Effective Resource Allocation to Combat Invasions of the Spotted Lanternfly (Lycorma delicatula) and Similar Pests
Abstract
1. Introduction
2. Results
2.1. Result 1
2.2. Result 2
2.3. Result 3
2.4. Result 4
2.5. Result 5
3. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SSC | Stage-Specific Control |
Appendix A. Methods and Calculations
Appendix A.1. Result 1
Appendix A.2. Result 2
Appendix A.3. Example Numerical Illustration of Result 2
Appendix A.4. Result 3
Appendix A.5. Result 4
Appendix A.6. Result 5
Appendix A.6.1. Random Application of Controls
Appendix A.6.2. Global Optimization
References
- Dara, S.K.; Barringer, L.; Arthurs, S.P. Lycorma delicatula (Hemiptera: Fulgoridae): A new invasive pest in the United States. J. Integr. Pest Manag. 2015, 6, 20. [Google Scholar] [CrossRef]
- Barringer, L.E.; Donovall, L.R.; Spichiger, S.E.; Lynch, D.; Henry, D. The first new world record of Lycorma delicatula (Insecta: Hemiptera: Fulgoridae). Entomol. News 2015, 125, 20–23. [Google Scholar] [CrossRef]
- Jung, J.M.; Jung, S.; Byeon, D.h.; Lee, W.H. Model-based prediction of potential distribution of the invasive insect pest, spotted lanternfly Lycorma delicatula (Hemiptera: Fulgoridae), by using CLIMEX. J. Asia-Pac. Biodivers. 2017, 10, 532–538. [Google Scholar] [CrossRef]
- Wakie, T.T.; Neven, L.G.; Yee, W.L.; Lu, Z. The establishment risk of Lycorma delicatula (Hemiptera: Fulgoridae) in the United States and globally. J. Econ. Entomol. 2020, 113, 306–314. [Google Scholar] [CrossRef]
- Urban, J.M. Perspective: Shedding light on spotted lanternfly impacts in the USA. Pest Manag. Sci. 2020, 76, 10–17. [Google Scholar] [CrossRef]
- European and Mediterranean Plant Protection Organization. EPPO A1 List of Pests Recommended for Regulation as Quarantine Pests. 2023. Available online: https://www.eppo.int/ACTIVITIES/plant_quarantine/A1_list (accessed on 11 September 2025).
- Johnson, A.E.; Cornell, A.; Hermann, S.; Zhu, F.; Hoover, K. Using community science to identify predators of spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae), in North America. Bull. Entomol. Res. 2023, 113, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Strömbom, D.; Crocker, A.; Gery, A.; Tulevech, G.; Sands, A.; Ward, K.; Pandey, S. Modelling the emergence of social-bird biological controls to mitigate invasions of the spotted lanternfly and similar invasive pests. R. Soc. Open Sci. 2024, 11, 231671. [Google Scholar] [CrossRef]
- (USDA APHIS) U.S. Department of Agriculture Animal and Plant Health Inspection Service. Spotted Lanternfly Control Program in the Mid-Atlantic Region–Environmental Assessment; USDA APHIS: Washington DC, USA, 2018. Available online: https://www.aphis.usda.gov/plant_health/ea/downloads/2018/mid-atlantic-region-slf-ea.pdf (accessed on 1 April 2025).
- Leach, H.; Biddinger, D.J.; Krawczyk, G.; Smyers, E.; Urban, J.M. Evaluation of insecticides for control of the spotted lanternfly, Lycorma delicatula, (Hemiptera: Fulgoridae), a new pest of fruit in the Northeastern US. Crop Prot. 2019, 124, 104833. [Google Scholar] [CrossRef]
- Shin, Y.H.; Moon, S.R.; Yoon, C.M.; Ahn, K.S.; Kim, G.H. Insecticidal activity of 26 insectcides against eggs and nymphs of Lycorma delicatula (Hemiptera: Fulgoridae). Korean J. Pestic. Sci. 2010, 14, 157–163. [Google Scholar]
- Clifton, E.H.; Hajek, A.E.; Jenkins, N.E.; Roush, R.T.; Rost, J.P.; Biddinger, D.J. Applications of Beauveria bassiana (Hypocreales: Cordycipitaceae) to Control Populations of Spotted Lanternfly (Hemiptera: Fulgoridae), in Semi-Natural Landscapes and on Grapevines. Environ. Entomol. 2020, 49, 854–864. [Google Scholar] [CrossRef]
- Liu, H. Occurrence, seasonal abundance, and superparasitism of Ooencyrtus kuvanae (Hymenoptera: Encyrtidae) as an egg parasitoid of the spotted lanternfly (Lycorma delicatula) in North America. Forests 2019, 10, 79. [Google Scholar] [CrossRef]
- Wu, Y.; Broadley, H.J.; Vieira, K.A.; McCormack, J.J.; Losch, C.A.; Namgung, H.; Kim, Y.; Kim, H.; McGraw, A.R.; Palmeri, M.Z.; et al. Cryptic genetic diversity and associated ecological differences of Anastatus orientalis, an egg parasitoid of the spotted lanternfly. Front. Insect Sci. 2023, 3, 1154651. [Google Scholar] [CrossRef]
- Francese, J.A.; Cooperband, M.F.; Murman, K.M.; Cannon, S.L.; Booth, E.G.; Devine, S.M.; Wallace, M.S. Developing Traps for the Spotted Lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae). Environ. Entomol. 2020, 49, 269–276. [Google Scholar] [CrossRef]
- Cooperband, M.F.; Mack, R.; Spichiger, S.E. Chipping to destroy egg masses of the spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae). J. Insect Sci. 2018, 18, 7. [Google Scholar] [CrossRef]
- Urban, J.M.; Leach, H. Biology and management of the spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae), in the United States. Annu. Rev. Entomol. 2023, 68, 151–167. [Google Scholar] [CrossRef] [PubMed]
- New York State Integrated Pest Management. Spotted Lanternfly Reported Distribution in the Eastern U.S. 2024. Available online: https://cornell.app.box.com/v/slf-distribution-map-detail (accessed on 3 January 2025).
- Cook, R.T.; Ward, S.F.; Liebhold, A.M.; Fei, S. Spatial dynamics of spotted lanternfly, Lycorma delicatula, invasion of the Northeastern United States. NeoBiota 2021, 70, 23. [Google Scholar] [CrossRef]
- Jones, C.; Skrip, M.M.; Seliger, B.J.; Jones, S.; Wakie, T.; Takeuchi, Y.; Petras, V.; Petrasova, A.; Meentemeyer, R.K. Spotted lanternfly predicted to establish in California by 2033 without preventative management. Commun. Biol. 2022, 5, 558. [Google Scholar] [CrossRef] [PubMed]
- Strömbom, D.; Sands, A.; Graham, J.M.; Crocker, A.; Cloud, C.; Tulevech, G.; Ward, K. Modeling human activity-related spread of the spotted lanternfly (Lycorma delicatula) in the US. PLoS ONE 2024, 19, e0307754. [Google Scholar] [CrossRef]
- Strömbom, D.; Pandey, S. Modeling the life cycle of the spotted lanternfly (Lycorma delicatula) with management implications. Math. Biosci. 2021, 340, 108670. [Google Scholar] [CrossRef]
- Cooperband, M.F.; Wickham, J.; Cleary, K.; Spichiger, S.E.; Zhang, L.; Baker, J.; Canlas, I.; Derstine, N.; Carrillo, D. Discovery of three kairomones in relation to trap and lure development for spotted lanternfly (Hemiptera: Fulgoridae). J. Econ. Entomol. 2019, 112, 671–682. [Google Scholar] [CrossRef]
- Oerke, E.C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Mitchell, P.D.; Onstad, D.W. Valuing pest susceptibility to control. In Insect Resistance Management; Elsevier: Amsterdam, The Netherlands, 2014; pp. 25–53. [Google Scholar]
- Brown, J.S.; Staňková, K. Game theory as a conceptual framework for managing insect pests. Curr. Opin. Insect Sci. 2017, 21, 26–32. [Google Scholar] [CrossRef]
- Edholm, C.J.; Tenhumberg, B.; Guiver, C.; Jin, Y.; Townley, S.; Rebarber, R. Management of invasive insect species using optimal control theory. Ecol. Model. 2018, 381, 36–45. [Google Scholar] [CrossRef]
- Diwekar, U.M. Introduction to Applied Optimization; Springer Nature: Berlin/Heidelberg, Germany, 2020; Volume 22. [Google Scholar]
- Yemshanov, D.; Haight, R.G.; Koch, F.H.; Lu, B.; Venette, R.; Fournier, R.E.; Turgeon, J.J. Robust surveillance and control of invasive species using a scenario optimization approach. Ecol. Econ. 2017, 133, 86–98. [Google Scholar] [CrossRef]
- Büyüktahtakın, I.E.; Haight, R.G. A review of operations research models in invasive species management: State of the art, challenges, and future directions. Ann. Oper. Res. 2018, 271, 357–403. [Google Scholar] [CrossRef]
- Thompson, B.K.; Olden, J.D.; Converse, S.J. Mechanistic invasive species management models and their application in conservation. Conserv. Sci. Pract. 2021, 3, e533. [Google Scholar] [CrossRef]
- Ahmed, D.A.; Hudgins, E.J.; Cuthbert, R.N.; Kourantidou, M.; Diagne, C.; Haubrock, P.J.; Leung, B.; Liu, C.; Leroy, B.; Petrovskii, S.; et al. Managing biological invasions: The cost of inaction. Biol. Invasions 2022, 24, 1927–1946. [Google Scholar] [CrossRef]
- Scheid, L. Spotted Lanternfly Control in Berks Set Back by Funding Cuts; Reading Eagle: Reading, PA, USA, 2021; Available online: https://www.readingeagle.com/2021/05/08/spotted-lanternfly-control-in-berks-set-back-by-funding-cuts/ (accessed on 5 September 2025).
- Harper, J.K.; Stone, W.; Kelsey, T.W.; Kime, L.F. Potential Economic Impact of the Spotted Lanternfly on Agriculture and Forestry in Pennsylvania; The Center for Rural Pennsylvania: Harrisburg, PA, USA, 2019; pp. 1–84. Available online: https://www.invasivespeciescentre.ca/wp-content/uploads/2020/06/Spotted-Lanternfly-2019-1.pdf (accessed on 5 September 2025).
- Hastings, A.; Hall, R.J.; Taylor, C.M. A simple approach to optimal control of invasive species. Theor. Popul. Biol. 2006, 70, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Blackwood, J.; Hastings, A.; Costello, C. Cost-effective management of invasive species using linear-quadratic control. Ecol. Econ. 2010, 69, 519–527. [Google Scholar] [CrossRef]
- Moody, M.E.; Mack, R.N. Controlling the spread of plant invasions: The importance of nascent foci. J. Appl. Ecol. 1988, 25, 1009–1021. [Google Scholar] [CrossRef]
- Bor, Y.J. Optimal pest management and economic threshold. Agric. Syst. 1995, 49, 113–133. [Google Scholar] [CrossRef]
- Liang, J.; Tang, S.; Cheke, R.A. An integrated pest management model with delayed responses to pesticide applications and its threshold dynamics. Nonlinear Anal. Real World Appl. 2012, 13, 2352–2374. [Google Scholar] [CrossRef]
- Liu, B.; Kang, B.l.; Tao, F.m.; Hu, G. Modelling the effects of pest control with development of pesticide resistance. Acta Math. Appl. Sin. Engl. Ser. 2021, 37, 109–125. [Google Scholar] [CrossRef]
- Wolfram Research, Inc. Mathematica, version 14.2; Wolfram Research, Inc.: Champaign, IL, USA, 2024.
- Dantzig, G.B. Linear Programming and Extensions; Princeton University Press: Princeton, NJ, USA, 1963. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strömbom, D.; Hoitt, J.; Hu, J.; Pandey, S.; Batchelar, E. Effective Resource Allocation to Combat Invasions of the Spotted Lanternfly (Lycorma delicatula) and Similar Pests. Mathematics 2025, 13, 2952. https://doi.org/10.3390/math13182952
Strömbom D, Hoitt J, Hu J, Pandey S, Batchelar E. Effective Resource Allocation to Combat Invasions of the Spotted Lanternfly (Lycorma delicatula) and Similar Pests. Mathematics. 2025; 13(18):2952. https://doi.org/10.3390/math13182952
Chicago/Turabian StyleStrömbom, Daniel, Julianna Hoitt, Jinrong Hu, Swati Pandey, and Elizabeth Batchelar. 2025. "Effective Resource Allocation to Combat Invasions of the Spotted Lanternfly (Lycorma delicatula) and Similar Pests" Mathematics 13, no. 18: 2952. https://doi.org/10.3390/math13182952
APA StyleStrömbom, D., Hoitt, J., Hu, J., Pandey, S., & Batchelar, E. (2025). Effective Resource Allocation to Combat Invasions of the Spotted Lanternfly (Lycorma delicatula) and Similar Pests. Mathematics, 13(18), 2952. https://doi.org/10.3390/math13182952