Positive Solutions for a Semipositone Singular ψ–Riemann–Liouville Fractional Boundary Value Problem
Abstract
1. Introduction
2. Auxiliary Results
- -
- If , , , then we obtain the Riemann–Liouville fractional integral/derivative of order ;
- -
- If , , , then we get the Hadamard fractional integral/derivative of order ;
- -
- If , , , with , then we find the Katugampola fractional integral/derivative of order ; and so on.
3. Existence of Positive Solutions
- (A1)
- , , , , with for all , , for all , , , are nondecreasing functions, and (given by (10)).
- (A2)
- The function may be singular at and/or , and there exist the functions , such thatwith and , ().
- (A3)
- There exist , such that
- (A4)
- There exist , such that withand , where and are given in Lemma 9.
4. Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henderson, J.; Luca, R. Existence of positive solutions for a singular fractional boundary value problem. Nonlinear Anal. Model. Control 2017, 22, 99–114. [Google Scholar] [CrossRef]
- Luca, R. On a class of nonlinear singular Riemann-Liouville fractional differential equations. Results Math. 2018, 73, 1–15. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Luca, R. Positive solutions for a semipositone singular Riemann-Liouville fractional differential problem. Intern. J. Nonlinear Sci. Numer. Simul. 2019, 20, 823–832. [Google Scholar] [CrossRef]
- Du, X. Existence of positive solutions to semipositone fractional differential equations. Appl. Math. 2016, 2016, 1484–1489. [Google Scholar] [CrossRef]
- Hao, X.; Liu, L.; Wu, Y. Positive solutions for nonlinear fractional semipositone differential equation with nonlocal boundary conditions. J. Nonlinear Sci. Appl. 2016, 9, 3992–4002. [Google Scholar] [CrossRef]
- Min, D.; Liu, L.; Wu, Y. Uniqueness of positive solutions for the singular fractional differential equations involving integral boundary value conditions. Bound. Value Probl. 2018, 2018, 23. [Google Scholar] [CrossRef]
- Pu, R.; Zhang, X.; Cui, Y.; Li, P.; Wang, W. Positive solutions for singular semipositone fractional differential equation subject to multipoint boundary conditions. J. Funct. Spaces 2017, 2017, 5892616. [Google Scholar] [CrossRef]
- Zhang, X. Positive solutions for a class of singular fractional differential equation with infinite-point boundary value conditions. Appl. Math. Lett. 2015, 39, 22–27. [Google Scholar] [CrossRef]
- Zhang, X.; Shao, Z.; Zhong, Q.; Zhao, Z. Triple positive solutions for semipositone fractional differential equations m-point boundary value problems with singularities and p–q-order derivatives. Nonlinear Anal. Model. Control 2018, 23, 889–903. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, Q. Triple positive solutions for nonlocal fractional differential equations with singularities both on time and space variables. Appl. Math. Lett. 2018, 80, 12–19. [Google Scholar] [CrossRef]
- Zhong, Q.; Zhang, X.; Gu, L.; Lei, L.; Zhao, Z. Multiple positive solutions for singular higher-order semipositone fractional differential equations with p-Laplacian. Nonlinear Anal. Model. Control 2020, 25, 806–826. [Google Scholar] [CrossRef]
- Cheng, T.; Xu, X. Existence of positive solutions to singular fractional differential equations with generalized Laplacian. Fixed Point Theory 2025, 26, 91–118. [Google Scholar]
- Henderson, J.; Luca, R. On a system of Riemann-Liouville fractional boundary value problems. Commun. Appl. Nonlinear Anal. 2016, 23, 1–19. [Google Scholar]
- Feng, H.; Zhang, X. Existence and uniqueness of positive solutions for a coupled system of fractional differential equations. Discret. Dyn. Nat. Soc. 2022, 2022, 7779977. [Google Scholar] [CrossRef]
- Guo, L.; Liu, L. Unique iterative positive solutions for a singular p-Laplacian fractional differential equation system with infinite-point boundary conditions. Bound. Value Prob. 2019, 2019, 113. [Google Scholar] [CrossRef]
- Guo, L.; Liu, L.; Wu, Y. Iterative unique positive solutions for singular p-Laplacian fractional differential equation system with several parameters. Nonlinear Anal. Model. Control 2018, 23, 182–203. [Google Scholar] [CrossRef]
- Hao, X.; Wang, H. Positive solutions of semipositone singular fractional differential systems with a parameter and integral boundary conditions. Open Math. 2018, 16, 581–596. [Google Scholar] [CrossRef]
- Liu, L.; Li, H.; Liu, C.; Wu, Y. Existence and uniqueness of positive solutions for singular fractional differential systems with coupled integral boundary value problems. J. Nonlinear Sci. Appl. 2017, 10, 243–262. [Google Scholar] [CrossRef]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Ahmad, B.; Henderson, J.; Luca, R. Boundary Value Problems for Fractional Differential Equations and Systems; Trends in Abstract and Applied Analysis 9; World Scientific: Hackensack, NJ, USA, 2021. [Google Scholar]
- Henderson, J.; Luca, R. Boundary Value Problems for Systems of Differential, Difference and Fractional Equations. Positive Solutions; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Zhou, Y.; Wang, J.R.; Zhang, L. Basic Theory of Fractional Differential Equations, 2nd ed.; World Scientific: Singapore, 2016. [Google Scholar]
- Luo, M.; Qiu, W.; Nikan, O.; Avazzadeh, Z. Second-order accurate, robust and efficient ADI Galerkin technique for the three-dimensional nonlocal heat model arising in viscoelasticity. Appl. Math. Comput. 2023, 440, 1–21. [Google Scholar] [CrossRef]
- Lyons, J.W.; Neugebauer, J.T.; Wingo, A.G. Existence and nonexistence of positive solutions for fractional boundary value problems with Lidstone-inspired fractional conditions. Mathematics 2025, 13, 1336. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Mirgani, S.M.; Tellab, B.; Amara, A.; Mezabia, M.E.-H.; Zennir, K.; Bouhali, K. Hyers-Ulam stability results of solutions for a multi-point φ-Riemann-Liouville fractional boundary value problem. Mathematics 2025, 13, 1450. [Google Scholar] [CrossRef]
- Yang, S.; Song, H.; Zhou, H.; Xie, S.; Zhang, L.; Zhou, W. A fractional derivative insight into full-stage creep behavior in deep coal. Fractal Fract. 2025, 9, 473. [Google Scholar] [CrossRef]
- Al-Issa, S.M.; El-Sayed, A.M.A.; Kaddoura, I.H.; Sheet, F.H. Qualitative study on ψ-Caputo fractional differential inclusion with non-local conditions and feedback control. J. Math. Comput. Sci. 2024, 34, 295–312. [Google Scholar] [CrossRef]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef]
- Almeida, R. Functional differential equations involving the ψ-Caputo fractional derivative. Fractal Fract. 2020, 4, 29. [Google Scholar] [CrossRef]
- Almeida, R.; Malinowska, A.B.; Monteiro, M.T.T. Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications. Math. Methods Appl. Sci. 2018, 41, 336–352. [Google Scholar] [CrossRef]
- Baitiche, Z.; Derbazi, C.; Benchohra, M. ψ-Caputo fractional differential equations with multi-point boundary conditions by topological degree theory. Results Nonlinear Anal. 2020, 3, 167–178. [Google Scholar]
- Sousa, J.V.C.; Oliveira, E.C. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Kucche, K.D.; Mali, A.D. On the nonlinear (k, Ψ)-Hilfer fractional differential equations. Chaos Solitons Fractals 2021, 152, 111335. [Google Scholar] [CrossRef]
- Erkan, F.; Hamal, N.A.; Ntouyas, S.K.; Tariboon, J. Existence and uniqueness analysis for (k, ψ)-Hilfer and (k, ψ)-Caputo sequential fractional differential equations and inclusions with non-separated boundary conditions. Fractal Fract. 2025, 9, 437. [Google Scholar] [CrossRef]
- Samadi, A.; Ntouyas, S.K.; Tariboon, J. On a (k, χ)-Hilfer fractional system with coupled nonlocal boundary conditions including various fractional derivatives and Riemann-Stieltjes integrals. Nonlinear Anal. Model. Control 2024, 29, 426–448. [Google Scholar] [CrossRef]
- Ahrendt, K.; Ikram, A.; Marchitto, R. Sturm-Liouville and boundary value problems in nabla discrete fractional calculus. Fract. Differ. Calculus 2024, 14, 235–246. [Google Scholar] [CrossRef]
- Barilla, D.; Bohner, M.; Caristi, G.; Heidarkhani, S.; Moradi, S. Existence results for a discrete fractional boundary value problem. Electron. Res. Arch. 2025, 33, 1541–1565. [Google Scholar] [CrossRef]
- Dimitrov, N.D.; Jonnalagadda, J.M. Existence of positive solutions for a class of nabla fractional boundary value problems. Fractal Fract. 2025, 9, 131. [Google Scholar] [CrossRef]
- Gopal, N.S.; Jonnalagadda, J.M. Positive solutions of nabla fractional boundary value problem. Cubo Math. J. 2022, 24, 467–484. [Google Scholar] [CrossRef]
- Moradi, S.; Afrouzi, G.A.; Graef, J.R. Existence of multiple weak solutions to a discrete fractional boundary value problem. Axioms 2023, 12, 991. [Google Scholar] [CrossRef]
- Bourguiba, R.; Cabada, A.; Kalthoum, W.O. Existence of solutions of discrete fractional problem coupled to mixed fractional boundary conditions. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 2022, 116, 1–15. [Google Scholar] [CrossRef]
- Henderson, J. Nontrivial solutions for a nonlinear νth order Atıcı-Eloe fractional difference equation satisfying Dirichlet boundary conditions. Differ. Equ. Appl. 2022, 14, 137–143. [Google Scholar] [CrossRef]
- Henderson, J. Nontrivial solutions for a nonlinear νth order Atıcı-Eloe fractional difference equation satisfying left focal boundary conditions. J. Fractional Calc. Appl. 2022, 13, 156–162. [Google Scholar]
- Mohammed, P.O.; Agarwal, R.P.; Baleanu, D.; Abdeljawad, T.; Yousif, M.A.; Abdelwahed, M. Uniqueness results based on delta fractional operators for certain boundary value problems. Fractals 2024, 30, 2540041. [Google Scholar] [CrossRef]
- Liu, H.; Jin, Y.; Hou, C. Existence of positive solutions for discrete delta-nabla fractional boundary value problems with p-Laplacian. Bound. Value Probl. 2017, 2017, 60. [Google Scholar] [CrossRef]
- Reunsumrit, J.; Sitthiwirattham, T. Existence results of fractional delta-nabla difference equations via mixed boundary conditions. Adv. Differ. Equ. 2020, 2020, 370. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives, Theory and Applications; Gordan and Breach Science Publishers: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Guo, D.; Lakshmikantham, V. Nonlinear Problems in Abstract Cones; Academic Press: New York, NY, USA, 1988. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tudorache, A.; Luca, R. Positive Solutions for a Semipositone Singular ψ–Riemann–Liouville Fractional Boundary Value Problem. Mathematics 2025, 13, 3292. https://doi.org/10.3390/math13203292
Tudorache A, Luca R. Positive Solutions for a Semipositone Singular ψ–Riemann–Liouville Fractional Boundary Value Problem. Mathematics. 2025; 13(20):3292. https://doi.org/10.3390/math13203292
Chicago/Turabian StyleTudorache, Alexandru, and Rodica Luca. 2025. "Positive Solutions for a Semipositone Singular ψ–Riemann–Liouville Fractional Boundary Value Problem" Mathematics 13, no. 20: 3292. https://doi.org/10.3390/math13203292
APA StyleTudorache, A., & Luca, R. (2025). Positive Solutions for a Semipositone Singular ψ–Riemann–Liouville Fractional Boundary Value Problem. Mathematics, 13(20), 3292. https://doi.org/10.3390/math13203292

