Comparing PINN and Symbolic Transform Methods in Modeling the Nonlinear Dynamics of Complex Systems: A Case Study of the Troesch Problem
Abstract
1. Introduction
2. Problem Statement
3. The DTM in Practice: Solving a Stiff Nonlinear Equation
4. Application of PINNs to a Stiff Boundary Problem
5. Results and Discussion
5.1. Results Obtained from DTM
5.2. Results Obtained from PINN
- The neural network consisted of three hidden layers, each containing 10 neurons;
- The training was performed using the Adam optimizer with a learning rate of ;
- The number of training points was set to 50.
5.3. DTM vs. PINN Results Comparison
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grzymkowski, R.; Hetmaniok, E.; Slota, D. Application of the homotopy perturbation method for calculation of the temperature distribution in the cast-mould heterogeneous domain. J. Achiev. Mater. Manuf. Eng. 2010, 43, 299. [Google Scholar]
- He, J.H. An elementary introduction to the homotopy perturbation method. Comput. Math. Appl. 2009, 57, 410–412. [Google Scholar] [CrossRef]
- Adomian, G. Solving Frontier Problems of Physics: The Decomposition Method; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 60. [Google Scholar]
- Pleszczyński, M.; Kaczmarek, K.; Słota, D. Application of a Hybrid of the Different Transform Method and Adomian Decomposition Method Algorithms to Solve the Troesch Problem. Mathematics 2024, 12, 3858. [Google Scholar] [CrossRef]
- Abazari, R.; Ganji, M. Extended two-dimensional DTM and its application on nonlinear PDEs with proportional delay. Int. J. Comput. Math. 2011, 88, 1749–1762. [Google Scholar] [CrossRef]
- Brociek, R.; Pleszczyński, M. Comparison of selected numerical methods for solving integro-differential equations with the Cauchy kernel. Symmetry 2024, 16, 233. [Google Scholar] [CrossRef]
- Brociek, R.; Pleszczyński, M. Differential Transform Method (DTM) and Physics-Informed Neural Networks (PINNs) in Solving Integral–Algebraic Equation Systems. Symmetry 2024, 16, 1619. [Google Scholar] [CrossRef]
- Abazari, R.; Abazari, M. Numerical simulation of generalized Hirota–Satsuma coupled KdV equation by RDTM and comparison with DTM. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 619–629. [Google Scholar] [CrossRef]
- Lynch, S. Dynamical Systems with Applications Using Mathematica; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Sitek, G.; Pleszczyński, M. Inferring About the Average Value of Audit Errors from Sequential Ratio Tests. Entropy 2024, 26, 998. [Google Scholar] [CrossRef]
- Wolfram, S. The MATHEMATICA® Book, Version 4; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Cuomo, S.; Schiano Di Cola, V.; Giampaolo, F.; Rozza, G.; Raissi, M.; Piccialli, F. Scientific Machine Learning Through Physics–Informed Neural Networks: Where We Are and What’s Next. J. Sci. Comput. 2022, 92, 88. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations. arXiv 2017, arXiv:1711.10561. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations. arXiv 2017, arXiv:1711.10566. [Google Scholar] [CrossRef]
- Farea, A.; Yli-Harja, O.; Emmert-Streib, F. Using Physics-Informed Neural Networks for Modeling Biological and Epidemiological Dynamical Systems. Mathematics 2025, 13, 1664. [Google Scholar] [CrossRef]
- Movahhedi, M.; Liu, X.; Geng, B.; Fan, J.; Zhang, Z.; Ma, J.; Luo, X. Predicting 3D Soft Tissue Dynamics from 2D Imaging Using Physics-Informed Neural Networks. Commun. Biol. 2023, 6, 541. [Google Scholar] [CrossRef] [PubMed]
- Zobeiry, N.; Humfeld, K.D. A physics-informed machine learning approach for solving heat transfer equation in advanced manufacturing and engineering applications. Eng. Appl. Artif. Intell. 2021, 101, 104232. [Google Scholar] [CrossRef]
- Ren, Z.; Zhou, S.; Liu, D.; Liu, Q. Physics-Informed Neural Networks: A Review of Methodological Evolution, Theoretical Foundations, and Interdisciplinary Frontiers Toward Next-Generation Scientific Computing. Appl. Sci. 2025, 15, 8092. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, J.; Zhu, X. High-Accuracy Parallel Neural Networks with Hard Constraints for a Mixed Stokes/Darcy Model. Entropy 2025, 27, 275. [Google Scholar] [CrossRef]
- Li, S.; Feng, X. Dynamic Weight Strategy of Physics-Informed Neural Networks for the 2D Navier–Stokes Equations. Entropy 2022, 24, 1254. [Google Scholar] [CrossRef]
- Trahan, C.; Loveland, M.; Dent, S. Quantum Physics-Informed Neural Networks. Entropy 2024, 26, 649. [Google Scholar] [CrossRef]
- Feng, X.; Mei, L.; He, G. An efficient algorithm for solving Troesch’s problem. Appl. Math. Comput. 2007, 189, 500–507. [Google Scholar] [CrossRef]
- Weibel, E.S.; Landshoff, R. The plasma in magnetic field. In Proceedings of the a Symposium on Magneto Hydrodynamics; Stanford University Press: Stanford, CA, USA, 1958; pp. 60–67. [Google Scholar]
- Gidaspow, D.; Baker, B.S. A model for discharge of storage batteries. J. Electrochem. Soc. 1973, 120, 1005. [Google Scholar] [CrossRef]
- Markin, V.; Chernenko, A.; Chizmadehev, Y.; Chirkov, Y.G. Aspects of the theory of gas porous electrodes. In Fuel Cells: Their Electrochemical Kinetics; Springer: New York, NY, USA, 1966; pp. 22–33. [Google Scholar]
- Vazquez-Leal, H.; Khan, Y.; Fernandez-Anaya, G.; Herrera-May, A.; Sarmiento-Reyes, A.; Filobello-Nino, U.; Jimenez-Fernandez, V.M.; Pereyra-Diaz, D. A general solution for Troesch’s problem. Math. Probl. Eng. 2012, 2012, 208375. [Google Scholar] [CrossRef]
- Bararnia, H.; Esmaeilpour, M. On the application of physics informed neural networks (PINN) to solve boundary layer thermal-fluid problems. Int. Commun. Heat Mass Transf. 2022, 132, 105890. [Google Scholar] [CrossRef]
- Lee, S.; Popovics, J. Applications of physics-informed neural networks for property characterization of complex materials. RILEM Tech. Lett. 2023, 7, 178–188. [Google Scholar] [CrossRef]
- Hu, H.; Qi, L.; Chao, X. Physics-informed Neural Networks (PINN) for computational solid mechanics: Numerical frameworks and applications. Thin-Walled Struct. 2024, 205, 112495. [Google Scholar] [CrossRef]
- Brociek, R.; Pleszczyński, M. Differential Transform Method and Neural Network for Solving Variational Calculus Problems. Mathematics 2024, 12, 2182. [Google Scholar] [CrossRef]
x | |||||
---|---|---|---|---|---|
0.0 | 0 | 0 | 0 | 0 | 0 |
0.1 | 0.0818 | 0.084817 | 0.084685 | 0.0846649 | 0.0846618 |
0.2 | 0.16453 | 0.170484 | 0.170219 | 0.170179 | 0.170173 |
0.3 | 0.24917 | 0.257867 | 0.257466 | 0.257405 | 0.257396 |
0.4 | 0.33673 | 0.347859 | 0.34732 | 0.347238 | 0.347225 |
0.5 | 0.42835 | 0.441398 | 0.440723 | 0.440619 | 0.440603 |
0.6 | 0.52527 | 0.53948 | 0.538683 | 0.538557 | 0.538538 |
0.7 | 0.62897 | 0.643173 | 0.642299 | 0.642156 | 0.642133 |
0.8 | 0.74117 | 0.753633 | 0.752785 | 0.752637 | 0.752613 |
0.9 | 0.86397 | 0.872117 | 0.871503 | 0.871387 | 0.871367 |
1.0 | 1 | 1 | 1 | 1 | 1 |
x | |||||
---|---|---|---|---|---|
0.0 | 0 | 0 | 0 | 0 | 0 |
0.1 | 0.025946 | 0.031336 | 0.02896 | 0.02779 | 0.02707 |
0.2 | 0.054248 | 0.065519 | 0.060552 | 0.05811 | 0.05661 |
0.3 | 0.087495 | 0.105669 | 0.097669 | 0.09372 | 0.09131 |
0.4 | 0.128777 | 0.155455 | 0.143771 | 0.13796 | 0.1344 |
0.5 | 0.182056 | 0.219368 | 0.203267 | 0.19509 | 0.19004 |
0.6 | 0.252747 | 0.302992 | 0.28201 | 0.27091 | 0.26391 |
0.7 | 0.348805 | 0.413283 | 0.387965 | 0.37367 | 0.36429 |
0.8 | 0.483138 | 0.558839 | 0.532055 | 0.51556 | 0.50401 |
0.9 | 0.680163 | 0.750176 | 0.729264 | 0.71497 | 0.70401 |
1.0 | 1 | 1 | 1 | 1 | 1 |
x | |||||
---|---|---|---|---|---|
0.0 | 0 | 0 | 0 | 0 | 0 |
0.1 | |||||
0.2 | |||||
0.3 | |||||
0.4 | |||||
0.5 | |||||
0.6 | |||||
0.7 | |||||
0.8 | |||||
0.9 | |||||
1.0 | 1 | 1 | 1 | 1 | 1 |
x | [4] | PINN | [4] | PINN | ||
---|---|---|---|---|---|---|
0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
0.1 | 0.081797 | 0.084623 | 0.002826 | 0.025946 | 0.025947 | |
0.2 | 0.164531 | 0.170101 | 0.005570 | 0.054248 | 0.054252 | |
0.3 | 0.249167 | 0.257297 | 0.008130 | 0.087495 | 0.087502 | |
0.4 | 0.336732 | 0.347106 | 0.010374 | 0.128777 | 0.128781 | |
0.5 | 0.428347 | 0.440474 | 0.012127 | 0.182056 | 0.182053 | |
0.6 | 0.525274 | 0.538414 | 0.013140 | 0.252747 | 0.252743 | |
0.7 | 0.628971 | 0.642024 | 0.013053 | 0.348805 | 0.348798 | |
0.8 | 0.741168 | 0.752527 | 0.011359 | 0.483138 | 0.483128 | |
0.9 | 0.86397 | 0.871314 | 0.007344 | 0.680163 | 0.680158 | |
1.0 | 1 | 1 | 0 | 1 | 1 | 0 |
x | [4] | PINN | |
---|---|---|---|
0.0 | 0 | 0 | 0 |
0.1 | |||
0.2 | |||
0.3 | |||
0.4 | |||
0.5 | |||
0.6 | |||
0.7 | |||
0.8 | |||
0.9 | |||
1.0 | 1 | 1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brociek, R.; Pleszczyński, M.; Błaszczyk, J.; Czaicki, M.; Napoli, C.; Capizzi, G. Comparing PINN and Symbolic Transform Methods in Modeling the Nonlinear Dynamics of Complex Systems: A Case Study of the Troesch Problem. Mathematics 2025, 13, 3045. https://doi.org/10.3390/math13183045
Brociek R, Pleszczyński M, Błaszczyk J, Czaicki M, Napoli C, Capizzi G. Comparing PINN and Symbolic Transform Methods in Modeling the Nonlinear Dynamics of Complex Systems: A Case Study of the Troesch Problem. Mathematics. 2025; 13(18):3045. https://doi.org/10.3390/math13183045
Chicago/Turabian StyleBrociek, Rafał, Mariusz Pleszczyński, Jakub Błaszczyk, Maciej Czaicki, Christian Napoli, and Giacomo Capizzi. 2025. "Comparing PINN and Symbolic Transform Methods in Modeling the Nonlinear Dynamics of Complex Systems: A Case Study of the Troesch Problem" Mathematics 13, no. 18: 3045. https://doi.org/10.3390/math13183045
APA StyleBrociek, R., Pleszczyński, M., Błaszczyk, J., Czaicki, M., Napoli, C., & Capizzi, G. (2025). Comparing PINN and Symbolic Transform Methods in Modeling the Nonlinear Dynamics of Complex Systems: A Case Study of the Troesch Problem. Mathematics, 13(18), 3045. https://doi.org/10.3390/math13183045