Green’s Function for the Cauchy Problem to the Dissipative Linear Evolution Equation of Arbitrary Order
Abstract
1. Introduction
2. The Cauchy Problem for Equation (1)
3. The Green Function for the Cauchy Problem of the Dissipative Equation
4. Partial Representations of the Green Function
5. Green’s Function for the Cauchy Problem of the Dispersive Equation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bateman, H. Some Recent Researches on the Motion of Fluids. Mon. Rev. 1915, 43, 163–170. [Google Scholar] [CrossRef]
- Burgers, J.M. A mathematical model illustrating the theory turbulence. Adv. Appl. Mech. 1948, 1, 171–199. [Google Scholar]
- Olver, P.J. Evolution equations possessing infinitely many symmetries. J. Math. Phys. 1977, 18, 1212–1215. [Google Scholar] [CrossRef]
- Sharma, V.D.; Madhumita, G.; Manickam, S.A.V. Dissipative waves in a relaxing gas exhibiting mixed nonlinearity. Nonlinear Dyn. 2003, 33, 283–299. [Google Scholar] [CrossRef]
- Ibragimov, N.H.; Kolsrud, T. Lagrangian approach to evolution equations: Symmetries and conservation laws. Nonlinear Dyn. 2004, 36, 29–40. [Google Scholar] [CrossRef]
- Qian, C.Z.; Tang, J.S. Asymptotic solution for a kind of boundary layer problem. Nonlinear Dyn. 2006, 45, 15–24. [Google Scholar] [CrossRef]
- Biswas, A.; Triki, H.; Hayat, T.; Aldossary, O.M. 1-Soliton solution of the generalized Burgers equation with generalized evolution. Appl. Math. Comput. 2011, 217, 10289–10294. [Google Scholar] [CrossRef]
- Boritchev, A. Estimates for solutions of a low-viscosity kick-forced generalized Burgers equation. Proc. R. Soc. Edinb. A 2013, 143, 253–263. [Google Scholar] [CrossRef]
- Lou, S. Progresses on Some Open Problems Related to Infinitely Many Symmetries. Mathematics 2024, 12, 3224. [Google Scholar] [CrossRef]
- Kraenkel, R.A.; Pereira, J.G.; de Rey Neto, E.C. Linearizability of the perturbed Burgers equation. Phys. Rev. E 1998, 58, 2526–2530. [Google Scholar] [CrossRef]
- Billingham, J.; King, A.C. Wave Motion; Cambridge University Press: Cambridge, MA, USA, 2000; Volume 468. [Google Scholar]
- Fokas, T.S.; Luo, L. On the asymptotic linearization of acoustic waves. Trans. Am. Math. 2008, 360, 6403–6445. [Google Scholar] [CrossRef][Green Version]
- Kudryashov, N.A.; Sinelshchikov, D.I. An extended equation for the description of nonlinear waves in a liquid with gas bubbles. Wave Motion 2013, 50, 351–362. [Google Scholar] [CrossRef]
- Kudryashov, N.A.; Sinelshchikov, D.I.; Soukharev, M.B. Higher order equations for the description of wave process in liquid with gas bubbles. Vest. NRNU MEPhI. 2013, 2, 142–151. [Google Scholar]
- Ablowitz, M.; Nixon, S. Integrable fractional Burgers hierarchy. J. Nonlinear Waves 2025, 1, e3. [Google Scholar] [CrossRef]
- Hopf, E. The partial differential equation ut + u ux = uxx. Commun. Pure Appl. Math. 1950, 3, 201–230. [Google Scholar] [CrossRef]
- Cole, J.D. On a quasi-linear parabolic equation occuring in aerodynamics. Q. Appl. Math. 1951, 3, 225–236. [Google Scholar] [CrossRef]
- Kudryashov, N.A.; Sinelshchikov, D.I. Exact solutions of equations for the Burgers hierarchy. Appl. Math. Comput. 2009, 215, 1293–1300. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Solitary Waves of Burgers Hierarchy Equations. Comput. Math. Math. 2025, 65, 995–1003. [Google Scholar] [CrossRef]
- Whitham, G.B. Linear and Nonlinear Waves; Jhon Wiley and Sons: New York, NY, USA; London, UK; Sydney, Australia; Toronto, ON, Canada, 1974. [Google Scholar]
- Butkovskiy, A.G. Green’s Functions and Transfer Functions Handbook; Halstead Press–John Wiley and Sons: New York, NY, USA, 1982. [Google Scholar]
- Polyanin, A.D.; Zaitsev, V.F.; Zhyrov, A.I. Methods of Nonlinear Equations of Mathematical Physics and Mechanics; Fizmatlit: Moscow, Russia, 2005. [Google Scholar]
- Cole, K.D.; Beck, J.V.; Haji-Sheikh, A.; Litkouhi, B. Methods for Obtaining Green’s Functions. In Heat Conduction Using Greens Functions; CRC Press: Boca Raton, FL, USA, 2010; Volume 4, pp. 101–148. [Google Scholar]
- Polyanin, A.D.; Zaitsev, V.F. Handbook of Nonlinear Partial Differential Equations, 2nd ed.; Chapman and Hall/CRC: London, UK; Boca Raton, FL, USA, 2011. [Google Scholar]
- Polyanin, A.D.; Nazaikinskii, V.E. Handbook of Linear Partial Differential Equations for Engineers and Scientists; Chapman and Hall/CRC: New York, NY, USA, 2016. [Google Scholar]
- Kudryashov, N.A.; Sinelshchikov, D.I. The Cauchy problem for the equation of the Burgers hierarchy. Nonlinear Dyn. 2014, 76, 561–569. [Google Scholar] [CrossRef]
- Dunaev, A.S.; Shlychkov, V.I. Hypergeometric Functions; Ural Federal University: Yekaterinburg, Russia, 2017. [Google Scholar]
- Rao, K.S.; Lakshminarayanan, V. Generalized Hypergeometric Functions; IOP Publishing: Bristol, UK, 2018. [Google Scholar]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley & Sons: New York, NY, USA, 1984. [Google Scholar]
- Srivastava, H.M.; Arjika, S. A General Family of q-Hypergeometric Polynomials and Associated Generating Functions. Mathematics 2021, 9, 1161. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nifontov, D.R.; Kudryashov, N.A. Green’s Function for the Cauchy Problem to the Dissipative Linear Evolution Equation of Arbitrary Order. Mathematics 2025, 13, 2966. https://doi.org/10.3390/math13182966
Nifontov DR, Kudryashov NA. Green’s Function for the Cauchy Problem to the Dissipative Linear Evolution Equation of Arbitrary Order. Mathematics. 2025; 13(18):2966. https://doi.org/10.3390/math13182966
Chicago/Turabian StyleNifontov, Daniil R., and Nikolay A. Kudryashov. 2025. "Green’s Function for the Cauchy Problem to the Dissipative Linear Evolution Equation of Arbitrary Order" Mathematics 13, no. 18: 2966. https://doi.org/10.3390/math13182966
APA StyleNifontov, D. R., & Kudryashov, N. A. (2025). Green’s Function for the Cauchy Problem to the Dissipative Linear Evolution Equation of Arbitrary Order. Mathematics, 13(18), 2966. https://doi.org/10.3390/math13182966