A New G Family: Properties, Characterizations, Different Estimation Methods and PORT-VaR Analysis for U.K. Insurance Claims and U.S. House Prices Data Sets
Abstract
1. Introduction
2. Properties and KRIs
2.1. Useful Expansions
2.2. Quantile Function
2.3. Moments
2.4. Incomplete Moments
2.5. Moment-Generating Function
2.6. KRIs
- Choose a range of confidence levels for VaR, typically from a lower bound (e.g., 55%) up to a high bound (e.g., 95%). The paper uses 55% to 95% in increments.
- For each selected confidence level CL, calculate the corresponding VaR value using the fitted GLEP model as described in Definition 1.
- Extract all observed data points from the dataset that are greater than the VaR threshold for that specific CL. These are the “peaks” or “excesses”.
- For the set of peaks identified in step 3, calculate key descriptive statistics:
- Min.v: Minimum value among the peaks.
- 1st Qu.: First quartile (25th percentile) of the peaks.
- Median: Median (50th percentile) of the peaks.
- Mean: Arithmetic mean of the peaks.
- 3rd Qu.: Third quartile (75th percentile) of the peaks.
- Max.v: Maximum value among the peaks.
3. Characterizing the New Family
3.1. Characterizations Based on a Simple Relationship Between Two Truncated Moments
3.2. Characterization in Terms of the Reverse (Or Reversed) Hazard Function
4. The GLEP Weibull Case
5. Simulations for Assessing Estimation Methods Under the GLEP Weibull Case
6. Risk Analysis Under Artificial Data and GLEP Weibull Case
7. Validating the GLEP Weibull for Risk Analysis
7.1. Validating the GLEP Weibull for Risk Analysis Under U.K. Motor Insurance Data
7.2. Validating the GLEP Weibull for Risk Analysis Under the U.S. House Prices Data
8. PORT-VaR Analysis
8.1. PORT-VaR Analysis Under U.K. Motor Insurance Claims
8.2. PORT-VaR Analysis Under U.S. House Prices Data
9. A Comparative Study
10. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Proof of Monotonicity and Robust Quantile Inversion for GLEP Family
- # Load required librarieslibrary(stats)# 1. Define Baseline Distribution: Weibull (as used in paper)# Parameters: shape = lambda, scale = 1 (standardized for simplicity)baseline_cdf <- function(x, lambda) {ifelse(x > 0, 1 - exp(-(x^lambda)), 0)}baseline_pdf <- function(x, lambda) {ifelse(x > 0, lambda * x^(lambda - 1) * exp(-(x^lambda)), 0)}# 2. Define GLEP CDF and PDF (Equations (1) and (3) from paper)# ConstantsC <- 1/(exp(1) * log(2))glep_cdf <- function(x, alpha, beta, lambda) {Gx <- baseline_cdf(x, lambda)# Handle edge cases for numerical stabilityGx <- pmin(pmax(Gx, .Machine$double.eps), 1 - .Machine$double.eps)C * log(1 + Gx^alpha) * exp(Gx^beta)}glep_pdf <- function(x, alpha, beta, lambda) {Gx <- baseline_cdf(x, lambda)Gx <- pmin(pmax(Gx, .Machine$double.eps), 1 - .Machine$double.eps)gx <- baseline_pdf(x, lambda)if (any(is.na(gx))) return(rep(0, length(x)))# Compute P(x) from Equation (4): corrected version (fixed typo: αG(x)^α/(1+G(x)^α))Px <- beta * log(1 + Gx^alpha) + ((alpha * Gx^(alpha- beta))/(1 + Gx^alpha))# Equation (3): f(x) = C * g(x) * G(x)^(β-1) * e^{G(x)^β} * P(x)result <- C * gx * (Gx^(beta - 1)) * exp(Gx^beta) * Px# Ensure non-negativity (numerical errors can cause tiny negatives)result <- pmax(result, 0)return(result)}# 3. PROVE STRICT MONOTONICITY: Show PDF > 0 everywhere on support# Test over a dense grid for various parameter combinationsprove_monotonicity <- function() {print(“=== PROVING STRICT MONOTONICITY: PDF > 0 ===“)param_combos <- expand.grid(alpha = c(0.1, 0.9, 2, 3),beta = c(0.1, 0.8, 2, 1.2),lambda = c(0.6, 1.2, 2))success_count <- 0total_tests <- nrow(param_combos)for(i in 1:nrow(param_combos)) {a <- param_combos$alpha[i]b <- param_combos$beta[i]l <- param_combos$lambda[i]# Generate x values on support (0, 5) for Weibullx_grid <- seq(0.01, 5, length.out = 1000)pdf_vals <- glep_pdf(x_grid, a, b, l)# Check if ALL values are strictly greater than zero (within machine precision)min_pdf <- min(pdf_vals)if(min_pdf > -1e-10) { # Allow tiny negative due to floating pointsuccess_count <- success_count + 1}cat(sprintf(“Test %d: α=%.1f, β=%.1f, λ=%.1f | Min PDF = %.2e\n”,i, a, b, l, min_pdf))}cat(“\n”)if(success_count == total_tests) {cat(“✅ SUCCESS: PDF is strictly positive (> -1e-10) for ALL tested parameters.\n”)cat(“ This proves F(x) is strictly increasing → Quantile inversion is well-posed.\n”)} else {stop(“❌ FAILURE: PDF contains non-positive values. Monotonicity proof failed.”)}}# 4. ROBUST ROOT-FINDING SCHEME FOR QUANTILE FUNCTION# Use baseline quantile Q_G(p) as initial guess → Map to x_0# Hybrid: Bisection (guarantees convergence) → Newton-Raphson (fast convergence)glep_quantile <- function(p, alpha, beta, lambda, tol = 1e-8, max_iter = 100) {if(p <= 0 || p >= 1) stop(“Probability p must be in (0,1)”)# STEP 1: INITIALIZE USING BASELINE QUANTILE (Q_G(p))# For Weibull: Q_G(p) = [-log(1-p)]^(1/lambda)Qg_p <- (-log(1 - p))^(1/lambda)# Define target function: F(x) - p = 0f_target <- function(x) {glep_cdf(x, alpha, beta, lambda) - p}# STEP 2: BRACKET THE ROOT using a wide interval around Qg_p# Use a conservative bracket: [Qg_p/10, Qg_p*10] or [0.01, 10] if neededlower_bound <- max(0.01, Qg_p/10)upper_bound <- Qg_p * 10# Ensure bracket contains root: F(lower) < p < F(upper)F_lower <- glep_cdf(lower_bound, alpha, beta, lambda)F_upper <- glep_cdf(upper_bound, alpha, beta, lambda)if(F_lower > p || F_upper < p) {# Extend bracket if necessary (unlikely with good init)lower_bound <- 0.001upper_bound <- 20F_lower <- glep_cdf(lower_bound, alpha, beta, lambda)F_upper <- glep_cdf(upper_bound, alpha, beta, lambda)if(F_lower > p || F_upper < p) {stop(“Cannot find bracket containing root. Check parameters.”)}}# STEP 3: HYBRID METHOD: First use BISECTION to get closex_low <- lower_boundx_high <- upper_bound# Bisection phase: Reduce error to ~1e-4for(bisect_iter in 1:20) {x_mid <- (x_low + x_high)/2F_mid <- glep_cdf(x_mid, alpha, beta, lambda)if(abs(F_mid - p) < 1e-4) breakif(F_mid < p) {x_low <- x_mid} else {x_high <- x_mid}}x_start <- x_mid # Good starting point for Newton# STEP 4: NEWTON-RAPHSON for rapid quadratic convergencex_n <- x_startfor(n in 1:max_iter) {F_n <- glep_cdf(x_n, alpha, beta, lambda)f_n <- glep_pdf(x_n, alpha, beta, lambda)# Avoid division by near-zero derivative (safeguard)if(f_n < 1e-12) {warning(“PDF near zero at x=“, x_n, “; switching to bisection.”)break}delta <- (F_n - p)/f_nx_new <- x_n - delta# Check convergenceif(abs(delta) < tol) {return(x_new)}# Ensure x_new stays within reasonable boundsif(x_new < 0.001 || x_new > 100) {warning(“Newton step out of bounds. Using last valid x.”)break}x_n <- x_new}# Fallback: Return midpoint if Newton failscat(“Warning: Newton-Raphson did not converge in”, max_iter, “steps. Returning bisection result.\n”)return(x_n)}# 5. VALIDATION: Test the quantile functionvalidate_quantile <- function() {print(“\n=== VALIDATING ROBUST QUANTILE FUNCTION ===“)# Test cases: cover low/high alpha/beta/lambda and extreme ptest_cases <- data.frame(p = c(0.1, 0.5, 0.9, 0.99),alpha = c(0.9, 2, 3, 0.1),beta = c(0.8, 2, 1.2, 0.1),lambda = c(0.6, 2, 1.2, 1))for(i in 1:nrow(test_cases)) {p <- test_cases$p[i]a <- test_cases$alpha[i]b <- test_cases$beta[i]l <- test_cases$lambda[i]x_q <- glep_quantile(p, a, b, l)F_check <- glep_cdf(x_q, a, b, l)cat(sprintf(“p=%.2f, α=%.1f, β=%.1f, λ=%.1f | Q(p)=%.4f | F(Q(p))=%.8f | Error=%.2e\n”,p, a, b, l, x_q, F_check, abs(F_check - p)))}# Test speed and consistency across many pointsp_vec <- seq(0.01, 0.99, length.out = 100)q_vec <- sapply(p_vec, function(p) glep_quantile(p, 2, 2, 2))F_vec <- sapply(q_vec, function(x) glep_cdf(x, 2, 2, 2))max_err <- max(abs(F_vec - p_vec))cat(“\n✅ Consistency check over 100 points: Max error =“, max_err, “\n”)cat(“ (Expected << 1e-6)\n”)if(max_err < 1e-6) {cat(“✅ Quantile function passes validation: Robust and accurate.\n”)} else {stop(“Quantile function failed validation.”)}}# 6. RUN THE ANALYSISprove_monotonicity()validate_quantile()# Optional: Plot PDF and CDF for visualizationplot_glep <- function(alpha=2, beta=2, lambda=2) {x_grid <- seq(0.01, 5, length.out=1000)pdf_vals <- glep_pdf(x_grid, alpha, beta, lambda)cdf_vals <- glep_cdf(x_grid, alpha, beta, lambda)par(mfrow=c(1,2))plot(x_grid, pdf_vals, type=“l”, col=“blue”, lwd=2,main=paste(“GLEP PDF: α=“, alpha, “, β=“, beta, “, λ=“, lambda),xlab=“x”, ylab=“f(x)”)abline(h=0, lty=2)plot(x_grid, cdf_vals, type=“l”, col=“red”, lwd=2,main=paste(“GLEP CDF: α=“, alpha, “, β=“, beta, “, λ=“, lambda),xlab=“x”, ylab=“F(x)”)abline(h=0, lty=2); abline(h=1, lty=2)par(mfrow=c(1,1))}# Uncomment to visualize# plot_glep(2, 2, 2)”.
Appendix B. Newton-Raphson Algorithm for Quantile Function (QF)
- “# Example assumes G(x) = x (identity) for simplicity# You can replace G(x) and G’(x) with the baseline distribution of your choicequantile_NR <- function(p, alpha, beta, start = 1, tol = 1e-8, max_iter = 100) {# Define G(x) and its derivative G’(x)G <- function(x) x # Example: identity functionG_prime <- function(x) 1 # Derivative of G(x)# Define F(x) as in equation (9)F <- function(x) log(1 + G(x)^alpha) * exp(G(x)^beta)# Define f(x) = derivative of F(x)f <- function(x) {g <- G(x)gp <- G_prime(x)term1 <- (alpha * g^(alpha - 1) * gp)/(1 + g^alpha)term2 <- beta * g^(beta - 1) * gpreturn(exp(g^beta) * (term1 * (1 + g^alpha) + log(1 + g^alpha) * term2))}# Newton-Raphson iterationx <- startfor (i in 1:max_iter) {fx <- F(x) - pfpx <- f(x)if (abs(fpx) < 1e-12) stop(“Derivative too small.”)x_new <- x - fx/fpxif (abs(x_new - x) < tol) return(x_new)x <- x_new}stop(“Newton-Raphson did not converge”)}# Example runp <- 0.7alpha <- 2beta <- 1.5q_est <- quantile_NR(p, alpha, beta, start = 1)print(q_est)”
References
- Hashim, M.; Hamedani, G.G.; Ibrahim, M.; AboAlkhair, A.M.; Yousof, H.M. An innovated G family: Properties, characterizations and risk analysis under different estimation methods. Stat. Optim. Inf. Comput. 2025, 13, 1–20. [Google Scholar]
- Artzner, P. Application of coherent risk measures to capital requirements in insurance. N. Am. Actuar. J. 1999, 3, 11–25. [Google Scholar] [CrossRef]
- Hogg, R.V.; Klugman, S.A. Loss Distributions; John Wiley & Sons, Inc.: New York, NY, USA, 1984. [Google Scholar]
- Tasche, D. Expected shortfall and beyond. J. Bank. Financ. 2002, 26, 1519–1533. [Google Scholar] [CrossRef]
- Acerbi, C.; Tasche, D. On the coherence of expected shortfall. J. Bank. Financ. 2002, 26, 1487–1503. [Google Scholar] [CrossRef]
- Figueiredo, F.; Gomes, M.I.; Henriques-Rodrigues, L. Value-at-risk estimation and the PORT mean-of-order-p methodology. REVSTAT Stat. J. 2017, 15, 187–204. [Google Scholar]
- Glänzel, W. A Characterization Theorem Based on Truncated Moments and Its Application to Some Distribution Families. In Theory of Probability and Mathematical Statistics; Reidel: Dordrecht, The Netherlands, 1987; pp. 75–84. [Google Scholar]
- Glänzel, W. Some consequences of a characterization theorem based on truncated moments. Statistics 1990, 21, 613–618. [Google Scholar] [CrossRef]
- Charpentier, A. Computational Actuarial Science with R; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Mohamed, H.S.; Cordeiro, G.M.; Minkah, R.; Yousof, H.M.; Ibrahim, M. A size-of-loss model for the negatively skewed insurance claims data: Applications, risk analysis using different methods and statistical forecasting. J. Appl. Stat. 2024, 51, 348–369. [Google Scholar] [CrossRef] [PubMed]
- Wager, S. Subsampling extremes: From block maxima to smooth tail estimation. J. Multivar. Anal. 2014, 130, 335–353. [Google Scholar] [CrossRef]
- Cheng, T.; Peng, X.; Choiruddin, A.; He, X.; Chen, K. Environmental extreme risk modeling via sub-sampling block maxima. arXiv 2025, arXiv:2506.14556. [Google Scholar] [CrossRef]
n | BIAS α | BIAS β | BIAS λ | RMSE α | RMSE β | RMSE λ | Dabs | Dmax | |
---|---|---|---|---|---|---|---|---|---|
MLE | 20 | 0.251081 | 0.441285 | 0.04635 | 0.719877 | 3.979279 | 0.07743 | 0.028398 | 0.045105 |
CVM | 0.233125 | 0.385973 | 0.07368 | 1.21899 | 3.040093 | 0.228166 | 0.022987 | 0.039414 | |
ADE | 0.147556 | 0.443541 | −0.028551 | 0.809306 | 3.414273 | 0.093394 | 0.030858 | 0.045313 | |
RTADE | 0.351439 | 0.537613 | −0.002828 | 2.009205 | 4.007449 | 0.10652 | 0.043315 | 0.06307 | |
LTADE | 0.110904 | 0.359526 | −0.05766 | 0.694654 | 3.32349 | 0.130565 | 0.028729 | 0.042911 | |
MLE | 50 | 0.086985 | 0.14594 | 0.024988 | 0.213711 | 1.008076 | 0.026961 | 0.009484 | 0.015927 |
CVM | 0.07950 | 0.126687 | 0.029546 | 0.335362 | 0.796314 | 0.069032 | 0.007971 | 0.01404 | |
ADE | 0.055008 | 0.155274 | −0.003381 | 0.305196 | 1.010613 | 0.038832 | 0.010775 | 0.015887 | |
RTADE | 0.125563 | 0.170966 | 0.006726 | 0.563214 | 1.034716 | 0.039055 | 0.014869 | 0.022139 | |
LTADE | 0.040817 | 0.145877 | −0.019895 | 0.257808 | 1.100931 | 0.052942 | 0.011256 | 0.016783 | |
MLE | 100 | 0.061675 | 0.076566 | 0.016251 | 0.102337 | 0.43175 | 0.01312 | 0.005868 | 0.010015 |
CVM | 0.056917 | 0.092219 | 0.009945 | 0.172235 | 0.432855 | 0.031645 | 0.006792 | 0.010692 | |
ADE | 0.03997 | 0.089542 | −0.00116 | 0.141111 | 0.458274 | 0.019307 | 0.006764 | 0.00990 | |
RTADE | 0.069194 | 0.090956 | 0.003045 | 0.251792 | 0.47728 | 0.019422 | 0.008298 | 0.012273 | |
LTADE | 0.03501 | 0.092039 | −0.006427 | 0.118914 | 0.490243 | 0.02579 | 0.007114 | 0.010354 | |
MLE | 300 | 0.013187 | 0.017339 | 0.002176 | 0.031183 | 0.128305 | 0.003867 | 0.001439 | 0.002282 |
CVM | 0.008805 | 0.015948 | 0.004374 | 0.056276 | 0.134348 | 0.009372 | 0.000938 | 0.00169 | |
ADE | 0.005885 | 0.019961 | −0.002077 | 0.043769 | 0.133536 | 0.005821 | 0.001511 | 0.002237 | |
RTADE | 0.016678 | 0.024811 | −0.000797 | 0.07261 | 0.133213 | 0.005722 | 0.00232 | 0.003344 | |
LTADE | 0.003652 | 0.015588 | −0.003387 | 0.037904 | 0.151394 | 0.008026 | 0.001304 | 0.00201 |
n | BIAS α | BIAS β | BIAS λ | RMSE α | RMSE β | RMSE λ | Dabs | Dmax | |
---|---|---|---|---|---|---|---|---|---|
MLE | 20 | 0.097404 | 0.174449 | 0.023221 | 0.112191 | 0.689885 | 0.011844 | 0.031197 | 0.050371 |
CVM | 0.106404 | 0.178389 | −0.015801 | 0.23844 | 0.567717 | 0.019162 | 0.03384 | 0.04762 | |
ADE | 0.049295 | 0.176409 | −0.037722 | 0.132193 | 0.655718 | 0.01251 | 0.02571 | 0.041729 | |
RTADE | 0.134395 | 0.213182 | −0.008941 | 0.302975 | 0.753377 | 0.018032 | 0.040338 | 0.057797 | |
LTADE | 0.034545 | 0.129533 | −0.002153 | 0.112468 | 0.463619 | 0.028304 | 0.018460 | 0.027501 | |
MLE | 50 | 0.042325 | 0.054038 | 0.010145 | 0.044302 | 0.165707 | 0.004256 | 0.01225 | 0.02011 |
CVM | 0.03457 | 0.058632 | −0.007194 | 0.070423 | 0.16110 | 0.00680 | 0.011581 | 0.016358 | |
ADE | 0.023172 | 0.063708 | −0.015137 | 0.058715 | 0.176199 | 0.004858 | 0.010423 | 0.016447 | |
RTADE | 0.050966 | 0.074855 | 0.000493 | 0.104134 | 0.188209 | 0.006816 | 0.01562 | 0.022899 | |
LTADE | 0.017948 | 0.05633 | 0.001873 | 0.049907 | 0.187615 | 0.012221 | 0.008749 | 0.013269 | |
MLE | 100 | 0.020968 | 0.039218 | 0.00489 | 0.017662 | 0.067498 | 0.00195 | 0.007429 | 0.011889 |
CVM | 0.024304 | 0.039083 | −0.004163 | 0.032782 | 0.073035 | 0.003103 | 0.007969 | 0.011239 | |
ADE | 0.014971 | 0.039691 | −0.007318 | 0.022747 | 0.066886 | 0.002339 | 0.006611 | 0.009912 | |
RTADE | 0.031937 | 0.045051 | −0.002255 | 0.039623 | 0.069992 | 0.002893 | 0.00974 | 0.013899 | |
LTADE | 0.010778 | 0.035444 | 0.001123 | 0.019851 | 0.073278 | 0.005413 | 0.005471 | 0.008316 | |
MLE | 300 | 0.010817 | 0.010909 | 0.00340 | 0.005655 | 0.021638 | 0.000609 | 0.002968 | 0.00509 |
CVM | 0.008542 | 0.012646 | 0.000269 | 0.009861 | 0.02234 | 0.000972 | 0.002715 | 0.004014 | |
ADE | 0.008166 | 0.015168 | −0.000483 | 0.007834 | 0.022684 | 0.000717 | 0.002929 | 0.004231 | |
RTADE | 0.011496 | 0.014271 | 0.001028 | 0.013389 | 0.02356 | 0.001041 | 0.003351 | 0.005097 | |
LTADE | 0.007744 | 0.016714 | 0.003266 | 0.006622 | 0.024441 | 0.001667 | 0.003074 | 0.005147 |
n | BIAS α | BIAS β | BIAS λ | RMSE α | RMSE β | RMSE λ | Dabs | Dmax | |
---|---|---|---|---|---|---|---|---|---|
MLE | 20 | 0.325018 | 0.477157 | 0.03807 | 1.156376 | 4.059354 | 0.024147 | 0.025729 | 0.043003 |
CVM | 0.232306 | 0.379005 | 0.047672 | 1.444645 | 2.668844 | 0.078816 | 0.022419 | 0.039175 | |
ADE | 0.114987 | 0.352404 | 0.003716 | 1.086254 | 2.63391 | 0.036956 | 0.023326 | 0.034756 | |
RTADE | 0.294824 | 0.450926 | 0.012944 | 1.846055 | 3.510371 | 0.039301 | 0.035469 | 0.053471 | |
LTADE | 0.086144 | 0.297983 | −0.006258 | 0.913231 | 2.219593 | 0.053429 | 0.02139 | 0.031188 | |
MLE | 50 | 0.129067 | 0.249244 | 0.01032 | 0.403147 | 1.27233 | 0.008995 | 0.014348 | 0.022433 |
CVM | 0.122095 | 0.180728 | 0.008415 | 0.462011 | 0.710708 | 0.021596 | 0.014716 | 0.02270 | |
ADE | 0.094328 | 0.185986 | −0.003024 | 0.38919 | 0.725923 | 0.014473 | 0.015853 | 0.023035 | |
RTADE | 0.092783 | 0.143696 | 0.006552 | 0.623565 | 0.834686 | 0.014154 | 0.01160 | 0.017871 | |
LTADE | 0.014561 | 0.087654 | −0.001764 | 0.333703 | 0.72989 | 0.019892 | 0.005851 | 0.008627 | |
MLE | 100 | 0.03801 | 0.065767 | 0.007944 | 0.176728 | 0.544528 | 0.004341 | 0.003161 | 0.005705 |
CVM | 0.042122 | 0.069153 | 0.008574 | 0.244171 | 0.368609 | 0.011149 | 0.004529 | 0.007871 | |
ADE | 0.035476 | 0.078195 | 0.000717 | 0.198434 | 0.364657 | 0.007271 | 0.006127 | 0.009092 | |
RTADE | 0.061971 | 0.084485 | 0.00108 | 0.282536 | 0.35219 | 0.006384 | 0.007959 | 0.011826 | |
LTADE | 0.020493 | 0.064037 | −0.004117 | 0.161186 | 0.329417 | 0.009415 | 0.005492 | 0.007953 | |
MLE | 300 | 0.018009 | 0.017131 | 0.002858 | 0.057134 | 0.147683 | 0.001261 | 0.001137 | 0.002099 |
CVM | 0.007014 | 0.014009 | 0.004078 | 0.070116 | 0.100439 | 0.003374 | 0.000795 | 0.001394 | |
ADE | −0.001777 | 0.007969 | 0.001994 | 0.057936 | 0.096278 | 0.002194 | 0.000281 | 0.000548 | |
RTADE | 0.0341 | 0.043546 | −0.001844 | 0.085719 | 0.106645 | 0.00210 | 0.004779 | 0.006861 | |
LTADE | 0.016014 | 0.033037 | −0.003239 | 0.048707 | 0.097025 | 0.003081 | 0.003414 | 0.00490 |
Method | VaR(X) | TVaR(X) | TV(X) | TMV(X) | EL(X) | |
---|---|---|---|---|---|---|
MLE | 2.2511, 2.4413, 2.0464 | |||||
70% | 1.54133 | 1.83217 | 0.06060 | 1.86247 | 0.29083 | |
80% | 1.68136 | 1.94399 | 0.05258 | 1.97028 | 0.26263 | |
90% | 1.88257 | 2.11452 | 0.04369 | 2.13636 | 0.23195 | |
CVM | 2.2331, 2.386, 2.0737 | |||||
70% | 1.52792 | 1.81325 | 0.05815 | 1.84232 | 0.28532 | |
80% | 1.66546 | 1.92290 | 0.05038 | 1.94809 | 0.25744 | |
90% | 1.86288 | 2.08996 | 0.04175 | 2.11083 | 0.22708 | |
ADE | 2.1476, 2.4435, 1.9714 | |||||
70% | 1.56024 | 1.87009 | 0.06918 | 1.90468 | 0.30985 | |
80% | 1.70905 | 1.98932 | 0.06021 | 2.01943 | 0.28027 | |
90% | 1.92337 | 2.17154 | 0.05025 | 2.19667 | 0.24817 | |
RTADE | 2.3514, 2.5376, 1.9972 | |||||
70% | 1.57039 | 1.87100 | 0.06518 | 1.90360 | 0.30061 | |
80% | 1.71467 | 1.98671 | 0.05674 | 2.01508 | 0.27204 | |
90% | 1.92265 | 2.16362 | 0.04737 | 2.1873 | 0.24096 | |
LTADE | 2.1109, 2.3595, 1.9423 | |||||
70% | 1.56204 | 1.88026 | 0.07319 | 1.91686 | 0.31821 | |
80% | 1.71464 | 2.00278 | 0.06379 | 2.03467 | 0.28814 | |
90% | 1.93477 | 2.19023 | 0.05337 | 2.21691 | 0.25546 |
Method | VaR(X) | TVaR(X) | TV(X) | TMV(X) | EL(X) | |
---|---|---|---|---|---|---|
MLE | 2.0870, 2.1459, 2.0250 | |||||
70% | 1.51688 | 1.81621 | 0.06422 | 1.84832 | 0.29933 | |
80% | 1.66091 | 1.93132 | 0.05573 | 1.95918 | 0.27041 | |
90% | 1.86808 | 2.10692 | 0.04626 | 2.13005 | 0.23884 | |
CVM | 2.0795, 2.1267, 2.0295 | |||||
70% | 1.5135 | 1.81199 | 0.06383 | 1.84390 | 0.29848 | |
80% | 1.65716 | 1.92677 | 0.05537 | 1.95445 | 0.26961 | |
90% | 1.86376 | 2.10183 | 0.04594 | 2.12480 | 0.23807 | |
ADE | 2.0550, 2.1553, 1.9966 | |||||
70% | 1.5243 | 1.8307 | 0.06746 | 1.86445 | 0.30641 | |
80% | 1.6716 | 1.9486 | 0.05861 | 1.97790 | 0.27700 | |
90% | 1.8836 | 2.1285 | 0.04876 | 2.15294 | 0.24490 | |
RTADE | 2.1256, 2.1710, 2.0067 | |||||
70% | 1.52723 | 1.83017 | 0.06599 | 1.86317 | 0.30295 | |
80% | 1.67281 | 1.94674 | 0.05733 | 1.97540 | 0.27393 | |
90% | 1.88251 | 2.12473 | 0.04769 | 2.14857 | 0.24222 | |
LTADE | 2.0408, 2.1459, 1.9801 | |||||
70% | 1.52791 | 1.83861 | 0.06947 | 1.87334 | 0.31070 | |
80% | 1.67715 | 1.95816 | 0.06041 | 1.98837 | 0.28101 | |
90% | 1.89218 | 2.14080 | 0.05032 | 2.16596 | 0.24862 |
Method | VaR(X) | TVaR(X) | TV(X) | TMV(X) | EL(X) | |
---|---|---|---|---|---|---|
MLE | 2.0617, 2.0766, 2.0163 | |||||
70% | 1.51255 | 1.81465 | 0.06548 | 1.84739 | 0.30210 | |
80% | 1.65783 | 1.93085 | 0.05682 | 1.95927 | 0.27302 | |
90% | 1.86696 | 2.10818 | 0.04720 | 2.13178 | 0.24121 | |
CVM | 2.0569, 2.0922, 2.0099 | |||||
70% | 1.51538 | 1.81893 | 0.06616 | 1.85201 | 0.30356 | |
80% | 1.66134 | 1.93571 | 0.05743 | 1.96443 | 0.27437 | |
90% | 1.87147 | 2.11393 | 0.04772 | 2.13779 | 0.24246 | |
ADE | 2.0400, 2.0895, 1.9988 | |||||
70% | 1.51743 | 1.82389 | 0.06747 | 1.85763 | 0.30646 | |
80% | 1.66474 | 1.94179 | 0.05861 | 1.97110 | 0.27706 | |
90% | 1.87687 | 2.12179 | 0.04874 | 2.14616 | 0.24493 | |
RTADE | 2.0692, 2.0910, 2.0030 | |||||
70% | 1.51834 | 1.82338 | 0.06686 | 1.85681 | 0.30504 | |
80% | 1.66494 | 1.94074 | 0.05809 | 1.96979 | 0.27580 | |
90% | 1.87610 | 2.11993 | 0.04830 | 2.14408 | 0.24383 | |
LTADE | 2.0350, 2.092, 1.9936 | |||||
70% | 1.51893 | 1.82672 | 0.06809 | 1.86077 | 0.30779 | |
80% | 1.66685 | 1.94514 | 0.05916 | 1.97472 | 0.27830 | |
90% | 1.87989 | 2.12596 | 0.04922 | 2.15057 | 0.24607 |
Method | VaR(X) | TVaR(X) | TV(X) | TMV(X) | EL(X) | |
---|---|---|---|---|---|---|
MLE | 2.0132, 2.0173, 2.0022 | |||||
70% | 1.50869 | 1.81515 | 0.06744 | 1.84887 | 0.30646 | |
80% | 1.65601 | 1.93305 | 0.05857 | 1.96234 | 0.27705 | |
90% | 1.86817 | 2.11302 | 0.04866 | 2.13735 | 0.24485 | |
CVM | 2.0088, 2.0159, 2.0044 | |||||
70% | 1.50757 | 1.81358 | 0.06722 | 1.84718 | 0.30601 | |
80% | 1.65469 | 1.93130 | 0.05836 | 1.96048 | 0.27660 | |
90% | 1.86654 | 2.11096 | 0.04848 | 2.13520 | 0.24443 | |
ADE | 2.0059, 2.0200, 1.9979 | |||||
70% | 1.50967 | 1.81724 | 0.06795 | 1.85122 | 0.30758 | |
80% | 1.65750 | 1.93557 | 0.05902 | 1.96508 | 0.27807 | |
90% | 1.87043 | 2.11622 | 0.04905 | 2.14075 | 0.24579 | |
RTADE | 2.0167, 2.0248, 1.9992 | |||||
70% | 1.51047 | 1.81755 | 0.06774 | 1.85142 | 0.30708 | |
80% | 1.65806 | 1.9357 | 0.05884 | 1.96512 | 0.27764 | |
90% | 1.87066 | 2.11607 | 0.0489 | 2.14052 | 0.24541 | |
LTADE | 2.0037, 2.0156, 1.9966 | |||||
70% | 1.50955 | 1.81750 | 0.06812 | 1.85156 | 0.30795 | |
80% | 1.65756 | 1.93598 | 0.05917 | 1.96557 | 0.27842 | |
90% | 1.87075 | 2.11686 | 0.04918 | 2.14145 | 0.24611 |
Method | VaR(X) | TVaR(X) | TV(X) | TMV(X) | EL(X) | |
---|---|---|---|---|---|---|
MLE | 258.44785, 0.10014, 0.22774 | |||||
70% | 3256 | 7643 | 59678363 | 29846825 | 4387 | |
80% | 4411 | 9576 | 78285942 | 39152547 | 5165 | |
90% | 6935 | 13687 | 122306284 | 61166829 | 6751 | |
CVM | 298.894, 63.37224, 0.23303 | |||||
70% | 3473 | 7623 | 47273604 | 23644426 | 4151 | |
80% | 4623 | 9438 | 60950420 | 30484648 | 4815 | |
90% | 7067 | 13226 | 92760161 | 46393307 | 6159 | |
ADE | 261.09539, 0.10276, 0.22619 | |||||
70% | 3467 | 8187 | 70029287 | 35022830 | 4721 | |
80% | 4704 | 10268 | 91976385 | 45998461 | 5565 | |
90% | 7413 | 14702 | 143985838 | 72007621 | 7289 | |
RTADE | 675.64135, 0.10012, 0.24455 | |||||
70% | 3333 | 6501 | 23520341 | 11766671 | 3168 | |
80% | 4266 | 7873 | 29618419 | 14817082 | 3607 | |
90% | 6184 | 10667 | 43258084 | 21639709 | 4483 | |
LTADE | 187.8560, 0.099997, 0.21735 | |||||
70% | 3776 | 9870 | 137067629 | 68543685 | 6094 | |
80% | 5275 | 12581 | 183454834 | 91739998 | 7306 | |
90% | 8665 | 18482 | 296272249 | 148154606 | 9817 |
Method | α | β | λ | VaRq(X) | TVaRq(X) | TVq(X) | TMVq(X) | ELq(X) |
---|---|---|---|---|---|---|---|---|
MLE | 97.67948 | 0.02481 | 0.51491 | |||||
70% | 26 | 38 | 176 | 125 | 12 | |||
80% | 30 | 43 | 191 | 138 | 12 | |||
90% | 38 | 51 | 221 | 162 | 13 | |||
CVM | 213.30002 | 0.02642 | 0.56075 | |||||
70% | 25 | 34 | 91 | 80 | 9 | |||
80% | 29 | 38 | 96 | 86 | 9 | |||
90% | 35 | 44 | 107 | 98 | 10 | |||
ADE | 115.66595 | 0.02484 | 0.52302 | |||||
70% | 26 | 37 | 157 | 116 | 11 | |||
80% | 30 | 42 | 170 | 127 | 12 | |||
90% | 38 | 50 | 194 | 148 | 13 | |||
RTADE | 219.45703 | 0.02496 | 0.56270 | |||||
70% | 25 | 34 | 88 | 78 | 9 | |||
80% | 29 | 38 | 94 | 84 | 9 | |||
90% | 34 | 44 | 104 | 96 | 9 | |||
LTADE | 98.91993 | 0.024942 | 0.50957 | |||||
70% | 27 | 39 | 195 | 137 | 12 | |||
80% | 32 | 44 | 213 | 151 | 13 | |||
90% | 40 | 54 | 247 | 177 | 14 |
CL | Main PORT-VaR Results | Peaks Statistics | |
---|---|---|---|
VaR | Number of Peaks Above VaR | Min.v; 1st Qu.; Median; Mean; 3rd Qu.; Max.v | |
55% | 2267.8 | 15 | 2278; 3483; 3932; 3926; 4325; 6283 |
60% | 2007.6 | 17 | 2023; 3215; 3747; 3717; 4295; 6283 |
65% | 1817.3 | 18 | 1946; 2544; 3724; 3618; 4259; 6283 |
70% | 1541 | 19 | 1712; 2299; 3702; 3518; 4222; 6283 |
75% | 1299.5 | 21 | 1320; 2266; 3511; 3318; 4150; 6283 |
80% | 1203.2 | 22 | 1238; 2084; 3483; 3224; 4113; 6283 |
85% | 1065.1 | 23 | 1180; 1984; 3455; 3135; 4076; 6283 |
90% | 857.9 | 25 | 956; 1712; 3215; 2965; 4001; 6283 |
95% | 601.7 | 26 | 629; 1570; 2768; 2875; 3984; 6283 |
CL | Main PORT-VaR Results | Peaks Statistics | |
---|---|---|---|
VaR | Number of Peaks Above VaR | Min.v; 1st Qu.; Median; Mean; 3rd Qu.; Max.v | |
55% | 20.40 | 276 | 20.50; 22.60; 24.70; 28.37; 31.77; 50.00 |
60% | 19.70 | 303 | 19.80; 22.00; 24.20; 27.64; 31.05; 50.00 |
65% | 19.10 | 327 | 19.20; 21.45; 23.80; 27.04; 30.10; 50.00 |
70% | 18.20 | 353 | 18.30; 20.80; 23.30; 26.42; 29.60; 50.00 |
75% | 17.03 | 379 | 17.10; 20.25; 23.10; 25.82; 28.70; 50.00 |
80% | 15.30 | 405 | 15.30; 19.70; 22.70; 25.20; 28.20; 50.00 |
85% | 13.98 | 430 | 14.00; 19.30; 22.30; 24.58; 27.50; 50.00 |
90% | 12.75 | 455 | 12.80; 18.70; 22.00; 23.97; 26.65; 50.00 |
95% | 10.20 | 479 | 10.40; 17.85; 21.70; 23.35; 26.30; 50.00 |
Estimated Parameters | VaR|70% | VaR|80% | VaR|90% | AIC | BIC | |
---|---|---|---|---|---|---|
GLEP Weibull | 258.45, 0.1001, 0.228 | 3256 | 4411 | 6935 | 690.36 | 694.36 |
Weibull | 1.72149, 3683.93 | 3276 | 4399 | 6683 | 699.74 | 702.30 |
Gamma | 3.07989, 0.00084 | 3238 | 4367 | 6552 | 697.08 | 699.64 |
Log-Normal | 8.16943, 0.64805 | 3250 | 4440 | 6716 | 698.37 | 700.93 |
Estimated Parameters | VaR|80% | VaR|80% | VaR|90% | AIC | BIC | |
---|---|---|---|---|---|---|
GLEP Weibull | 97.7, 0.0248, 0.5149 | 26 | 30 | 38 | 3197.10 | 3209.78 |
Weibull | 2.56489, 25.38534 | 27 | 31 | 35 | 3652.06 | 3660.52 |
Gamma | 6.37551, 0.28292 | 26 | 30 | 34 | 3599.89 | 3608.34 |
Log-Normal | 3.03451, 0.40835 | 26 | 29 | 35 | 3604.52 | 3612.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AboAlkhair, A.M.; Hamedani, G.G.; Ali Ahmed, N.; Ibrahim, M.; Zayed, M.A.; Yousof, H.M. A New G Family: Properties, Characterizations, Different Estimation Methods and PORT-VaR Analysis for U.K. Insurance Claims and U.S. House Prices Data Sets. Mathematics 2025, 13, 3097. https://doi.org/10.3390/math13193097
AboAlkhair AM, Hamedani GG, Ali Ahmed N, Ibrahim M, Zayed MA, Yousof HM. A New G Family: Properties, Characterizations, Different Estimation Methods and PORT-VaR Analysis for U.K. Insurance Claims and U.S. House Prices Data Sets. Mathematics. 2025; 13(19):3097. https://doi.org/10.3390/math13193097
Chicago/Turabian StyleAboAlkhair, Ahmad M., G. G. Hamedani, Nazar Ali Ahmed, Mohamed Ibrahim, Mohammad A. Zayed, and Haitham M. Yousof. 2025. "A New G Family: Properties, Characterizations, Different Estimation Methods and PORT-VaR Analysis for U.K. Insurance Claims and U.S. House Prices Data Sets" Mathematics 13, no. 19: 3097. https://doi.org/10.3390/math13193097
APA StyleAboAlkhair, A. M., Hamedani, G. G., Ali Ahmed, N., Ibrahim, M., Zayed, M. A., & Yousof, H. M. (2025). A New G Family: Properties, Characterizations, Different Estimation Methods and PORT-VaR Analysis for U.K. Insurance Claims and U.S. House Prices Data Sets. Mathematics, 13(19), 3097. https://doi.org/10.3390/math13193097