Existence and Stability Analysis of Anti-Periodic Boundary Value Problems with Generalized Tempered Fractional Derivatives
Abstract
1. Introduction
2. Preliminaries and Problem Formulation
- For , we recover the fractional integral with respect to another function (cf. [9]):
- For , we obtain the tempered fractional integral (cf. [13]):
- When and , we recover the Riemann–Liouville fractional integral (cf. [9]):
- For and , we obtain the Hadamard fractional integral (cf. [9]):
3. Existence and Uniqueness Results
4. Ulam–Hyers and Ulam–Hyers–Rassias Stability Analysis
- By Theorem 6, we conclude the following:
- Since the operator , defined in (6), is a contraction mapping with the following contraction constant:
- it follows from the Banach’s fixed-point theorem that the following is true:
- Observing that, for all , the following is true:we conclude the following:which proves the desired result. □
- for all ;
- , for all ;
- .
- Then, for all , the following is true:
- Hence, the following is true:
- From the Banach’s fixed-point theorem, we conclude the following:whereproving that Equation (1) is Ulam–Hyers–Rassias stable with respect to the function r. □
5. Examples
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Almeida, R.; Girejko, E.; Machado, L.; Malinowska, A.B.; Martins, N. On the stability of memory-dependent multi-agent systems under DoS attacks. J. Franklin Inst. 2025, 362, 107402. [Google Scholar] [CrossRef]
- Boukhouima, A.; Hattaf, K.; Lotfi, E.M.; Mahrouf, M.; Torres, D.F.M.; Yousfi, N. Lyapunov functions for fractional-order systems in biology: Methods and applications. Chaos Solitons Fract. 2020, 140, 110224. [Google Scholar] [CrossRef]
- Caponetto, R.; Dongola, G.; Fortuna, L.; Petráš, I. Fractional Order Systems: Modelling and Control Applications; World Scientific: Singapore, 2010. [Google Scholar]
- Colombaro, I.; Garra, R.; Giusti, A.; Mainardi, F. Scott-Blair models with time-varying viscosity. Appl. Math. Lett. 2018, 86, 57–63. [Google Scholar] [CrossRef]
- Jose, S.A.; Ramachandran, R.; Anuwat, J.; Cao, J.; Agarwal, R.P. A fractional derivative approach to infectious disease dynamics: Modeling and optimal control strategies. Model. Earth Syst. Environ. 2025, 11, 229. [Google Scholar] [CrossRef]
- Ozarslan, R.; Bas, E.; Baleanu, D.; Acay, B. Fractional physical problems including wind-influenced projectile motion with Mittag-Leffler kernel. AIMS Math. 2020, 5, 467–481. [Google Scholar] [CrossRef]
- Varieschi, G.U. Applications of fractional calculus to Newtonian mechanics. J. Appl. Math. Phys. 2018, 6, 1247–1257. [Google Scholar] [CrossRef]
- Wanassi, O.K.; Torres, D.F.M. Modeling blood alcohol concentration using fractional differential equations based on the ψ-Caputo derivative. Math. Methods Appl. Sci. 2024, 47, 7793–7803. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives, Translated from the 1987 Russian Original; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef]
- Sabzikar, F.; Meerschaert, M.M.; Chen, J.H. Tempered fractional calculus. J. Comput. Phys. 2015, 293, 14–28. [Google Scholar] [CrossRef]
- Sousa, J.V.C.; Oliveira, E.C. Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation. Appl. Math. Lett. 2018, 81, 50–56. [Google Scholar] [CrossRef]
- Almeida, R.; Martins, N.; Sousa, J.V.C. Fractional tempered differential equations depending on arbitrary kernels. AIMS Math. 2024, 9, 9107–9127. [Google Scholar] [CrossRef]
- Obeidat, N.A.; Bentil, D.E. New theories and applications of tempered fractional differential equations. Nonlinear Dyn. 2021, 105, 1689–1702. [Google Scholar] [CrossRef]
- Fedorov, V.E.; Filin, N.V. A class of quasilinear equations with distributed Gerasimov-Caputo derivatives. Mathematics 2023, 11, 2472. [Google Scholar] [CrossRef]
- Fedorov, V.E.; Boyko, K.V. Some classes of quasilinear equations with Gerasimov-Caputo derivatives. In Differential Equations, Mathematical Modeling and Computational Algorithms; Vasilyev, V., Ed.; Springer Proceedings in Mathematics & Statistics; Springer: Berlin/Heidelberg, Germany, 2023; Volume 423, pp. 1–16. [Google Scholar]
- Gambo, Y.Y.; Ameen, R.; Jarad, F.; Abdeljawad, T. Existence and uniqueness of solutions to fractional differential equations in the frame of generalized Caputo fractional derivatives. Adv. Differ. Equ. 2018, 2018, 134. [Google Scholar] [CrossRef]
- Gunasekar, T.; Raghavendran, P.; Santra, S.S.; Sajid, M. Existence and controllability results for neutral fractional Volterra-Fredholm integro-differential equations. J. Math. Comput. Sci. 2024, 34, 361–380. [Google Scholar] [CrossRef]
- Promsakon, C.; Ansari, I.; Wetsah, M.; Kumar, A.; Karthikeyan, K.; Sitthiwirattham, T. Existence and uniqueness of solutions for fractional-differential equation with boundary condition using nonlinear multi-fractional derivatives. Math. Probl. Eng. 2024, 2024, 6844686. [Google Scholar] [CrossRef]
- Yadrikhinskiy, K.V.; Fedorov, V.E. Nonlocal solvability of quasilinear degenerate equations with Gerasimov-Caputo derivatives. Lobachevskii J. Math. 2023, 44, 595–606. [Google Scholar]
- Hai, X.; Yu, Y.; Xu, C.; Ren, G. Stability analysis of fractional differential equations with the short-term memory property. Fract. Calc. Appl. Anal. 2022, 25, 962–994. [Google Scholar] [CrossRef]
- Wang, G.; Pei, K.; Chen, Y.Q. Stability analysis of nonlinear Hadamard fractional differential system. J. Frankl. Inst. 2019, 356, 6538–6546. [Google Scholar] [CrossRef]
- Derbazi, C.; Al-Mdallal, Q.M.; Jarad, F.; Baitiche, Z. Some qualitative properties of solutions to a nonlinear fractional differential equation involving two Caputo fractional derivatives. AIMS Math. 2022, 7, 9894–9910. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, X.; Chen, Y.; Wei, L. A compact finite difference scheme for solving fractional Black-Scholes option pricing model. J. Inequal. Appl. 2025, 2025, 36. [Google Scholar] [CrossRef]
- Luo, M.; Qiu, W.; Nikan, O.; Avazzadeh, Z. Second-order accurate, robust and efficient ADI Galerkin technique for the three-dimensional nonlocal heat model arising in viscoelasticity. Appl. Math Comput. 2023, 440, 127655. [Google Scholar] [CrossRef]
- Vargas, A.M. Finite difference method for solving fractional differential equations at irregular meshes. Math. Comput. Simul. 2022, 193, 204–216. [Google Scholar] [CrossRef]
- Zabidi, N.A.; Majid, Z.A.; Kilicman, A.; Ibrahim, Z.B. Numerical solution of fractional differential equations with Caputo derivative by using numerical fractional predict–correct technique. Adv. Cont. Discr. Mod. 2022, 2022, 26. [Google Scholar] [CrossRef]
- Ahmad, B.; Nieto, J.J. Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory. Topol. Methods Nonlinear Anal. 2010, 35, 295–304. [Google Scholar]
- Agarwal, R.P.; Ahmad, B. Existence of solutions for impulsive anti-periodic boundary value problems of fractional semilinear evolution equations. Dyna. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 2011, 18, 457–470. [Google Scholar]
- Almeida, R. A unified approach to implicit fractional differential equations with anti-periodic boundary conditions. Mathematics 2025, 13, 2890. [Google Scholar] [CrossRef]
- Aphithana, A.; Ntouyas, S.K.; Tariboon, J. Existence and Ulam-Hyers stability for Caputo conformable differential equations with four-point integral conditions. Adv. Differ. Equ. 2019, 2019, 139. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, R.; Martins, N. Existence and Stability Analysis of Anti-Periodic Boundary Value Problems with Generalized Tempered Fractional Derivatives. Mathematics 2025, 13, 3077. https://doi.org/10.3390/math13193077
Almeida R, Martins N. Existence and Stability Analysis of Anti-Periodic Boundary Value Problems with Generalized Tempered Fractional Derivatives. Mathematics. 2025; 13(19):3077. https://doi.org/10.3390/math13193077
Chicago/Turabian StyleAlmeida, Ricardo, and Natália Martins. 2025. "Existence and Stability Analysis of Anti-Periodic Boundary Value Problems with Generalized Tempered Fractional Derivatives" Mathematics 13, no. 19: 3077. https://doi.org/10.3390/math13193077
APA StyleAlmeida, R., & Martins, N. (2025). Existence and Stability Analysis of Anti-Periodic Boundary Value Problems with Generalized Tempered Fractional Derivatives. Mathematics, 13(19), 3077. https://doi.org/10.3390/math13193077
