Sharp Functional Inequalities for Starlike and Convex Functions Defined via a Single-Lobed Elliptic Domain
Abstract
1. Introduction
2. Fundamental Lemmas
3. Estimate of 2nd Hankel Determinant
4. Third Hankel Determinants
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, W.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceeding of the Conference on Complex Analysis; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press: Cambridge, MA, USA, 1994; pp. 157–169. [Google Scholar]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Goel, P.; Kumar, S.S. Certain class of starlike functions associated with modified sigmoid function. Bull. Malays. Math. Sci. Soc. 2020, 43, 957–991. [Google Scholar] [CrossRef]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli. Int. J. Math. 2014, 25, 1450090. [Google Scholar] [CrossRef]
- Raina, R.K.; Sokół, J. Some properties related to a certain class of starlike functions. Comptes Rendus Math. 2015, 353, 973–978. [Google Scholar] [CrossRef]
- Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with a cardioid. Afr. Math. 2016, 27, 923–939. [Google Scholar] [CrossRef]
- Tayyah, A.S.; Atshan, W.G. Starlikeness and bi-starlikeness associated with a new Carathéodory function. J. Math. Sci. 2025. [Google Scholar] [CrossRef]
- Mundalia, M.; Kumar, S.S. On a subfamily of starlike functions related to hyperbolic cosine function. J. Anal. 2023, 31, 2043–2062. [Google Scholar] [CrossRef]
- Tayyah, A.S.; Hadi, S.H.; Wang, Z.-G.; Lupaş, A.A. Classes of Ma–Minda type analytic functions associated with a kidney-shaped domain. AIMS Math. 2025, 10, 22445–22470. [Google Scholar] [CrossRef]
- Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 14, 111–122. [Google Scholar] [CrossRef]
- Cho, N.E.; Kowalczyk, B.; Kwon, O.S.; Lecko, A.; Sim, Y.J. The bounds of some determinants for starlike functions of order α. Bull. Malays. Math. Sci. Soc. 2018, 41, 523–535. [Google Scholar] [CrossRef]
- Janteng, A.; Halim, S.A.; Darus, M. Coefficient inequality for a function whose derivative has a positive real part. J. Inequal. Pure Appl. Math. 2006, 7, 1–5. [Google Scholar]
- Lee, S.K.; Ravichandran, V.; Supramanian, S. Bound for the second Hankel determinant of certain univalent functions. J. Inequal. Appl. 2013, 2013, 281. [Google Scholar] [CrossRef]
- Raducanu, D.; Zaprawa, P. Second Hankel determinant for the close-to-convex functions. Comptes Rendus Math. 2017, 355, 1063–1071. [Google Scholar] [CrossRef]
- Sim, Y.J.; Lecko, A.; Thomas, D.K. The second Hankel determinant for strongly convex and Ozaki close-to-convex functions. Ann. Mat. Pura Appl. 2021, 200, 2515–2533. [Google Scholar] [CrossRef]
- Sokól, J.; Thomas, D.K. The second Hankel determinant for α-convex functions. Lith. Math. J. 2018, 58, 212–218. [Google Scholar] [CrossRef]
- Hadi, H.S.; Shaba, T.G.; Madhi, Z.S.; Darus, M.; Lupaş, A.A.; Tchier, F. Boundary values of Hankel and Toeplitz determinants for q-convex functions. MethodsX 2024, 13, 102842. [Google Scholar] [CrossRef] [PubMed]
- Hadi, S.H.; Darus, M.; Ibrahim, R.W. Hankel and Toeplitz determinants for q-starlike functions involving a q-analog integral operator and q-exponential function. J. Funct. Spaces 2025, 2025, 2771341. [Google Scholar] [CrossRef]
- Alsoboh, A.; Tayyah, A.S.; Amourah, A.; Al-Maqbali, A.A.; Al Mashraf, K.; Sasa, T. Hankel determinant estimates for bi-Bazilevič-type functions involving q-Fibonacci numbers. Eur. J. Pure Appl. Math. 2025, 18, 6698. [Google Scholar] [CrossRef]
- El-Ityan, M.; Sabri, M.A.; Hammad, S.; Frasin, B.; Al-Hawary, T.; Yousef, F. Third-order Hankel determinant for a class of bi-univalent functions associated with sine function. Mathematics 2025, 13, 2887. [Google Scholar] [CrossRef]
- Arif, M.; Abbas, M.; Alhefthi, R.K.; Breaz, D.; Cotîrlă, L.-I.; Rapeanu, E. Some analysis of the coefficient-related problems for functions of bounded turning associated with a symmetric image domain. Symmetry 2023, 15, 2090. [Google Scholar] [CrossRef]
- Arif, M.; Barukab, O.M.; Afzal Khan, S.; Abbas, M. The sharp bounds of Hankel determinants for the families of three-leaf-type analytic functions. Fractal Fract. 2022, 6, 291. [Google Scholar] [CrossRef]
- Peng, Z.; Arif, M.; Abbas, M.; Cho, N.E.; Alhefthi, R.K. Sharp coefficient problems of functions with bounded turning subordinated to the domain of cosine hyperbolic function. AIMS Math. 2024, 9, 15761–15781. [Google Scholar] [CrossRef]
- Bansal, D.; Maharana, S.; Prajapat, J.K. Third order Hankel determinant for certain univalent functions. J. Korean Math. Soc. 2015, 52, 1139–1148. [Google Scholar] [CrossRef]
- Raza, M.; Malik, S.N. Upper bound of the third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli. J. Inequal. Appl. 2013, 412, 8. [Google Scholar] [CrossRef]
- Zaprawa, P. Third Hankel determinants for classes of univalent functions. Mediterr. J. Math. 2017, 14, 1–10. [Google Scholar] [CrossRef]
- Zaprawa, P. Hankel determinants for univalent functions related to the exponential function. Symmetry 2019, 11, 211. [Google Scholar] [CrossRef]
- Shi, L.; Srivastava, H.M.; Arif, M.; Hussain, S.; Khan, H. An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function. Symmetry 2019, 11, 598. [Google Scholar] [CrossRef]
- Lupaş, A.A.; Tayyah, A.S.; Sokół, J. Sharp bounds on Hankel determinants for starlike functions defined by symmetry with respect to symmetric domains. Symmetry 2025, 17, 1244. [Google Scholar] [CrossRef]
- Banga, S.; Kumar, S.S. The sharp bounds of the second and third Hankel determinants for the class . Math. Slovaca 2020, 70, 849–862. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A.; Sim, Y.J. The sharp bound of the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 2018, 97, 435–445. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A.; Lecko, M.; Sim, Y.J. The sharp bound of the third Hankel determinant for some classes of analytic functions. Bull. Korean Math. Soc. 2018, 55, 1859–1868. [Google Scholar]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. The bound of the Hankel determinant of the third kind for starlike functions. Bull. Malays. Math. Sci. Soc. 2019, 42, 767–780. [Google Scholar] [CrossRef]
- Lecko, A.; Sim, Y.J.; Smiarowska, B. The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2. Complex Anal. Oper. Theory 2019, 13, 2231–2238. [Google Scholar] [CrossRef]
- Riaz, A.; Raza, M.; Thomas, D.K. The Third Hankel determinant for starlike functions associated with sigmoid functions. Forum Math. 2022, 34, 137–156. [Google Scholar] [CrossRef]
- Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
- Efraimidis, I. A generalization of Livingston’s coefficient inequalities for functions with positive real part. J. Math. Anal. Appl. 2016, 435, 369–379. [Google Scholar] [CrossRef]
- Ravichandran, V.; Verma, S. Bound for the fifth coefficient of certain starlike functions. Comptes Rendus Math. 2015, 353, 505–510. [Google Scholar] [CrossRef]
- Pommerenke, C. Univalent Functions; Vandenhoeck and Ruprecht: Göttingen, Germany, 1975. [Google Scholar]
- Libera, R.J.; Zlotkiewicz, E.J. Early coefficients of the inverse of a regular convex function. Proc. Am. Math. Soc. 1982, 85, 225–230. [Google Scholar] [CrossRef]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. On the fourth coefficient of functions in the Carathéodory class. Comput. Methods Funct. Theory 2018, 18, 307–314. [Google Scholar] [CrossRef]
- Rao, N.; Farid, M.; Jha, N.K. A study of (σ, μ)-Stancu-Schurer as a new generalization and approximations. J. Inequal. Appl. 2025, 2025, 104. [Google Scholar] [CrossRef]
- El-Ityan, M.; Amourah, A.; Hammad, S.; Buti, R.; Alsoboh, A. New Subclass of Bi-Univalent Functions Involving the Wright Function Associated with the Jung–Kim–Srivastav Operator. Gulf J. Math. 2025, 19, 451–462. [Google Scholar] [CrossRef]
- El-Ityan, M.; Al-Hawary, T.; Frasin, B.A.; Aldawish, I. A New Subclass of Bi-Univalent Functions Defined by Subordination to Laguerre Polynomials and the (p, q)-Derivative Operator. Symmetry 2025, 17, 982. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tayyah, A.S.; Hadi, S.H.; Alatawi, A.; Abbas, M.; Bagdasar, O. Sharp Functional Inequalities for Starlike and Convex Functions Defined via a Single-Lobed Elliptic Domain. Mathematics 2025, 13, 3367. https://doi.org/10.3390/math13213367
Tayyah AS, Hadi SH, Alatawi A, Abbas M, Bagdasar O. Sharp Functional Inequalities for Starlike and Convex Functions Defined via a Single-Lobed Elliptic Domain. Mathematics. 2025; 13(21):3367. https://doi.org/10.3390/math13213367
Chicago/Turabian StyleTayyah, Adel Salim, Sarem H. Hadi, Abdullah Alatawi, Muhammad Abbas, and Ovidiu Bagdasar. 2025. "Sharp Functional Inequalities for Starlike and Convex Functions Defined via a Single-Lobed Elliptic Domain" Mathematics 13, no. 21: 3367. https://doi.org/10.3390/math13213367
APA StyleTayyah, A. S., Hadi, S. H., Alatawi, A., Abbas, M., & Bagdasar, O. (2025). Sharp Functional Inequalities for Starlike and Convex Functions Defined via a Single-Lobed Elliptic Domain. Mathematics, 13(21), 3367. https://doi.org/10.3390/math13213367

