Role of Qubits in Quantum Entanglement and Quantum Teleportation
Abstract
1. Introduction
2. Qubits
- Quantum superposition principle: If a quantum system can be in the state and can also be in the state , then quantum mechanics allows the system to be in any arbitrary state . The state is said to be in a superposition of and with probability amplitude α and β. Two famous states are given by
- How the qubits are realized physically?
- The qubits might be represented by two states of an electron orbiting an atom.
- The qubits might be represented by two directions of the spin of a particle: for example, to measure the spin of a particle along z-axis, up or down is used, that is ( direction) and ( direction), or and . For computational purposes, it is convenient to use and .
- The qubits might be represented by two polarizations of a photon.
- The computational basis is typically used to represent two exclusive states of a quantum system as quantum-0 and quantum-1. For example, if the energy of an electron in an atom is used as our quantum bit, we could say that the ground state (lowest energy) is our quantum-0 and an excited state (higher energy) is our quantum-1. Since the ground state and the excited states are mutually exclusive, the representation could be: ground state ↔; excited state ↔.
3. Quantum Entanglement
3.1. Bell–CHSH Inequalities
3.2. Criteria of Separability
- 1.
- 2.
- 3.
- Entropy of entanglement criterion.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
4. Quantum Teleportation
4.1. Teleportation Through a Nonmaximally Entangled Channel
4.2. Quantum Teleportation Fidelity
4.2.1. Definition
- The following definition has been used in [75]
4.2.2. Computation of the Fidelity
- for the measurement of , Bouba applies the unit operator to and normalizes to obtain
- for the measurement of , Bouba applies the operator on , and after normalization, the outcome is
- for the measurement of , Bouba applies the operator on ; and after normalization, the outcome is
- for the measurement of , Bouba applies the operator on ; and after normalization, the outcome is
5. Conclusions
- The separability of quantum states is directly linked to unsolved challenges of mathematics concerning linear algebra, geometry, functional analysis, and, in particular, the theory of -algebra. The distillability problem, that is, the question whether the state of a composite quantum system can be transformed to an entangled pure state using local operations, is another problem that is related to challenging open questions of modern mathematics. These unsolved challenges of mathematics responsible for the quantum separability are addressed in the paper by Pawel Horodecki et al., and a paper by Balachandran et al. [80,81].
- Deterministic perfect teleportation is not possible in the case of entangled non-orthogonal coherent states.
- The fidelity of teleportation depends on the parameters of the initial state to be teleported. For the protocol, the unitary operators used by the receiver are the Pauli matrices. It may be interesting to find the convenient unitary operators that give perfect teleportation.
- We are interested in analyzing Hardy’s experiment under the circumstances of entanglement and fidelity.
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 1935, 23, 807–812. [Google Scholar] [CrossRef]
- Schrödinger, E. Discussion of probability relations between separated systems. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 1935; Volume 31. [Google Scholar] [CrossRef]
- Susskind, L.; Friedman, A. Quantum Mechanics: The Theoretical Minimum; Penguin: London, UK, 2015; ISBN 978-0141977812. [Google Scholar]
- Einstein attacks quantum theory. New York Times, 4 May 1935.
- Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935, 47, 777. [Google Scholar] [CrossRef]
- Bell, J.S. On the Einstein-Podolsky-Rosen paradox. Physics 1964, 1, 200. [Google Scholar] [CrossRef]
- Bell, J.S. On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 1966, 38, 447–452. [Google Scholar] [CrossRef]
- Bell, J.S. Speakable and Unspeakable in Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2004; ISBN 978-0521523387. [Google Scholar]
- Aspect, A.; Grangier, P.; Roger, G. Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 1981, 47, 460. [Google Scholar] [CrossRef]
- Aspect, A.; Grangier, P.; Roger, G. Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: A new violation of Bell’s inequalities. Phys. Rev. Lett. 1982, 49, 91. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; 10th Anniversary Edition; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Amico, L.; Fazio, R.; Osterloh, A.; Vedral, V. Entanglement in Many-Body System. Rev. Mod. Phys. 2008, 80, 517. [Google Scholar] [CrossRef]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum Entanglement. Rev. Mod. Phys. 2009, 81, 865. [Google Scholar] [CrossRef]
- Pirola, S.; Andersen, U.L.; Banchi, L.; Berta, M.; Bunar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.; et al. Advances in quantum cryptography. Adv. Opt. Photonics 2020, 12, 1012–1236. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G.; Crepeau, C.; Jozsa, R.; Peres, A.; Wootters, W.K. Teleporting an unknown quantum state vis dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 1993, 70, 1895. [Google Scholar] [CrossRef]
- Sun, X.; Li, B.; Zhuo, E.; Lyu, Z.; Ji, Z.; Fan, J.; Song, X.; Qu, F.; Liu, G.; Shen, J.; et al. Realization of superconducting transmon qubits based on topological insulator nanowires. Appl. Phys. Lett. 2023, 122, 154001. [Google Scholar] [CrossRef]
- Halder, S.; Chauhan, K.A.; Barfar, M.B.; Ganguly, S.; Devendrababu, S. Introduction: Superconducting Qubits and Their Realizations. In Superconducting Qubit Design Using Qiskit Metal; Apress: Berkeley, CA, USA, 2025. [Google Scholar] [CrossRef]
- Schumacher, B. Quantum coding. Phys. Rev. A 1995, 51, 2738–2747. [Google Scholar] [CrossRef] [PubMed]
- Neven, A.; Bastin, T. The quantum separability problem is a simultaneous hollowisation matrix analysis problem. J. Phys. A Math. Theor. 2018, 51, 315305. [Google Scholar] [CrossRef]
- Horodecki, M.; Horodecki, P.; Horodecki, R. Separability of mixed states: Necessity and sufficient condition. Phys. Lett. A 1996, 223. [Google Scholar] [CrossRef]
- Bruss, D. Characterizing entanglement. J. Math. Phys. 2002, 43, 4237. [Google Scholar] [CrossRef]
- Bohm, D. Quantum Theory; Prentice-Hall: Englewood Cliffs, NJ, USA, 1951. [Google Scholar]
- Gisin, N. Bell’s inequality holds for all non-product states. Phys. Lett. A 1991, 154, 201. [Google Scholar] [CrossRef]
- Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 1969, 23, 880–884. [Google Scholar] [CrossRef]
- Cirelson, B.S. Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 1980, 4, 93. [Google Scholar] [CrossRef]
- Werner, R.F. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden variable model. Phys. Rev. A 1989, 40, 4277. [Google Scholar] [CrossRef]
- Mermin, N.D. Extreme quantum entanglement in a superposition of macroscopic distinct states. Phys. Rev. Lett. 1990, 65, 1838. [Google Scholar] [CrossRef]
- Gisin, N.; Bechmann-Pasquinucci, H. Bell inequality, Bell states and maximally entangled states for N qubits. Phys. Lett. A 1998, 246, 1. [Google Scholar] [CrossRef]
- Zukowski, M.; Brukner, Č. Bell’s theorem for general n qubit states. Phys. Rev. Lett. 2002, 88, 210401. [Google Scholar] [CrossRef] [PubMed]
- Gnonfin, H.; Gouba, L. The Separability Problem in Two Qubits Revisited. Symmetry 2023, 15, 2089. [Google Scholar] [CrossRef]
- Schmidt, E. Zur Theorie der linearen und nichtlinearen Integralgleichungen. Math. Ann. 1907, 63, 433. [Google Scholar] [CrossRef]
- Ekert, A.; Knight, P.L. Entangled quantum systems and the Schmidt decomposition. Am. J. Phys. 1995, 63, 415. [Google Scholar] [CrossRef]
- Peres, A. Quantum Theory: Concepts and Methods; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995. [Google Scholar]
- Peres, A. Higher order Schmidt decomposition. Phys. Lett. A 1995, 202, 16. [Google Scholar] [CrossRef]
- Peres, A. Separability criterion for density matrices. Phys. Rev. Lett. 1996, 77, 1413–1415. [Google Scholar] [CrossRef]
- Horodecki, P. Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 1997, 232, 333–339. [Google Scholar] [CrossRef]
- Cerf, N.; Adami, C.; Gingrich, R.M. Reduction criterion for separabilit. Phys. Rev. 1999, 60, 898. [Google Scholar] [CrossRef]
- Hill, S.; Wootters, W.K. Entanglement of a pair of quantum bits. Phys. Rev. Lett. 1997, 78, 5022–5025. [Google Scholar] [CrossRef]
- Wootters, W.K. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 1998, 80, 2245–2248. [Google Scholar] [CrossRef]
- Wootters, W.K. Entanglement of formation of concurrence. Quantum Inf. Comput. 2001, 1, 27–44. [Google Scholar] [CrossRef]
- Fei, S.M.; Zhao, M.J.; Chen, K.; Wang, Z.X. Experimental determination of entanglement with a single measurement. Nature 2006, 440, 1022–1024. [Google Scholar] [CrossRef]
- Marshall, A.W.; Olkin, I.; Arnold, B.C. Inequalities: Theory of Majorization and Its Applications; Springer: Berlin/Heidelberg, Germany, 1979; Volume 143. [Google Scholar]
- Nielsen, M.A.; Kempe, J. Separable states are more disordered globally than locally. Phys. Rev. Lett. 2001, 86, 5184. [Google Scholar] [CrossRef]
- Rudolph, O. Computable cross-norm criterion for separability. Lett. Math. Phys. 2004, 70, 57–64. [Google Scholar] [CrossRef]
- Rudolph, O. Further results on the cross norm criterion for separability. Quantum Inf. Process 2005, 4, 219–239. [Google Scholar] [CrossRef]
- Chen, K.; Wu, L.A. A matrix realignment method for recognizing entanglement. Quantum Inf. Comput. 2003, 3, 193–202. [Google Scholar] [CrossRef]
- de Vicente, J. Separability criteria based on the Block representation of density matrices. Quantum Inf. Comput. 2007, 7, 624. [Google Scholar] [CrossRef]
- Bloch, F. Nuclear induction. Phys. Rev. 1946, 70, 460. [Google Scholar] [CrossRef]
- Hioe, F.T.; Eterly, J.H. N-level coherence vector and higher conservation laws in quantum optics and quantum mechanics. Phys. Rev. Lett. 1981, 47, 838. [Google Scholar] [CrossRef]
- Fano, U. Pairs of two-level systems. Rev. Mod. Phys. 1983, 55, 855. [Google Scholar] [CrossRef]
- Shang, J.; Asadian, A.; Zhu, H.; Gühne, O. Enhanced entanglement criterion via symmetric informationnally complete measurement. Phys. Rev. A 2018, 98, 022309. [Google Scholar] [CrossRef]
- Bengtsson, I.; Zyczkowski, K. Geometry of Quantum States: An Introduction to Quantum Entanglement; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar] [CrossRef]
- Ikowski, A.J. Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 1972, 3, 275. [Google Scholar] [CrossRef]
- Woronowicz, S.L. Positive maps of low dimensional matrix algebras. Rep. Math. Phys. 1976, 10, 165. [Google Scholar] [CrossRef]
- Choi, M.D. Positive linear maps. Proc. Symp. Pure Math. 1982, 38, 583. [Google Scholar] [CrossRef]
- St∅rmer, E. Positive linear maps of operators algebras. Acta Math. 1963, 110, 233. [Google Scholar] [CrossRef]
- St∅rmer, E. Decomposable positive maps on C*-algebras. Proc. Am. Math. Soc. 1982, 86, 402. [Google Scholar] [CrossRef]
- Terhal, B. A family of indecomposable positive linear maps based on entangled states. Linear Algebra Its Appl. 2000, 323, 61. [Google Scholar] [CrossRef]
- Gühne, O.; Toth, G. Entanglement detection. Phys. Rep. 2009, 47, 1–75. [Google Scholar] [CrossRef]
- Ganguly, N.; Adhikari, S.; Majumdar, A. Common entanglement witnesses and their characteristics. Quantum Inf. Process. 2013, 12. [Google Scholar] [CrossRef]
- Hyllus, P.; Gühne, O.; Bruss, D.; Lewenstein, M. Relations between entanglement witnesses and Bell inequalities. Phys. Rev. A 2005, 72, 012321. [Google Scholar] [CrossRef]
- Hofmann, H.F.; Takeuchi, S. Violation of local uncertainty relations as a signature of entanglement. Phys. Rev. A 2003, 68, 032103. [Google Scholar] [CrossRef]
- Gühne, O.; Lewenstein, M. Entropic uncertainty relations and entanglement. Phys. Rev. A 2004, 70, 022316. [Google Scholar] [CrossRef]
- Gühne, O. Characterizing entanglement via uncertainty relations. Phys. Rev. Lett. 2004, 92, 117903. [Google Scholar] [CrossRef] [PubMed]
- Gühne, O.; Mechler, M.; Tóth, G.; Adam, P. Entanglement criteria based pn local uncertainty relations are strictly stronger than the computable cross norm criteria. Phys. Rev. A 2006, 74, 010301. [Google Scholar] [CrossRef]
- Li, J.-L.; Qiao, C.-F. A necessary and sufficient criterion for the separability of quantum state. Sci. Rep. 2018, 8, 1442. [Google Scholar] [CrossRef]
- Horn, R.A.; Johnson, C.R. Topics in Matrix Analysis; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Horn, R.A.; Johnson, C.R. Matrix Analysis, 2nd ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Bercovici, H.; Collins, B.; Dykema, K.; Li, W.S. Characterization of singular numbers of products of operators in matrix algebras and finite von Neumann algebras. Bull. Sci. Math. 2015, 139, 400–419. [Google Scholar] [CrossRef]
- Bradley, A.S. Teleportation of massive particles without shared entanglement. arXiv 2007, arXiv:0706.0062. [Google Scholar] [CrossRef]
- Sohail Pati, A.K.; Aradhya, V.; Chakrabarty, I.; Patro, S. Teleportation of quantum coherence. Phys. Rev. A 2023, 108, 042620. [Google Scholar] [CrossRef]
- Aremua, I.; Gouba, L. Teleportation of a qubit using quasi-Bell states. J. Phys. Commun. 2024, 8, 095001. [Google Scholar] [CrossRef]
- Gouba, L. Quantum fidelity. Int. J. Geom. Methods Mod. Phys. 2025. [Google Scholar] [CrossRef]
- Jozsa, R. Fidelity for mixed quantum states. J. Mod. Opt. 1994, 41, 2315. [Google Scholar] [CrossRef]
- Prakash, H.; Chandra, N.; Prakash, R. Effect of decoherence on fidelity in teleportation using entangled coherent states. J. Phys. B At. Mol. Opt. Phys. 2007, 40, 1613. [Google Scholar] [CrossRef]
- Sisodia, M.; Verma, V.; Thapliyal, K.; Pathak, A. Teleportation of a qubit using entangled non-orthogonal states: A comparative study. Quantum Inf. Process. 2017, 16, 76. [Google Scholar] [CrossRef][Green Version]
- Popescu, S. Bell’s inequalities versus teleportation: What is nonlocality? Phys. Rev. Lett. 1994, 72, 797. [Google Scholar] [CrossRef]
- Horodecki, R.; Horedecki, M.; Horodecki, P. Teleportation, Bell’s inequalities and inseparability. Phys. Lett. A 1996, 222, 21–25. [Google Scholar] [CrossRef]
- Henderson, L.; Hardy, L.; Vedral, V. Two-state teleportation. Phys. Rev. A 2000, 61, 062306. [Google Scholar] [CrossRef]
- Horodecki, P.; Rudnicki, Ł.; Życzkowski, K. Five Open Problems in Quantum Information Theory. PRX Quantum 2022, 3, 010101. [Google Scholar] [CrossRef]
- Balachandran, A.; Govindarajan, T.; De Queiroz, A.R.; Reyes-Lega, A. Algebraic theory of entanglement. II Nuovo C 2013, 36, 27. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gouba, L. Role of Qubits in Quantum Entanglement and Quantum Teleportation. Mathematics 2025, 13, 2857. https://doi.org/10.3390/math13172857
Gouba L. Role of Qubits in Quantum Entanglement and Quantum Teleportation. Mathematics. 2025; 13(17):2857. https://doi.org/10.3390/math13172857
Chicago/Turabian StyleGouba, Laure. 2025. "Role of Qubits in Quantum Entanglement and Quantum Teleportation" Mathematics 13, no. 17: 2857. https://doi.org/10.3390/math13172857
APA StyleGouba, L. (2025). Role of Qubits in Quantum Entanglement and Quantum Teleportation. Mathematics, 13(17), 2857. https://doi.org/10.3390/math13172857