossRef]
- Bell, S.F.; Watkins, A.; John, M.; Macgillivray, E.; Kitchen, T.L.; James, D.; Scarr, C.; Bailey, C.M.; Kelly, K.P.; James, K.; et al. Incidence of postpartum haemorrhage defined by quantitative blood loss measurement: A national cohort. BMC Pregnancy Childbirth 2020, 20, 271. [Google Scholar] [CrossRef]
- Flood, M.; McDonald, S.J.; Pollock, W.; Cullinane, F.; Davey, M. Incidence, trends and severity of primary postpartum haemorrhage in Australia: A population-based study using Victorian Perinatal Data Collection data for 764 244 births. Aust. N. Z. J. Obstet. Gynaecol. 2019, 59, 228–234. [Google Scholar] [CrossRef]
- Morau, E.; Ducloy, J.; Le Roux, S.; Weber, P.; Dreyfus, M. Mortalité maternelle par hémorragie, résultats de l’ENCMM, France 2010–2012. Gynécologie Obs. Fertil. Sénologie 2017, 45, S24–S30. [Google Scholar] [CrossRef]
- Van Stralen, G.; Von Schmidt Auf Altenstadt, J.F.; Bloemenkamp, K.W.; Van Roosmalen, J.; Hukkelhoven, C.W. Increasing incidence of postpartum hemorrhage: The Dutch piece of the puzzle. Acta Obstet. Gynecol. Scand. 2016, 95, 1104–1110. [Google Scholar] [CrossRef]
- Prick, B.W.; Auf Altenstadt, J.F.V.S.; Hukkelhoven, C.W.; Bonsel, G.J.; Steegers, E.A.; Mol, B.W.; Schutte, J.M.; Bloemenkamp, K.W.; Duvekot, J.J. Regional differences in severe postpartum hemorrhage: A nationwide comparative study of 1.6 million deliveries. BMC Pregnancy Childbirth 2015, 15, 43. [Google Scholar] [CrossRef] [PubMed]
- Mehrabadi, A.; Liu, S.; Bartholomew, S.; Hutcheon, J.A.; Kramer, M.S.; Liston, R.M.; Joseph, K. Temporal Trends in Postpartum Hemorrhage and Severe Postpartum Hemorrhage in Canada From 2003 to 2010. J. Obstet. Gynaecol. Can. 2014, 36, 21–33. [Google Scholar] [CrossRef]
- Briley, A.; Seed, P.; Tydeman, G.; Ballard, H.; Waterstone, M.; Sandall, J.; Poston, L.; Tribe, R.; Bewley, S. Reporting errors, incidence and risk factors for postpartum haemorrhage and progression to severe PPH: A prospective observational study. BJOG Int. J. Obstet. Gynaecol. 2014, 121, 876–888. [Google Scholar] [CrossRef]
- Reale, S.C.; Easter, S.R.; Xu, X.; Bateman, B.T.; Farber, M.K. Trends in Postpartum Hemorrhage in the United States From 2010 to 2014. Anesth. Analg. 2020, 130, e119–e122. [Google Scholar] [CrossRef]
- Bienstock, J.L.; Eke, A.C.; Hueppchen, N.A. Postpartum Hemorrhage. N. Engl. J. Med. 2021, 384, 1635–1645. [Google Scholar] [CrossRef] [PubMed]
- Wolfson, C.; Angelson, J.T.; Atlas, R.; Burd, I.; Chin, P.; Downey, C.; Fahey, J.; Hoffman, S.; Johnson, C.T.; Jones, M.B.; et al. Severe maternal morbidity contributed by obstetric hemorrhage: Maryland, 2020-2022. Am. J. Obstet. Gynecol. MFM 2025, 7, 101589. [Google Scholar] [CrossRef]
- Wolfson, C.; Qian, J.; Chin, P.; Downey, C.; Mattingly, K.J.; Jones-Beatty, K.; Olaku, J.; Qureshi, S.; Rhule, J.; Silldorff, D.; et al. Findings from severe maternal morbidity surveillance and review in Maryland. JAMA Netw. Open 2022, 5, e2244077. [Google Scholar] [CrossRef]
- Petersen, E.E.; Davis, N.L.; Goodman, D.; Cox, S.; Mayes, N.; Johnston, E.; Syverson, C.; Seed, K.; Shapiro-Mendoza, C.K.; Callaghan, W.M.; et al. Vital Signs: Pregnancy-Related Deaths, United States, 2011–2015, Strategies Prevention, 13 States, 2013–2017. MMWR. Morb. Mortal. Wkly. Rep. 2019, 68, 423–429. [Google Scholar] [CrossRef]
- Lewis, A.N.; Villela-Franyutti, D.; Domenico, H.J.; Byrne, D.W.; Farber, M.K.; Ende, H.B. Quantifying the accuracy of clinician risk assessment for postpartum hemorrhage. Matern.-Fetal Med. 2024, 6, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Baeta, T.; Rocha, A.L.L.; Oliveira, J.A.; da Silva, A.P.C.; Reis, Z.S.N. Accuracy of machine learning and traditional statistical models in the prediction of postpartum haemorrhage: A systematic review. BMJ Open 2025, 15, e094455. [Google Scholar] [CrossRef] [PubMed]
- Sinambela, D.P.; Rahmatullah, B.; Che Lah, N.H.; Selamat, A.W. Machine learning approaches for predicting postpartum hemorrhage: A comprehensive systematic literature review. Indones. J. Electr. Eng. Comput. Sci. 2024, 34, 2087. [Google Scholar] [CrossRef]
- Omotayo, M.O.; Abioye, A.I.; Kuyebi, M.; Eke, A.C. Prenatal anemia and postpartum hemorrhage risk: A systematic review and meta-analysis. J. Obstet. Gynaecol. Res. 2021, 47, 2565–2576. [Google Scholar] [CrossRef]
- Korst, L.M.; Gregory, K.D.; Nicholas, L.A.; Saeb, S.; Reynen, D.J.; Troyan, J.L.; Greene, N.; Fridman, M. A scoping review of severe maternal morbidity: Describing risk factors and methodological approaches to inform population-based surveillance. Matern. Heal. Neonatol. Perinatol. 2021, 7, 3. [Google Scholar] [CrossRef]
- Stachetti, T.; Spodenkiewicz, M.; Winer, A.; Boukerrou, M.; Jesson, J.; Gérardin, P. Factors associated with severe postpartum haemorrhage: Systematic review using Bradford Hill’s causality framework. J. Glob. Health Rep. 2019, 3, e2019085. [Google Scholar] [CrossRef]
- Carr, B.L.; Jahangirifar, M.; Nicholson, A.E.; Li, W.; Mol, B.W.; Licqurish, S. Predicting postpartum haemorrhage: A systematic review of prognostic models. Aust. New Zealand J. Obstet. Gynaecol. 2022, 62, 813–825. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, A.; Rezaei Ghamsari, S.; Boujarzadeh, B.; Mehrnoush, V.; Darsareh, F. Predicting risk of postpartum hemorrhage using machine learning approach: A systematic review. Gynecol. Obstet. Clin. Med. 2023, 3, 170–174. [Google Scholar] [CrossRef]
- Liu, C.; Xiong, Y.; Zhao, P.; Chen, M.; Wei, W.; Sun, X.; Liu, X.; Tan, J. The suboptimal clinical applicability of prognostic prediction models for severe postpartum hemorrhage: A meta-epidemiological study. J. Clin. Epidemiol. 2024, 173, 111424. [Google Scholar] [CrossRef]
- De Moreuil, C.; Mehic, D.; Nopp, S.; Kraemmer, D.; Gebhart, J.; Schramm, T.; Couturaud, F.; Ay, C.; Pabinger, I. Hemostatic biomarkers associated with postpartum hemorrhage: A systematic review and meta-analysis. Blood Adv. 2023, 7, 5954–5967. [Google Scholar] [CrossRef]
- Neary, C.; Naheed, S.; McLernon, D.; Black, M. Predicting risk of postpartum haemorrhage: A systematic review. BJOG Int. J. Obstet. Gynaecol. 2021, 128, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Wakefield, B.M.; Zapf, M.A.; Ende, H.B. Artificial intelligence in prediction of postpartum hemorrhage: A primer and review. Int. J. Obstet. Anesth. 2025, 63, 104694. [Google Scholar] [CrossRef]
- Mathewlynn, S.J.; Soltaninejad, M.; Collins, S.L. Artificial Intelligence and Postpartum Hemorrhage. Matern. Fetal Med. 2025, 7, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Wen, T. Interpretable machine learning predicts postpartum hemorrhage at time of admission. Am. J. Obstet. Gynecol. MFM 2024, 6, 101355. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Lin, H.; Shao, M.; Wang, X.; Chen, X.; Zhou, Y.; Zhang, D. Integrating SHAP analysis with machine learning to predict postpartum hemorrhage in vaginal births. BMC Pregnancy Childbirth 2025, 25, 529. [Google Scholar] [CrossRef]
- Clapp, M.A.; Li, S.; James, K.E.; Bernstein, S.N.; Kaimal, A.J.; Perlis, R.H. Predicting Postpartum Hemorrhage Risk with Second-Trimester Data. O&G Open 2025, 2, e091. [Google Scholar] [CrossRef]
- Wang, W.; Liao, C.; Zhang, H.; Hu, Y. Postpartum haemorrhage risk prediction model developed by machine learning algorithms: A single-centre retrospective analysis of clinical data. Clin. Exp. Obstet. Gynecol. 2024, 51, 60. [Google Scholar] [CrossRef]
- Lengerich, B.J.; Caruana, R.; Painter, I.; Weeks, W.B.; Sitcov, K.; Souter, V. Interpretable machine learning predicts postpartum hemorrhage with severe maternal morbidity in a lower-risk laboring obstetric population. Am. J. Obstet. Gynecol. MFM 2024, 6, 101391. [Google Scholar] [CrossRef]
- Holcroft, S.; Karangwa, I.; Little, F.; Behoor, J.; Bazirete, O. Predictive Modelling of Postpartum Haemorrhage Using Early Risk Factors: A Comparative Analysis of Statistical and Machine Learning Models. Int. J. Environ. Res. Public Health 2024, 21, 600. [Google Scholar] [CrossRef]
- Ahmadzia, H.K.; Dzienny, A.C.; Bopf, M.; Phillips, J.M.; Federspiel, J.J.; Amdur, R.; Rice, M.M.; Rodriguez, L. Machine Learning Models for Prediction of Maternal Hemorrhage and Transfusion: Model Development Study. JMIR Bioinform. Biotechnol. 2024, 5, e52059. [Google Scholar] [CrossRef] [PubMed]
- Susanu, C.; Hărăbor, A.; Vasilache, I.A.; Harabor, V.; Călin, A.M. Predicting intra-and postpartum hemorrhage through artificial intelligence. Medicina 2024, 60, 1604. [Google Scholar] [CrossRef]
- Vandenbroucke, J.P.; Von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M.; Initiative, S.; et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and elaboration. Int. J. Surg. 2014, 12, 1500–1524. [Google Scholar] [CrossRef]
- Yefet, E.; Yossef, A.; Suleiman, A.; Hatokay, A.; Nachum, Z. Hemoglobin drop following postpartum hemorrhage. Sci. Rep. 2020, 10, 21546. [Google Scholar] [CrossRef]
- Hassanzad, M.; Hajian-Tilaki, K. Methods of determining optimal cut-point of diagnostic biomarkers with application of clinical data in ROC analysis: An update review. BMC Med Res. Methodol. 2024, 24, 84. [Google Scholar] [CrossRef]
- Wongvorachan, T.; He, S.; Bulut, O. A Comparison of Undersampling, Oversampling, and SMOTE Methods for Dealing with Imbalanced Classification in Educational Data Mining. Information 2023, 14, 54. [Google Scholar] [CrossRef]
- Joel, L.O.; Doorsamy, W.; Paul, B.S. A comparative study of imputation techniques for missing values in healthcare diagnostic datasets. Int. J. Data Sci. Anal. 2025, 20, 6357–6373. [Google Scholar] [CrossRef]
- Wulff, J.N.; Jeppesen, L.E. Multiple Imputation by Chained Equations in Praxis: Guidelines and Review. Electron. J. Bus. Res. Methods 2017, 15, 41–56. [Google Scholar]
- Pérez-Ortega, J.; Almanza-Ortega, N.N.; Vega-Villalobos, A.; Pazos-Rangel, R.; Zavala-Díaz, C.; Martínez-Rebollar, A. The K-Means Algorithm Evolution. In Introduction to Data Science and Machine Learning; Sud, K., Erdogmus, P., Kadry, S., Eds.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Çelik, S.; Doğanlı, B.; Şaşmaz, M.Ü.; Akkucuk, U. Accuracy Comparison of Machine Learning Algorithms on World Happiness Index Data. Mathematics 2025, 13, 1176. [Google Scholar] [CrossRef]
- Januzaj, Y.; Beqiri, E.; Luma, A. Determining the Optimal Number of Clusters using Silhouette Score as a Data Mining Technique. Int. J. Online Biomed. Eng. (iJOE) 2023, 19, 174–182. [Google Scholar] [CrossRef]
- Wang, M.; Yi, G.; Zhang, Y.; Li, M.; Zhang, J. Quantitative prediction of postpartum hemorrhage in cesarean section on machine learning. BMC Med. Inform. Decis. Mak. 2024, 24, 166. [Google Scholar] [CrossRef]
- Venkatesh, K.; Mishra, D.; Manimozhi, T. Model Selection and Regularization. In Statistical Modeling in Machine Learning: Concepts and Applications; Goswami, T., Sinha, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 159–178. [Google Scholar]
- Rhys, H.I. Machine Learning with R, the tidyverse, and mlr; Manning Publications: Shelter Island, NY, USA, 2020. [Google Scholar]
- Gong, J.; Chen, Z.; Zhang, Y.; Liu, Y.y.; Pu, J.c.; Xiong, C.y.; Gui, S.w.; He, X.l.; Wang, H.l.; Zhong, X.g. Risk-factor model for postpartum hemorrhage after cesarean delivery: A retrospective study based on 3498 patients. Sci. Rep. 2022, 12, 22100. [Google Scholar] [CrossRef]
- Azar, A.T.; Elshazly, H.I.; Hassanien, A.E.; Elkorany, A.M. A Random Forest Classifier for Lymph Diseases. Comput. Methods Prog. Biomed. 2014, 113, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Brownlee, J. Master Machine Learning Algorithms; Machine Learning Mastery: Shelter Island, NY, USA, 2016. [Google Scholar]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Teklemariam, A.B.; Abebe, E.C.; Agidew, M.M.; Ayenew, A.A.; Mengistie, M.A.; Baye, N.D.; Muche, Z.T. Diagnostic performance of lactate dehydrogenase as a potential biomarker in predicting preeclampsia and associated factors. Front. Med. 2024, 11, 1240848. [Google Scholar] [CrossRef]
- Koopmans, C.M.; Van der Tuuk, K.; Groen, H.; Doornbos, J.P.; De Graaf, I.M.; Van Der Salm, P.C.; Porath, M.M.; Kuppens, S.M.; Wijnen, E.J.; Aardenburg, R.; et al. Prediction of postpartum hemorrhage in women with gestational hypertension or mild preeclampsia at term. Acta Obstet. Gynecol. Scand. 2014, 93, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Burwick, R.M.; Rincon, M.; Beeraka, S.S.; Gupta, M.; Feinberg, B.B. Evaluation of hemolysis as a severe feature of preeclampsia. Hypertension 2018, 72, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Salomon, C.; De Moreuil, C.; Hannigsberg, J.; Trémouilhac, C.; Drugmanne, G.; Gatineau, F.; Nowak, E.; Anouilh, F.; Briend, D.; Moigne, E.L.; et al. Haematological parameters associated with postpartum haemorrhage after vaginal delivery: Results from a French cohort study. J. Gynecol. Obstet. Hum. Reprod. 2021, 50, 102168. [Google Scholar] [CrossRef]
- Nasir, S.K.; Khalil, R.Y.; Mahmood, M.B.; Dawd, A.S. Serum lactate dehydrogenase level in preeclampsia and its correlation with disease severity, maternal and perinatal outcomes. BMC Women’s Health 2025, 25, 108. [Google Scholar] [CrossRef]
- Vázquez, S.; Pascual, J.; Durán-Jordà, X.; Hernández, J.L.; Crespo, M.; Oliveras, A. Predictors of preeclampsia in the first trimester in normotensive and chronic hypertensive pregnant women. J. Clin. Med. 2023, 12, 579. [Google Scholar] [CrossRef]
- Kaihara, J.N.; de Moraes, F.R.; Nunes, P.R.; Alves, M.G.; Cavalli, R.C.; Tasic, L.; Sandrim, V.C. Plasma metabolic profile reveals signatures of maternal health during gestational hypertension and preeclampsia without and with severe features. PLoS ONE 2024, 19, e0314053. [Google Scholar] [CrossRef]
- Owiredu, W.K.B.A.; Osakunor, D.N.M.; Turpin, C.A.; Owusu-Afriyie, O. Laboratory prediction of primary postpartum haemorrhage: A comparative cohort study. BMC Pregnancy Childbirth 2016, 16, 17. [Google Scholar] [CrossRef]
- Abbassi-Ghanavati, M.; Greer, L.G.; Cunningham, F.G. Pregnancy and laboratory studies: A reference table for clinicians. Obstet. Gynecol. 2009, 114, 1326–1331. [Google Scholar] [CrossRef]
- Arcudi, S.; Ronchi, A.; Capecchi, M.; Iurlaro, E.; Ossola, M.W.; Mancini, I.; Schivardi, G.; Marconi, A.M.; Podda, G.M.; Artoni, A. Assessment of post-partum haemorrhage risk among women with moderate thrombocytopenia. Br. J. Haematol. 2022, 197, 482–488. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, W.E.; Nijdam, J.S.; Haitjema, S.; de Groot, M.C.; Huisman, A.; Punt, M.C.; Evers, A.C.; Schutgens, R.E.; Lely, A.T.; van Galen, K.P. Platelet count and indices as postpartum hemorrhage risk factors: A retrospective cohort study. J. Thromb. Haemost. 2021, 19, 2873–2883. [Google Scholar] [CrossRef] [PubMed]
- de Moreuil, C.; Pan-Petesch, B.; Mehic, D.; Kraemmer, D.; Schramm, T.; Albert, C.; Trémouilhac, C.; Lucier, S.; Galinat, H.; Le Roux, L.; et al. Predelivery haemostatic biomarkers in women with non-severe postpartum haemorrhage. J. Clin. Med. 2024, 13, 4231. [Google Scholar] [CrossRef]
- Butwick, A.J.; Liu, C.; Guo, N.; Bentley, J.; Main, E.K.; Mayo, J.A.; Shaw, G.M.; Stephansson, O. Association of gestational age with postpartum hemorrhage: An international cohort study. Anesthesiology 2021, 134, 874–886. [Google Scholar] [CrossRef]
- Aghajanian, S.; Jafarabady, K.; Abbasi, M.; Mohammadifard, F.; Bakhshali Bakhtiari, M.; Shokouhi, N.; Saleh Gargari, S.; Bakhtiyari, M. Prediction of post-delivery hemoglobin levels with machine learning algorithms. Sci. Rep. 2024, 14, 13953. [Google Scholar] [CrossRef]
- Ali-Saleh, M.; Lavie, O.; Abramov, Y. Evaluation of blood type as a potential risk factor for early postpartum hemorrhage. PLoS ONE 2019, 14, e0214840. [Google Scholar] [CrossRef]
- Swartz, S.R.; Steffen, H.A.; Wendt, L.H.; Kenne, K.A.; Rysavy, M.B.; Jackson, J.B. ABO and Rh blood group association with maternal and neonatal outcomes. Glob. J. Transfus. Med. 2024, 9, 17–21. [Google Scholar] [CrossRef]
- Drukker, L.; Srebnik, N.; Elstein, D.; Levitt, L.; Samueloff, A.; Farkash, R.; Grisaru-Granovsky, S.; Sela, H.Y. The association between ABO blood group and obstetric hemorrhage. J. Thromb. Thrombolysis 2016, 42, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Kahr, M.; Franke, D.; Brun, R.; Wisser, J.; Zimmermann, R.; Haslinger, C. Blood group O: A novel risk factor for increased postpartum blood loss? Haemophilia 2018, 24, e207–e212. [Google Scholar] [CrossRef]
- Bade, N.A.; Kazma, J.M.; Amdur, R.L.; Ellis-Kahana, J.; Ahmadzia, H.K. Blood type association with bleeding outcomes at delivery in a large multi-center study. J. Thromb. Thrombolysis 2020, 50, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Burd, J.E.; Quist-Nelson, J.A.; Edwards, S.E.; Suhag, A.; Berghella, V.P.; Nijjar, J.B. Blood type and postpartum hemorrhage by mode of delivery: A retrospective cohort study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 256, 348–353. [Google Scholar] [CrossRef]
- Schmidt, P.C.; Fenner, D.E. Repair of episiotomy and obstetrical perineal lacerations (first–fourth). Am. J. Obstet. Gynecol. 2024, 230, S1005–S1013. [Google Scholar] [CrossRef]
- Biguzzi, E.; Franchi, F.; Ambrogi, F.; Ibrahim, B.; Bucciarelli, P.; Acaia, B.; Radaelli, T.; Biganzoli, E.; Mannucci, P.M. Risk factors for postpartum hemorrhage in a cohort of 6011 Italian women. Thromb. Res. 2012, 129, e1–e7. [Google Scholar] [CrossRef]
- Fukami, T.; Koga, H.; Goto, M.; Ando, M.; Matsuoka, S.; Tohyama, A.; Yamamoto, H.; Nakamura, S.; Koyanagi, T.; To, Y.; et al. Incidence and risk factors for postpartum hemorrhage among transvaginal deliveries at a tertiary perinatal medical facility in Japan. PLoS ONE 2019, 14, e0208873. [Google Scholar] [CrossRef]
- Widmer, M.; Piaggio, G.; Hofmeyr, G.; Carroli, G.; Coomarasamy, A.; Gallos, I.; Goudar, S.; Gülmezoglu, A.; Lin, S.; Lumbiganon, P.; et al. Maternal characteristics and causes associated with refractory postpartum haemorrhage after vaginal birth: A secondary analysis of the WHO CHAMPION trial data. BJOG Int. J. Obstet. Gynaecol. 2020, 127, 628–634. [Google Scholar] [CrossRef]
- Yang, C.; Fridgeirsson, E.A.; Kors, J.A.; Reps, J.M.; Rijnbeek, P.R. Impact of random oversampling and random undersampling on the performance of prediction models developed using observational health data. BMC Med. Inform. Decis. Mak. 2023, 23, 1–12. [Google Scholar] [CrossRef]
- Ruppel, H.; Liu, V.X.; Gupta, N.R.; Soltesz, L.; Escobar, G.J. Validation of Postpartum Hemorrhage Admission Risk Factor Stratification in a Large Obstetrics Population. Am. J. Perinatol. 2021, 38, 1192–1200. [Google Scholar] [CrossRef]
- Hussain, S.A.; Guarini, C.B.; Blosser, C.; Poole, A.T. Obstetric Hemorrhage Outcomes by Intrapartum Risk Stratification at a Single Tertiary Care Center. Cureus 2019, 11, e6456. [Google Scholar] [CrossRef]
- Lawton, B.A.; Jane MacDonald, E.; Stanley, J.; Daniells, K.; Geller, S.E. Preventability review of severe maternal morbidity. Acta Obstet. Gynecol. Scand. 2019, 98, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Weeks, A.D. Reducing maternal deaths from haemorrhage: Seeking the low-hanging fruit. BJOG Int. J. Obstet. Gynaecol. 2024, 131, 1025–1028. [Google Scholar] [CrossRef]
- de Vries, P.L.; Deneux-Tharaux, C.; Baud, D.; Chen, K.K.; Donati, S.; Goffinet, F.; Knight, M.; D’Souzah, R.; Sueters, M.; van den Akker, T. Postpartum haemorrhage in high-resource settings: Variations in clinical management and future research directions based on a comparative study of national guidelines. BJOG Int. J. Obstet. Gynaecol. 2023, 130, 1639–1652. [Google Scholar] [CrossRef]
- Gyamfi-Bannerman, C.; Srinivas, S.K.; Wright, J.D.; Goffman, D.; Siddiq, Z.; D’Alton, M.E.; Friedman, A.M. Postpartum hemorrhage outcomes and race. Am. J. Obstet. Gynecol. 2018, 219, 185.e1–185.e10. [Google Scholar] [CrossRef]
- Girault, A.; Deneux-Tharaux, C.; Sentilhes, L.; Maillard, F.; Goffinet, F. Undiagnosed abnormal postpartum blood loss: Incidence and risk factors. PLoS ONE 2018, 13, e0190845. [Google Scholar] [CrossRef]
- Deneux-Tharaux, C.; Dupont, C.; Colin, C.; Rabilloud, M.; Touzet, S.; Lansac, J.; Harvey, T.; Tessier, V.; Chauleur, C.; Pennehouat, G.; et al. Multifaceted intervention to decrease the rate of severe postpartum haemorrhage: The PITHAGORE6 cluster-randomised controlled trial. BJOG Int. J. Obstet. Gynaecol. 2010, 117, 1278–1287. [Google Scholar] [CrossRef]
- Khan, B.A.; Weston, A.; Jaeger, A.; Shevatekar, G.; Wang, Y.; Smith, L.; Wynn, K.E. Quantitative blood loss values reveal high rates of undiagnosed postpartum hemorrhage. Int. J. Gynecol. Obstet. 2025, 170, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Yunas, I.; Gallos, I.D.; Devall, A.J.; Podesek, M.; Allotey, J.; Takwoingi, Y.; Coomarasamy, A. Tests for diagnosis of postpartum haemorrhage at vaginal birth. Cochrane Database Syst. Rev. 2025, CD016134. [Google Scholar] [CrossRef] [PubMed]
- Madar, H.; Sentilhes, L.; Goffinet, F.; Bonnet, M.P.; Rozenberg, P.; Deneux-Tharaux, C. Comparison of quantitative and calculated postpartum blood loss after vaginal delivery. Am. J. Obstet. Gynecol. MFM 2023, 5, 101065. [Google Scholar] [CrossRef]
- Bhatt, A.; Hughes-Hogan, L.; Mitchell, T.; Nair, S.; Chuang, M.; Chen, S.L.; Reddy, S. Impact of measuring quantification of blood loss versus estimation of blood loss during cesarean deliveries. Int. J. Gynecol. Obstet. 2023, 160, 670–677. [Google Scholar] [CrossRef] [PubMed]
- Calvert, C.; Thomas, S.L.; Ronsmans, C.; Wagner, K.S.; Adler, A.J.; Filippi, V. Identifying Regional Variation in the Prevalence of Postpartum Haemorrhage: A Systematic Review and Meta-Analysis. PLoS ONE 2012, 7, e41114. [Google Scholar] [CrossRef] [PubMed]
- Bais, J.M.; Eskes, M.; Pel, M.; Bonsel, G.J.; Bleker, O.P. Postpartum haemorrhage in nulliparous women: Incidence and risk factors in low and high risk women: A Dutch population-based cohort study on standard (≥ 500 ml) and severe (≥ 1000 ml) postpartum haemorrhage. Eur. J. Obstet. Gynecol. Reprod. Biol. 2004, 115, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Jia, Y.; Song, H.; Fan, Y.; Lv, Y.; Geng, H.; Zhao, Y.; Cui, H.; Chen, X. Novel biomarkers for prediction of atonic postpartum hemorrhage among ‘low-risk’women in labor. Front. Immunol. 2024, 15, 1416990. [Google Scholar] [CrossRef]
- Gallo, D.M.; Romero, R.; Bosco, M.; Chaiworapongsa, T.; Gomez-Lopez, N.; Arenas-Hernandez, M.; Jung, E.; Suksai, M.; Gotsch, F.; Erez, O.; et al. Maternal plasma cytokines and the subsequent risk of uterine atony and postpartum hemorrhage. J. Perinat. Med. 2023, 51, 219–232. [Google Scholar] [CrossRef]
- Reitsma, S.E.; Barsoum, J.R.; Hansen, K.C.; Sassin, A.M.; Dzieciatkowska, M.; James, A.H.; Aagaard, K.M.; Ahmadzia, H.K.; Wolberg, A.S. Agnostic identification of plasma biomarkers for postpartum hemorrhage risk. Am. J. Obstet. Gynecol. 2025, 232, 220.e1–220.e18. [Google Scholar] [CrossRef]




| Authors | Study Description | Methodology | Findings | Contributions |
|---|---|---|---|---|
| Song et al. (2025) [36] |
|
|
| The clinical utility of this model is constrained, as two of the fifteen features included in the model—newborn weight and length—are measured exclusively after childbirth. |
| Clapp et al. (2025) [37] |
|
|
| The authors developed a model with limited predictive ability employing laboratory variables that rely exclusively on prepartum data from the second trimester of pregnancy. |
| Wang et al. (2024) [38] |
|
|
| This study evaluates several machine learning algorithms to construct two models with a restricted set of features gathered prior to delivery. However, the predictive abilities of these scores were not evident when applied to an external validation cohort. |
| Lengerich et al. (2024) [39] |
|
|
| The Generalised Additive Model exhibits enhanced performance when compared to a commonly employed score (California Maternal Quality Care Collaborative), relying exclusively on antepartum variables. |
| Holcroft et al. (2024) [40] |
|
|
| The study focuses on a unique population with specific characteristics, which highlights the valuable application of machine learning in this context. |
| Ahmadzia et al. (2024) [41] |
|
|
| The number of antepartum and intrapartum variables included in each model is unspecified. |
| Susanu et al. (2024) [42] |
|
|
| The exact number of variables included in the model is not reported. |
| Variables | PPH () | Non-PPH () | p-Value |
|---|---|---|---|
| Maternal age (years) | 29.74 ± 5.45 | 31.92 ± 6.39 | 0.052 † |
| Body mass index () | 29.32 (26.63–32.25) | 30.06 (26.89–33.50) | 0.365 ‡ |
| Gestational age (weeks) | 39.57 (39.07–40.66) | 39.29 (38.57–40.04) | 0.060 ‡ |
| Deliveries (n) | 0.00 (0.00–1.00) | 0.00 (0.00–1.00) | 0.076 ‡ |
| Birthweight (g) | 3325.00 (3135.00–3465.00) | 3265.00 (2870.00–3556.25) | 0.353 ‡ |
| Haematocrit (%) | 36 (35–38) | 35 (33–37) | 0.014 ‡ |
| Leukocytes (n) | 12,800 (9400–14,850) | 10,500 (8600–14,425) | 0.129 ‡ |
| Platelets ( L) | 234.00 (183.50–276.00) | 213.00 (181.50–260.25) | 0.262 ‡ |
| INR (n) | 0.92 (0.89–0.96) | 0.93 (0.90–0.97) | 0.841 ‡ |
| APTT ratio (n) | 0.91 ± 0.08 | 0.89 ± 0.06 | 0.153 † |
| Fibrinogen (mg/dL) | 490.00 (435.00–523.00) | 461.00 (410.75–511.00) | 0.056 ‡ |
| D-dimers (µg/mL) | 1.87 (1.41–2.66) | 2.00 (1.50–2.67) | 0.590 ‡ |
| Factor XIII (%) | 0.74 (0.64–0.81) | 0.72 (0.63–0.80) | 0.776 ‡ |
| Fibrin monomers (µg/mL) | 4.65 (2.14) | 5.51 (8.00) | 0.058 ‡ |
| Creatinine (mg/dL) | 0.61 (0.54–0.68) | 0.55 (0.46–0.63) | 0.010 ‡ |
| Urea (mg/dL) | 21.00 (16.00–26.00) | 18.00 (15.00–22.00) | 0.077 ‡ |
| GFR (mL/min) | 126.00 (120.00–130.50) | 128.00 (119.00–133.25) | 0.339 ‡ |
| C-reactive protein (mg/dL) | 0.84 (0.41–1.77) | 0.63 (0.33–1.47) | 0.355 ‡ |
| Lactate dehydrogenase (uni/L) | 204.00 (179.50–226.00) | 187.50 (166.50–208.25) | 0.006 ‡ |
| Types of delivery | 0.634 * | ||
| Unassisted vaginal delivery | 13 (8.8%) | 42 (28.6%) | |
| Caesarean delivery | 13 (8.8%) | 49 (33.3%) | |
| Instrumental vaginal delivery | 9 (6.1%) | 21 (14.3%) | |
| First-degree laceration | 0.036 * | ||
| Yes | 3 (3.5%) | 26 (30.6%) | |
| No | 19 (22.4%) | 37 (43.5%) | |
| Second-degree laceration | 0.055 * | ||
| Yes | 8 (9.4%) | 9 (10.6%) | |
| No | 14 (16.5%) | 54 (63.5%) | |
| Episiotomy | 0.720 ** | ||
| Yes | 2 (2.4%) | 9 (10.6%) | |
| No | 20 (23.5%) | 54 (63.5%) | |
| Blood type | 0.003 * | ||
| O | 21 (14.3%) | 34 (23.1%) | |
| Other | 14 (9.5%) | 78 (53.1%) | |
| Ethnicity | 0.581 * | ||
| Caucasian | 21 (14.3%) | 75 (51.0%) | |
| Other | 14 (9.5%) | 37 (25.2%) |
| Independent Risk Factors | OR | 95% CI | p-Value |
|---|---|---|---|
| Gestational age (weeks) | 1.545 | 1.071–2.298 | 0.024 |
| Platelets ( L) | 1.008 | 1.002–1.015 | 0.016 |
| Urea (mg/dL) | 1.097 | 1.020–1.186 | 0.014 |
| Lactate dehydrogenase (uni/L) | 1.019 | 1.007–1.034 | 0.005 |
| First-degree laceration | |||
| No | Ref | ||
| Yes | 0.163 | 0.031–0.622 | 0.016 |
| Blood type | |||
| O | Ref | ||
| Other | 0.182 | 0.067–0.453 | <0.001 |
| Model | Accuracy | Sensitivity | Specificity | F1-Score | AUC |
|---|---|---|---|---|---|
| Without Oversampling | |||||
| Logistic Regression | 0.735 | 0.686 | 0.750 | 0.552 | 0.742 |
| Ridge Logistic Regression | 0.871 | 0.857 | 0.875 | 0.759 | 0.907 |
| Random Forest | 0.748 | 0.543 | 0.812 | 0.507 | 0.720 |
| With Oversampling | |||||
| Logistic Regression | 0.599 | 0.829 | 0.527 | 0.496 | 0.727 |
| Ridge Logistic Regression | 0.893 | 0.946 | 0.839 | 0.898 | 0.928 |
| Random Forest | 0.558 | 0.857 | 0.464 | 0.480 | 0.722 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lérias-Cambeiro, M.; Mugeiro-Silva, R.; Rodrigues, A.; Dias-Domingues, T.; Lança, F.; Vaz Carneiro, A. Enhancing Postpartum Haemorrhage Prediction Through the Integration of Classical Logistic Regression and Machine Learning Algorithms. Mathematics 2025, 13, 3376. https://doi.org/10.3390/math13213376
Lérias-Cambeiro M, Mugeiro-Silva R, Rodrigues A, Dias-Domingues T, Lança F, Vaz Carneiro A. Enhancing Postpartum Haemorrhage Prediction Through the Integration of Classical Logistic Regression and Machine Learning Algorithms. Mathematics. 2025; 13(21):3376. https://doi.org/10.3390/math13213376
Chicago/Turabian StyleLérias-Cambeiro, Muriel, Raquel Mugeiro-Silva, Anabela Rodrigues, Tiago Dias-Domingues, Filipa Lança, and António Vaz Carneiro. 2025. "Enhancing Postpartum Haemorrhage Prediction Through the Integration of Classical Logistic Regression and Machine Learning Algorithms" Mathematics 13, no. 21: 3376. https://doi.org/10.3390/math13213376
APA StyleLérias-Cambeiro, M., Mugeiro-Silva, R., Rodrigues, A., Dias-Domingues, T., Lança, F., & Vaz Carneiro, A. (2025). Enhancing Postpartum Haemorrhage Prediction Through the Integration of Classical Logistic Regression and Machine Learning Algorithms. Mathematics, 13(21), 3376. https://doi.org/10.3390/math13213376

