Artificial Intelligence Applied to Soil Compaction Control for the Light Dynamic Penetrometer Method
Abstract
1. Introduction
2. Compaction Control and Related Work
2.1. Importance of Control
2.2. Methods of Control
- (i)
- Laboratory compaction references.
- (ii)
- In situ methods.
- (a)
- Sand cone. The sand cone method (ASTM D1556/D1556M) determines the test hole volume by sand replacement, enabling and W; the current edition is 2024 [4].
- (b)
- Rubber-balloon method. The rubber-balloon method (ASTM D2167) determines volume by fluid displacement; the latest published edition is 2015 and the method was withdrawn in 2024.
- (c)
- Nuclear gauge. The nuclear gauge (ASTM D6938) estimates the field density, W-ray backscatter, and neutron moderation; it is rapid, but requires licensing and calibration [5].
- (d)
- Stiffness and deflection methods. Because performance depends on the stiffness, modulus-based control is widely used. The static plate load test (DIN 18134) yields / from load–settlement curves and is suited to the acceptance of subgrades and unbound layers, albeit with higher logistics [9]. Portable devices, such as the lightweight deflectometer (LWD), apply an impulse to a loading plate and back-calculate an elastic modulus ; current practices follow ASTM E2583 (LWD/PFWD) and ASTM E2835 (portable impulse plate) [7,8]. Correlations with plate tests, which are used in control QA, have been widely reported [31,34]. The falling weight deflectometer (FWD) evaluates deeper support but is less common for routine layer-by-layer control. Deflection-based criteria generally require local calibration and W normalization.
- (e)
- Dynamic penetrometer tests.
- (e.1)
- Lightweight dynamic penetrometers with variable energy (LDCP or Panda). LDCP (Pénétromètre Autonome Numérique Dynamique Assisté par Ordinateur) is a portable testing device weighing roughly 20 kg that has been widely used to evaluate soil compaction in situ under variable energy conditions [35]. The system consists of a 2 kg hammer that repeatedly strikes a rod train of 14 mm in diameter, which can be fitted with interchangeable conical tips of either 2 or 4 cm2 [35,36,37]. Each impact produces a stress wave that travels down the rod, and the resulting attenuation is recorded electronically. From this signal, two quantities are obtained in real time: the dynamic tip resistance (expressed in MPa) and the corresponding penetration depth (in mm). Depending on the testing mode, the LDCP can typically reach depths of up to 1.5 m for QC investigations, or as much as 6 m when applied to QA. Reported values of can reach up to 30 MPa in dense granular materials [36].
- (e.2)
- DCP-Standard penetrometer. The dynamic cone penetrometer, in its standard configuration (DCP-Standard), is widely recognized as a practical tool for in situ control compactation. The test is standardized under ASTM D6951 [6]. It employs an 8 kg hammer dropped freely from a height of 575 mm onto a 60° conical tip with an area of 4.04 cm2. The primary outcome is the penetration index (DPI, expressed in mm/blow) or, alternatively, its reciprocal (blows/mm).
- (e.3)
- DCP-Utility penetrometer.
- (e.4)
- PANDITO penetrometer. The PANDITO is a lightweight, constant-energy penetrometer with a 5 kg hammer dropped from 610 mm onto a 90° conical tip of 2 cm2. Results are expressed as the penetration index (DPI) or its inverse, corresponding to the number of blows required to advance 25.4 mm. The device reaches a maximum depth of about 0.5 m and is mainly used for the QA of shallow compacted layers. Its results can be related to CBR and the resilient modulus, but reliable use requires prior calibration and field experience, as testing usually involves at least two operators.
- (e.5)
- Dynamic cone penetrometer. The Dynamic Cone Penetration Test (DCPT) is a heavy constant-energy device used for subsurface exploration and quality assurance at greater depths. It consists of a 63.5 kg hammer dropped from 750 mm onto a 50 mm rod train fitted with a 60° conical tip of 44.8 cm2. Test results are commonly reported as the number of blows per 300 mm of penetration, which can also be converted into a dynamic tip resistance . With a penetration capacity of up to 15 m, the DCPT is widely applied to fine granular soils and is often used in liquefaction assessment. While it provides robust information at depth, field operation is slower, more expensive, and typically requires a larger crew; results may also be affected by hammer efficiency and rod alignment [43,44,45].
- (e.6)
- Comparative technical summary. The following tables provide a clear overview of the most relevant differences among the dynamic penetrometers considered in this study:
- Equipment (Table 2): The LDCP is the only device operating with variable energy, and it offers more detailed insight by allowing penetration to be interpreted as a function of the applied energy. Hammer weights vary considerably across devices, from as little as 2 kg for the LDCP to as much as 63.5 kg for the DCPT.
- Operation (Table 3): With the exception of the DCPT, all penetrometers require calibration. The LDCP is distinctive in that it demands a reference calibration based on the parameters , , and . In practice, this calibration is supported by curated databases accessible through the Websprint platform, which ensures higher repeatability and minimizes operator dependence compared with manually read devices, such as the DCP-Standard or the DCP-Utility.
- Application (Table 4): Among the instruments reviewed, the LDCP is the only one that can be used reliably for both QC and QA. In QA mode, the LDCP can reach depths of up to 6.0 m, clearly outperforming the DCP-Utility (0.16 m), the PANDITO (0.5 m), and the DCP-Standard (1.0 m). While the DCPT is capable of penetrating as deep as 15 m, its use is logistically demanding, requires multiple operators, and is not suited for routine compaction control.
- Standards (Table 5): The DCP-Standard (ASTM D6951) and DCP-Utility (ASTM D7380) are mainly intended for shallow pavement layers. By contrast, the LDCP is covered by the French standard NF P 94-105, which applies not only to pavements, but also to compacted fills and natural subgrades, explicitly covering both QC and QA applications. The DCPT, on the other hand, is regulated under NF P 94-063, a standard focused on deep soil profiling rather than compaction control.
- (iii)
- Intelligent compaction (IC).
- (iv)
- Remark on data-driven control.
2.3. Related Work
- (i)
- Classical QA/QC for compaction (density-, stiffness-, and penetration-based).
- (ii)
- Intelligent compaction (IC) and continuous compaction control (CCC).
- (iii)
- Machine learning for predicting the in situ strength or compaction outcomes.
- (iv)
- Explainable ML (XAI) in geotechnics.
- (v)
- Standards, guidelines, and specifications.
- (vi)
- Rationale for emphasizing dynamic penetrometers in this study.
3. Materials and Methods
3.1. Database
- Grain-size descriptors: key indicators derived from standard sieve and hydrometer analyses. These include the characteristic diameters , , , and , which correspond to the particle sizes at which 10%, 30%, 50%, and 60% of the soil mass passes through the gradation curve. The maximum particle size and the full cumulative passing distribution were also taken into account. In addition, the relative fractions of gravel (G), sand (S), and fines (F) were considered to describe the overall soil texture. Whenever possible, classical gradation coefficients were computed, including the coefficient of uniformity (), the coefficient of curvature (), and, where relevant, the high-plasticity clay index (). Taken together, these descriptors provide a consistent framework to capture both the spread and the shape of the particle-size distribution.
- Plasticity and fines activity: parameters describing the consistency and surface activity of fine-grained soils. The Atterberg limits include the liquid limit () and the plastic limit (), from which the plasticity index () is derived. These indices provide insight into the soil’s water retention capacity, workability, and its tendency to undergo volumetric changes. In addition, the methylene blue value () was considered an indicator of the surface activity of clay minerals. This parameter reflects both the quantity and the reactivity of the clay fraction, complementing the Atterberg limits by providing information on the adsorption properties and potential sensitivity of the fines.
- State variables: descriptors of the in situ condition of the soil. These include the natural water content (W), expressed as a percentage of the dry mass, and the dry unit weight (). Together, these parameters provide a direct measure of the balance between moisture and density that governs soil performance.
- Compaction references: parameters derived from the SPC test are used. These include the and the maximum dry density . Based on and , the percentage is obtained.
- Penetrometric responses: in situ indices and obtained with a lightweight dynamic cone penetrometer (LDCP). The parameter represents the dynamic cone resistance recorded at or near the surface, while corresponds to the stabilized resistance reached once the soil becomes confined at depth. This transition occurs at a critical depth , beyond which the resistance tends to remain constant. These values were determined consistently for all cases included in the database.
3.2. Supervised Learning Methods for Penetrometric Response
- Ridge regression.
- Lasso.
- Elastic net.
- Support vector regression (SVR).
- Random Forest.
- Gradient boosting with trees.
- Feed-forward neural network (MLP).
- Common preprocessing and tuning.
3.3. Modeling Pipeline and Evaluation
Algorithm 1 Modeling and evaluation pipeline |
|
4. Results Obtained
4.1. Model Comparison
4.2. Calibration, Residuals, and Prediction Intervals
4.3. Variable Importance and Model Explanations
4.4. Statistical Validation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- ASTM D698-12; Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft·lbf/ft3 (600 kN·m/m3)). ASTM International: West Conshohocken, PA, USA, 2021. [CrossRef]
- ASTM D1557; Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft·lbf/ft3 (2,700 kN·m/m3)). ASTM International: West Conshohocken, PA, USA, 2021. [CrossRef]
- EN 13286-2:2010; and Hydraulically Bound Mixtures—Part 2: Test Methods for Laboratory Reference Density and Water Content—Proctor Compaction. CEN: Brussels, Belgium, 2010.
- ASTM D1556; Test Method for Density and Unit Weight of Soil in Place by Sand-Cone Method. ASTM International: West Conshohocken, PA, USA, 2024. [CrossRef]
- ASTM D6938; Test Methods for In-Place Density and Water Content of Soil and Soil–Aggregate by Nuclear Methods (Shallow Depth). ASTM International: West Conshohocken, PA, USA, 2023. [CrossRef]
- ASTM D6951; Test Method for Use of the Dynamic Cone Penetrometer in Shallow Pavement Applications. ASTM International: West Conshohocken, PA, USA, 2018. [CrossRef]
- ASTM E2583; Test Method for Measuring Deflections with a Light Weight Deflectometer (LWD). ASTM International: West Conshohocken, PA, USA, 2020. [CrossRef]
- ASTM E2835; Test Method for Measuring Deflections Using a Portable Impulse Plate Load Test Device. ASTM International: West Conshohocken, PA, USA, 2021. [CrossRef]
- Soil—Testing Procedures and Testing Equipment—Plate Load Test; DIN/Beuth Verlag: Berlin, Germany, 2012; (English translation available).
- Geotechnical Investigation and Testing—Field Testing—Part 2: Dynamic Probing; ISO: Geneva, Switzerland, 2005.
- Lee, C.; Kim, K.S.; Woo, W.; Lee, W. Soil Stiffness Gauge (SSG) and Dynamic Cone Penetrometer (DCP) tests for estimating engineering properties of weathered sandy soils in Korea. Eng. Geol. 2014, 169, 91–99. [Google Scholar] [CrossRef]
- Kim, S.Y.; Lee, J.S.; Park, G.; Hong, W.T. Evaluation of Dynamic Resistance for Application of Portable In-Situ Device to Extra Target Depth. KSCE J. Civ. Eng. 2022, 26, 4195–4201. [Google Scholar] [CrossRef]
- Sun, H.; Xu, Q.; Sun, D.A.; Zhu, X. Energy-based comparison between a dynamic cone penetrometer and a motor-operated static cone penetrometer. Soil Tillage Res. 2011, 113, 124–133. [Google Scholar] [CrossRef]
- Farshbaf Aghajani, H.; Hatefi Diznab, M. A statistical investigation of dynamic cone penetrometer test. Int. J. Geosynth. Ground Eng. 2023, 9, 8. [Google Scholar] [CrossRef]
- Ahmad, M.; Al-Zubi, M.A.; Kubińska-Jabcoń, E.; Majdi, A.; Al-Mansob, R.A.; Sabri, M.M.S.; Ali, E.; Naji, J.A.; Elnaggar, A.Y.; Zamin, B. Predicting California bearing ratio of HARHA-treated expansive soils using Gaussian process regression. Sci. Rep. 2023, 13, 13593. [Google Scholar] [CrossRef]
- Almuaythir, S.; Zaini, M.S.I.; Lodhi, R.H. Predicting soil compaction parameters in expansive soils using advanced machine learning models: A comparative study. Sci. Rep. 2025, 15, 24018. [Google Scholar] [CrossRef]
- Kardani, N.; Aminpour, M.; Raja, M.N.A.; Kumar, G.; Bardhan, A.; Nazem, M. Prediction of the resilient modulus of compacted subgrade soils using ensemble machine learning methods. Transp. Geotech. 2022, 36, 100827. [Google Scholar] [CrossRef]
- Hu, X.; Solanki, P. Predicting Resilient Modulus of Cementitiously Stabilized Subgrade Soils Using Neural Network, Support Vector Machine, and Gaussian Process Regression. Int. J. Geomech. 2021, 21, 04021073. [Google Scholar] [CrossRef]
- Almuaythir, S.; Zaini, M.S.I.; Hasan, M.; Hoque, M.I. Stabilization of expansive clay soil using shells based agricultural waste ash. Sci. Rep. 2025, 15, 10186. [Google Scholar] [CrossRef]
- Almuaythir, S.; Abbas, M.F. Expansive soil remediation using cement kiln dust as stabilizer. Case Stud. Constr. Mater. 2023, 18, e01983. [Google Scholar] [CrossRef]
- Park, G.; Kim, N.; Kang, S.; Kim, S.Y.; Yoo, C.; Lee, J.S. Instrumented dynamic cone penetrometer incorporated with time domain reflectometry. Measurement 2023, 206, 112337. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the Advances in Neural Information Processing Systems 30 (NeurIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Ngo, A.Q.; Nguyen, L.Q.; Tran, V.Q. Developing interpretable machine learning–Shapley additive explanations model for unconfined compressive strength of cohesive soils stabilized with geopolymer. PLoS ONE 2023, 18, e0286950. [Google Scholar] [CrossRef]
- Bozorgzadeh, E.; Feng, Y.J. Evaluation structures for machine learning models in geotechnical engineering: Problem, data, and algorithm. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2024, 18, 60–76. [Google Scholar] [CrossRef]
- Das, B.M. Principles of Geotechnical Engineering, 9th ed.; Cengage Learning: Boston, MA, USA, 2016. [Google Scholar]
- Lambe, T.W.; Whitman, R.V. Soil Mechanics; Wiley: New York, NY, USA, 1979. [Google Scholar]
- Seed, H.B.; Chan, C.K. Structure and strength characteristics of compacted clays. J. Soil Mech. Found. Div. ASCE 1959, 85, 87–128. [Google Scholar] [CrossRef]
- AASHTO. AASHTO Guide for Design of Pavement Structures; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2017. [Google Scholar]
- Alonso, E.E.; Gens, A. Aznalcóllar dam failure. Part 1: Field observations and material properties. Géotechnique 2006, 56, 165–183. [Google Scholar] [CrossRef]
- Federal Highway Administration. Utilizing Intelligent Compaction to Ensure Quality and Uniformity of Pavement Foundation; Technical Report FHWA-HIF-24-097; Tech Brief; U.S. Department of Transportation, FHWA: McLean, VA, USA, 2024.
- Zhang, Q.; An, Z.; Huangfu, Z.; Li, Q. A Review on Roller Compaction Quality Control and Assurance Methods for Earthwork in Five Application Scenarios. Materials 2022, 15, 2610. [Google Scholar] [CrossRef]
- T 99-21; Moisture–Density Relations of Soils Using a 2.5-kg (5.5-lb) Rammer and a 305-mm (12-in.) Drop. AASHTO: Washington, DC, USA, 2021.
- T 180-22; Moisture–Density Relations of Soils Using a 4.54-kg (10-lb) Rammer and a 457-mm (18-in.) Drop. AASHTO: Washington, DC, USA, 2022.
- Baek, S.H.; Cho, J.W.; Kim, J.Y. Field study on intelligent compaction for compaction quality control of subgrade bases. Can. Geotech. J. 2025, 62, 1–14. [Google Scholar] [CrossRef]
- Gourvès, R.; Barjot, R. Le Pénétromètre Dynamique Léger PANDA, The PANDA Ultralight Dynamic Penetrometer. In Proceedings of the Eleventh European Conference on Soil Mechanics and Foundation Engineering, Copenhagen, Denmark, 28 May–1 June 1995. [Google Scholar]
- Benz-Navarrete, M.A.; Breul, P.; Bacconnet, C.; Moustan, P. The PANDA®, Variable Energy Lightweight Dynamic Cone Penetrometer: A quick state of art. ASTM J. 2020. Available online: https://api.semanticscholar.org/CorpusID:232155737 (accessed on 1 September 2025).
- Rojas-Vivanco, J.; Barbier, S.; Navarrete, M.A.B.; Breul, P. Statistical Analysis of the Influence of Ballast Fouling on Penetrometer and Geoendoscope Data. Adv. Transp. Geotech. IV 2021, 165, 915–930. [Google Scholar] [CrossRef]
- NF P94-105; Sols: Reconnaissance et essais—Contrôle de la qualité du compactage—Méthode au pénétromètre dynamique à énergie variable—Principe et méthode d’étalonnage du pénétromètre—Exploitation des résultats—Interprétation. AFNOR: Paris, France, 2000.
- Herath, A.; Mohammad, L.N.; Gaspard, K.; Gudishala, R.; Abu-Farsakh, M.Y. The Use of Dynamic Cone Penetrometer to Predict Resilient Modulus of Subgrade Soils. In Proceedings of the Advances in Pavement Engineering, GeoFrontiers 2005, Reston, VA, USA, 24–26 January 2005; pp. 313–322. [Google Scholar] [CrossRef]
- Mousavi, S.H.; Gabr, M.A.; Borden, R.H. Resilient modulus prediction of soft low-plasticity Piedmont residual soil using dynamic cone penetrometer. J. Rock Mech. Geotech. Eng. 2018, 10, 323–332. [Google Scholar] [CrossRef]
- Keskin, İ.; Memiş, M.A. Prediction of soil strength and dynamic properties through the dynamic cone penetration index. Discov. Civ. Eng. 2025, 2, 142. [Google Scholar] [CrossRef]
- ASTM D7380-08; Standard Test Method for Soil Compaction Determination at Shallow Depths Using 5-lb (2.3-kg) Dynamic Cone Penetrometer. ASTM International: West Conshohocken, PA, USA, 2008. [CrossRef]
- IS 2131-1981; Method for Standard Penetration Test for Soils. Bureau of Indian Standards: New Delhi, India, 1981.
- IS 4968; (Part 2); Method for Subsurface Sounding for Soils: Dynamic Method Using Cone and Bentonite Slurry. Bureau of Indian Standards: New Delhi, India, 1976.
- Chen, C.; Shen, S.; Arulrajah, A.; Wu, H. Correlations between dynamic cone penetration test results and soil properties: A review. Soils Found. 2018, 58, 425–450. [Google Scholar] [CrossRef]
- George, R.M.D.; Rao, K.V.R.; Shivashankar, R. PFWD, DCP and CBR correlations for evaluation of lateritic subgrades. Int. J. Pavement Eng. 2009, 10, 189–199. [Google Scholar] [CrossRef]
- Mohammadi, S.D.; Nikoudel, M.R.; Rahimi, H.; Khamehchiyan, M. Application of the Dynamic Cone Penetrometer (DCP) for determination of the engineering parameters of sandy soils. Eng. Geol. 2008, 101, 195–203. [Google Scholar] [CrossRef]
- Ampadu, S.I.K.; Fiadjoe, P. Influence of water content on the dynamic cone penetration index and the California Bearing Ratio of a lateritic subbase. Transp. Geotech. 2015, 5, 68–85. [Google Scholar] [CrossRef]
- Jas, K.; Dodagoudar, G.R. Explainable machine learning model for liquefaction potential assessment of soils using XGBoost–SHAP. Soil Dyn. Earthq. Eng. 2023, 165, 107662. [Google Scholar] [CrossRef]
- SETRA–LCPC. GTR Guide des Terrassements Routiers: Réalisation des Remblais et des Couches de Forme; SETRA–LCPC: Paris-Bagneux, France, 1992; Available online: https://doc.cerema.fr/Default/doc/SYRACUSE/14456/realisation-des-remblais-et-des-couches-de-forme-GTR-Fascicule-1-et-2.pdf (accessed on 1 September 2025).
- D2487-17; Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International: West Conshohocken, PA, USA, 2017.
- Calster, B.V.; McLernon, D.J.; van Smeden, M.; Wynants, L.; Steyerberg, E.W. Calibration: The Achilles Heel of Predictive Analytics. BMC Med. 2019, 17, 230. [Google Scholar] [CrossRef]
- Lei, J.; G’Sell, M.; Rinaldo, A.; Tibshirani, R.J.; Wasserman, L. Distribution-free predictive inference for regression. J. Am. Stat. Assoc. 2018, 113, 1094–1111. [Google Scholar] [CrossRef]
- Angelopoulos, A.N.; Bates, S. A gentle introduction to conformal prediction and distribution-free uncertainty quantification. arXiv 2021, arXiv:2107.07511. [Google Scholar]
- Shapley, L.S. A Value for n-Person Games. In Contributions to the Theory of Games; Annals of Mathematics Studies; Kuhn, H.W., Tucker, A.W., Eds.; Princeton University Press: Princeton, NJ, USA, 1953; Volume 28, pp. 307–317. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.I. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S.M.; Erion, G.G.; Lee, S.I. Consistent individualized feature attribution for tree ensembles. arXiv 2018, arXiv:1802.03888. [Google Scholar]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman & Hall/CRC: New York, NY, USA, 1993. [Google Scholar] [CrossRef]
- Holm, S. A Simple Sequentially Rejective Multiple Test Procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Lakens, D. Calculating and Reporting Effect Sizes to Facilitate Cumulative Science: A Practical Primer for t-Tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [PubMed]
- Meissel, K.; Yao, E.S. Using Cliff’s Delta as a Non-Parametric Effect Size Measure: An Accessible Web App and R Tutorial. Pract. Assess. Res. Eval. 2024, 29, 2. [Google Scholar] [CrossRef]
Method | Principle | Primary Output | Effective Depth | Typical Use and Notes |
---|---|---|---|---|
Lab Proctor (SPC/MPC) | Compaction in mold with standardized energy; locate peak dry density at . | , () | Sample (mold ∼10–15 cm) | Benchmark for relative compaction; acceptance as % of . ASTM D698/D1557 [1,2]. |
Sand cone/water replacement | Excavate small hole; determine hole volume by sand or water/balloon fill. | , W | ∼0.15–0.30 m | In situ density reference; accurate and direct. Sand cone per ASTM D1556 [4]. Rubber–balloon (ASTM D2167) withdrawn in 2024. |
Drive cylinder (core cutter) | Steel cylinder-driven, trimmed, weighed. | (wet), , W | ∼0.15 m | Useful in cohesive/soft soils; potential volume error if the sample crumbles. |
Nuclear gauge | –ray backscatter and neutron moderation to infer density and moisture. | (wet density), W | Backscatter ∼0.15 m; direct to ∼0.30 m | Rapid, non-destructive; requires licensing, on-site calibration, and project-specific correlation [5]. |
Plate load (/) | Static loading of rigid plate; measure load–deflection. | , (MPa); / | ≈1–2 plate diameters (0.3–0.6 m) | Direct performance metric; roadbed acceptance with EV thresholds and / ratio [9]. |
Lightweight deflectometer (LWD) | Drop weight on plate; record peak deflection; back-calculate modulus. | (MPa) | ∼0.10–0.20 m | Fast stiffness control of each lift; correlates with plate test; sensitive to moisture/stress [7,8]. |
Falling weight deflectometer (FWD) | Higher drop loads and sensor array to fit deflection basin. | Layer modulus (back-calculated) | ∼1–1.5 m | Pavement evaluation; occasional use for overall support on subgrade/base; requires expertise/equipment. |
Dynamic cone penetrometer (DCP) | Standardized drops drive a cone; read penetration per blow. | DPI (mm/blow) or blows/mm; sometimes | ∼0–0.8 m (to ∼1.5 m with rods) | QA of compacted layers; correlations with CBR/resilient modulus; sensitive to moisture and coarse particles [6]. |
Light dynamic penetrometers (LDCP) | Instrumented variable-energy cone (e.g., LDCP/Panda); continuous profile. | ; indices , , and | QC: ∼0–1.2 m; QA: to ∼3 m (with rods) | EN ISO 22476-2 (DPL/DPM/DPH); energy normalization and device procedures; high repeatability; used in this study [10]. |
Intelligent compaction (IC) | Vibratory roller with accelerometer & GNSS; infer near-surface stiffness continuously. | ICMV (dimensionless index) | ∼0.3–0.5 m (drum influence) | 100% coverage for uniformity/process control; project-specific calibration against spot tests (density, LWD, and DCP) [30,31]. |
Characteristic | LDCP | DCP-Utility | DCP-Standard | PANDITO | DCPT |
---|---|---|---|---|---|
Hammer weight (kg) | 2.0 | 2.3 | 8.0 or 4.6 | 5.0 | 63.5 |
Drop height (cm) | Variable | 50.8 ± 1.0 | 57.5 | 61.0 | 75.0 |
Tip area (cm2) | 2.0/4.0 | 4.84 | 4.04 | 2.0 | 44.77 |
Tip angle (°) | 90 | 25 | 60 | 90 | 60 |
Rod diameter (mm) | 14 | 17.5 | 16.0 | 14 | 50 |
Rod length (cm) | 50 | 47.1 | 100.1 | 52 | 150 |
Characteristic | LDCP | DCP-Utility | DCP-Standard | PANDITO | DCPT |
---|---|---|---|---|---|
Calibration | Yes | Yes | Yes | Yes | No |
Portability | High | High | High | High | Low |
Durability | Very good | Good | Good | Good | Good |
Standard | XP P 94-105 | ASTM D7380 | ASTM D6951 | Non-standardized | Non-standardized |
Operator type | Technician | Worker | Worker | Worker | Worker |
Training | Medium | Low | Low | Low | Medium |
Characteristic | LDCP | DCP-Utility | DCP-Standard | PANDITO | DCPT |
---|---|---|---|---|---|
QC during compaction | Yes | Yes | Yes | Yes | No |
QA/deep soil profiling | Yes | No | No | No | Yes |
Data recording | Automatic | Manual | Manual | Manual | Manual/auto |
Max. depth (m) | QC: 1.2, QA: 6.0 | 0.16 | 1.0 | 0.5 | 15.0 |
Repeatability | Very good | N/I | N/I | N/I | Low |
Standard | Designation | Penetrometers | Applications | Calibration |
---|---|---|---|---|
ASTM D6951 | Standard DCP | Pavement bases | In situ CBR, QA | laboratory |
ASTM D7380 | Utility DCP | Pavement bases | In situ CBR, QC | laboratory |
XP P 94-105 | LDCP | Pavements, fills, subgrades | QC/QA | laboratory and field |
N/I | DCPT | Embankments and subgrades | QA | Field |
GTR Class | Number of Records |
---|---|
B5 | 101 |
A1 | 90 |
B4 | 32 |
A2 | 26 |
D1 | 19 |
B2 | 11 |
B6 | 11 |
DC3 | 10 |
B3 | 10 |
D2 | 9 |
B1 | 9 |
DC1 | 4 |
Role | Variables |
---|---|
Primary target | |
Auxiliary targets (for plots/SHAP) | , |
Gradation | , , , , |
Plasticity/activity | , , , |
State variables | W, , |
Compaction refs. (SPC/MPC) | , |
Family | Estimator | Grid (Key Ranges and Notes) |
---|---|---|
Linear | OLS | fit_intercept |
Linear | Ridge | |
Linear | Lasso | ; max_iter |
Linear | Elastic Net | ; -ratio ; max_iter |
SVR | RBF kernel | , , |
SVR | Linear kernel | , |
SVR | Polynomial kernel | , degree , , , |
Neural | MLPRegressor | hidden sizes ; activation ; ; learning rate init ; batch size ; early_stopping; max_iter |
Ensemble | Random Forest (RF) | ; max depth ; min samples split ; min samples leaf ; max features ; bootstrap |
Ensemble | XGBoost (XGB) | ; max depth ; learning rate ; subsample ; colsample_bytree ; ; ; objective ; tree_method |
Metric | Definition | Goal |
---|---|---|
MSE | Lower is better | |
RMSE | Lower is better | |
MAE | Lower is better | |
MAPE | Lower is better | |
Higher is better | ||
R | Closer to 1 (or ) is better |
Model | (Test) | RMSE (Test) | MAE (Test) | MSE (Test) | MAPE (Test) | R (Test) |
---|---|---|---|---|---|---|
Baseline (Average) | 0.056 | 10.011 | 6.382 | 100.238 | ||
MLP | 0.794 | 5.866 | 2.870 | 34.414 | 70.225 | 0.895 |
RF | 0.708 | 6.985 | 3.678 | 48.784 | 111.248 | 0.859 |
SVR | 0.595 | 8.230 | 3.809 | 67.732 | 104.904 | 0.854 |
XGB | 0.773 | 6.155 | 3.378 | 37.887 | 99.494 | 0.885 |
Model | RMSE | MAE | MSE | MAPE (%) | R | |
---|---|---|---|---|---|---|
MLP | 0.732 ±0.143 | 4.844 ±0.898 | 2.628 ±0.443 | 24.273 ±8.801 | 74.62 ±51.24 | 0.897 ±0.024 |
RF | 0.715 ±0.092 | 5.381 ±1.778 | 2.807 ±0.862 | 32.122 ±18.834 | 134.757 ±37.55 | 0.850 ±0.055 |
SVR | 0.722 ±0.100 | 5.276 ±1.943 | 2.700 ±0.696 | 31.615 ±22.282 | 212,807 ±57.70 | 0.876 ±0.041 |
XGB | 0.716 ±0.077 | 5.224 ±1.247 | 2.723 ±0.552 | 28.849 ±12.916 | 147.52 ±46.27 | 0.871 ±0.050 |
Model | # Fit Runs | Fit Time (s) | # Latency Runs | Latency 1-Sample (ms) |
---|---|---|---|---|
MLP | 7 | 400 | ||
RF | 7 | 400 | ||
SVM | 7 | 400 | ||
XGB | 7 | 400 |
Model | (95% CI) | RMSE (95% CI) | MAE (95% CI) |
---|---|---|---|
MLP | 0.794 [0.653, 0.902] | 5.866 [3.179, 8.207] | 2.870 [1.757, 4.178] |
RF | 0.708 [0.577, 0.812] | 6.985 [4.164, 9.453] | 3.678 [2.355, 5.219] |
SVR | 0.595 [0.482, 0.765] | 8.230 [4.194, 11.597] | 3.809 [2.231, 5.722] |
XGB | 0.773 [0.638, 0.851] | 6.155 [3.970, 8.048] | 3.378 [2.252, 4.686] |
Pair | (Mean, 95% CI) | p (Two-Sided) | Cohen | Cliff’s | p (Holm) |
---|---|---|---|---|---|
SVR−MLP | 2.300 [0.385, 4.116] | 0.0188 | 0.220 | −0.075 | 0.1128 |
RF−MLP | 1.149 [−0.083, 2.591] | 0.0652 | 0.223 | −0.045 | 0.3260 |
XGB−SVR | −1.958 [−4.337, 0.536] | 0.1296 | −0.099 | 0.284 | 0.5184 |
SVR−RF | 1.159 [−0.526, 2.678] | 0.1632 | 0.041 | −0.075 | 0.5184 |
XGB−RF | −0.801 [−1.991, 0.575] | 0.2304 | −0.117 | −0.134 | 0.5184 |
XGB−MLP | 0.361 [−1.172, 2.369] | 0.7536 | 0.131 | 0.015 | 0.7536 |
Model | Slope b (95% CI) | Intercept a (95% CI) | (95% CI) |
---|---|---|---|
MLP | 1.068 [0.828, 1.322] | 0.243 [−0.682, 1.190] | 0.801 [0.679, 0.912] |
RF | 1.246 [0.898, 1.548] | −1.344 [−2.837, 0.268] | 0.739 [0.598, 0.864] |
SVR | 1.598 [1.171, 2.016] | −1.311 [−2.796, 0.070] | 0.730 [0.621, 0.853] |
XGB | 1.124 [0.830, 1.351] | −0.592 [−1.584, 0.675] | 0.784 [0.651, 0.884] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-Vivanco, J.; García, J.; Villavicencio, G.; Benz, M.; Herrera, A.; Breul, P.; Varas, G.; Moraga, P.; Gornall, J.; Pinto, H. Artificial Intelligence Applied to Soil Compaction Control for the Light Dynamic Penetrometer Method. Mathematics 2025, 13, 3359. https://doi.org/10.3390/math13213359
Rojas-Vivanco J, García J, Villavicencio G, Benz M, Herrera A, Breul P, Varas G, Moraga P, Gornall J, Pinto H. Artificial Intelligence Applied to Soil Compaction Control for the Light Dynamic Penetrometer Method. Mathematics. 2025; 13(21):3359. https://doi.org/10.3390/math13213359
Chicago/Turabian StyleRojas-Vivanco, Jorge, José García, Gabriel Villavicencio, Miguel Benz, Antonio Herrera, Pierre Breul, German Varas, Paola Moraga, Jose Gornall, and Hernan Pinto. 2025. "Artificial Intelligence Applied to Soil Compaction Control for the Light Dynamic Penetrometer Method" Mathematics 13, no. 21: 3359. https://doi.org/10.3390/math13213359
APA StyleRojas-Vivanco, J., García, J., Villavicencio, G., Benz, M., Herrera, A., Breul, P., Varas, G., Moraga, P., Gornall, J., & Pinto, H. (2025). Artificial Intelligence Applied to Soil Compaction Control for the Light Dynamic Penetrometer Method. Mathematics, 13(21), 3359. https://doi.org/10.3390/math13213359