A Quantum-Inspired Hybrid Artificial Neural Network for Identifying the Dynamic Parameters of Mobile Car-Like Robots
Abstract
1. Introduction
1.1. Context of the Study
1.2. Related Works
1.3. Research Gap and Motivation
1.4. Key Contributions and Novelty of the Study
2. Materials and Methods
2.1. Artificial Neural Network Presentation
2.2. Artificial Neural Network Architecture
2.2.1. Classical Activation Function
2.2.2. Fundamentals of Quantum Computing
2.2.3. Quantum-Inspired Activation Function
2.2.4. Development of a QANN Architecture for the Regression Task
2.3. Mobile Robot Model
3. Results and Discussion
3.1. Simulation Parameters
3.2. Training Process Results
3.3. Results’ Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Network |
CANN | Classical Artificial Neural Network |
CAVs | Connected and Autonomous Vehicles |
CLMR | Car-Like Mobile Robot |
DDPG | Deep Deterministic Policy Gradient |
LiDAR | Light Detection and Ranging |
LSTM | Long Short-Term Memory |
MARL | Multi-Agent Reinforcement Learning |
MSE | Mean Squared Error |
NISQ | Noisy Intermediate-Scale Quantum |
PSO | Particle Swarm Optimization |
QANN | Quantum-Inspired Artificial Neural Network |
Q-DDPG | Quantum Deep Deterministic Policy Gradient |
Q-RDDPG | Quantum Recurrent Deep Deterministic Policy Gradient |
QRL | Quantum Reinforcement Learning |
R-CNN | Region-based Convolutional Neural Network |
R-FCN | Region-based Fully Convolutional Network |
ReLU | Rectified Linear Unit |
RGB | Red Green Blue (color space used in imaging) |
RMSE | Root Mean Squared Error |
USV | Unmanned Surface Vehicle |
LR | Learning Rate |
q-FPS | Quantum Fast Path Search |
q-RRT | Quantum Rapidly Exploring Random Tree |
UAV | Unmanned Aerial Vehicles |
References
- Alexa, O.; Ciobotaru, T.; Grigore, L.Ș.; Grigorie, T.L.; Ștefan, A.; Oncioiu, I.; Priescu, I.; Vlădescu, C. A Review of Mathematical Models Used to Estimate Wheeled and Tracked Unmanned Ground Vehicle Kinematics and Dynamics. Mathematics 2023, 11, 3735. [Google Scholar] [CrossRef]
- Leboutet, Q.; Roux, J.; Janot, A.; Guadarrama-Olvera, J.R.; Cheng, G. Inertial parameter identification in robotics: A survey. Appl. Sci. 2021, 11, 4303. [Google Scholar] [CrossRef]
- Siwek, M.; Panasiuk, J.; Baranowski, L.; Kaczmarek, W.; Prusaczyk, P.; Borys, S. Identification of differential drive robot dynamic model parameters. Materials 2023, 16, 683. [Google Scholar] [CrossRef]
- Wu, J.; Wang, J.; You, Z. An overview of dynamic parameter identification of robots. Robot. Comput. Manuf. 2010, 26, 414–419. [Google Scholar] [CrossRef]
- Mavrakis, N.; Stolkin, R. Estimation and exploitation of objects ’ inertial parameters in robotic grasping and manipulation: A survey. Robot. Auton. Syst. 2020, 124, 103374. [Google Scholar] [CrossRef]
- Zhu, M.; Gong, D.; Zhao, Y.; Chen, J.; Qi, J.; Song, S. Compliant Force Control for Robots: A Survey. Mathematics 2025, 13, 2204. [Google Scholar] [CrossRef]
- Lee, T.; Kwon, J.; Wensing, P.M.; Park, F.C. Robot model identification and learning: A modern perspective. Annu. Rev. Control. Robot. Auton. Syst. 2023, 7, 311–334. [Google Scholar] [CrossRef]
- Nguyen-Tuong, D.; Peters, J. Model learning for robot control: A survey. Cogn. Process. 2011, 12, 319–340. [Google Scholar] [CrossRef] [PubMed]
- Fazilat, M.; Zioui, N. Quantum Neural Network-based Inverse Kinematics of a Six-jointed Industrial Robotic Arm. Robot. Auton. Syst. 2025, 194, 105123. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, B.; Nan, Z.; Tao, W. An End-to-End Path Planner Combining Potential Field Method with Deep Reinforcement Learning. IEEE Sensors J. 2024, 24, 26584–26591. [Google Scholar] [CrossRef]
- Mutti, S.; Pedrocchi, N.; Valente, A.; Dimauro, G. Sim-to-Real RNN-Based Framework for the Precise Positioning of Autonomous Mobile Robots. IEEE Access 2024, 12, 163948–163957. [Google Scholar] [CrossRef]
- Ding, L.; Li, S.; Gao, H.; Chen, C.; Deng, Z. Adaptive partial reinforcement learning neural network-based tracking control for wheeled mobile robotic systems. IEEE Trans. Syst. Man, Cybern. Syst. 2018, 50, 2512–2523. [Google Scholar] [CrossRef]
- Saleem, H.; Malekian, R.; Munir, H. Neural network-based recent research developments in SLAM for autonomous ground vehicles: A review. IEEE Sensors J. 2023, 23, 13829–13858. [Google Scholar] [CrossRef]
- Hu, J.; Niu, H.; Carrasco, J.; Lennox, B.; Arvin, F. Voronoi-based multi-robot autonomous exploration in unknown environments via deep reinforcement learning. IEEE Trans. Veh. Technol. 2020, 69, 14413–14423. [Google Scholar] [CrossRef]
- Chen, L.; Lin, S.; Lu, X.; Cao, D.; Wu, H.; Guo, C.; Liu, C.; Wang, F.-Y. Deep neural network based vehicle and pedestrian detection for autonomous driving: A survey. IEEE Trans. Intell. Transp. Syst. 2021, 22, 3234–3246. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Dang, L.M.; Nguyen, T.N.; Han, D.; Lee, A.; Jang, I.; Moon, H. A deep learning-based hybrid framework for object detection and recognition in autonomous driving. IEEE Access 2020, 8, 194228–194239. [Google Scholar] [CrossRef]
- Ravindran, R.; Santora, M.J.; Jamali, M.M. Multi-object detection and tracking, based on DNN, for autonomous vehicles: A review. IEEE Sens. J. 2021, 21, 5668–5677. [Google Scholar] [CrossRef]
- Huang, Z.; Lv, C.; Xing, Y.; Wu, J. Multi-modal sensor fusion-based deep neural network for end-to-end autonomous driving with scene understanding. IEEE Sensors J. 2020, 21, 11781–11790. [Google Scholar] [CrossRef]
- Da Lio, M.; Donà, R.; Papini, G.P.R.; Biral, F.; Svensson, H. A mental simulation approach for learning neural-network predictive control (in self-driving cars). IEEE Access 2020, 8, 192041–192064. [Google Scholar] [CrossRef]
- Steshenko, J.; Kagan, E.; Ben-Gal, I. A simple protocol for a society of NXT robots communicating via Bluetooth. In Proceedings of the ELMAR-2011, Zadar, Croatia, 14–16 September 2011. [Google Scholar]
- Mahanti, S.; Das, S.; Behera, B.K.; Panigrahi, P.K. Quantum robots can fly; play games: An IBM quantum experience. Quantum Inf. Process. 2019, 18, 219. [Google Scholar] [CrossRef]
- Atchade-Adelomou, P.; Alonso-Linaje, G.; Albo-Canals, J.; Casado-Fauli, D. qRobot: A quantum computing approach in mobile robot order picking and batching problem solver optimization. Algorithms 2021, 14, 194. [Google Scholar] [CrossRef]
- Sarkar, M.; Pradhan, J.; Singh, A.K.; Nenavath, H. A novel hybrid quantum architecture for path planning in quantum-enabled autonomous mobile robots. IEEE Trans. Consum. Electron. 2024, 70, 5597–5606. [Google Scholar] [CrossRef]
- Bogue, R. Quantum technologies in robotics: A preliminary appraisal. Ind. Robot. Int. J. Robot. Res. Appl. 2025, 52, 1–8. [Google Scholar] [CrossRef]
- Panda, B.; Tripathy, N.K.; Sahu, S.; Behera, B.K.; Elhady, W.E. Controlling Remote Robots Based on Zidan’s Quantum Computing Model. Comput. Mater. Contin. 2022, 73, 6225–6236. [Google Scholar] [CrossRef]
- Petschnigg, C.; Brandstotter, M.; Pichler, H.; Hofbaur, M.; Dieber, B. Quantum computation in robotic science and applications. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, Canada, 20–24 May 2019. [Google Scholar]
- Yan, F.; Iliyasu, A.M.; Li, N.; Salama, A.S.; Hirota, K. Quantum robotics: A review of emerging trends. Quantum Mach. Intell. 2024, 6, 86. [Google Scholar] [CrossRef]
- Peixoto, M.L.M. Quantum Edge Computing for Data Analysis in Connected Autonomous Vehicles. In Proceedings of the 2024 IEEE Symposium on Computers and Communications (ISCC), Paris, France, 26–29 June 2024. [Google Scholar]
- Chella, A.; Gaglio, S.; Mannone, M.; Pilato, G.; Seidita, V.; Vella, F.; Zammuto, S. Quantum planning for swarm robotics. Robot. Auton. Syst. 2023, 161, 104362. [Google Scholar] [CrossRef]
- Mannone, M.; Seidita, V.; Chella, A. Modeling and designing a robotic swarm: A quantum computing approach. Swarm Evol. Comput. 2023, 79, 101297. [Google Scholar] [CrossRef]
- Gehlot, V.P.; Balas, M.J.; Quadrelli, M.B.; Bandyopadhyay, S.; Bayard, D.S.; Rahmani, A. A Path to Solving Robotic Differential Equations Using Quantum Computing. J. Auton. Veh. Syst. 2022, 2, 031004. [Google Scholar] [CrossRef]
- Lathrop, P.; Boardman, B.; Martínez, S. Quantum search approaches to sampling-based motion planning. IEEE Access 2023, 11, 89506–89519. [Google Scholar] [CrossRef]
- Xia, G.; Han, Z.; Zhao, B.; Wang, X. Local path planning for unmanned surface vehicle collision avoidance based on modified quantum particle swarm optimization. Complexity 2020, 2020, 3095426. [Google Scholar] [CrossRef]
- Chalumuri, A.; Kune, R.; Kannan, S.; Manoj, B.S. Quantum–classical image processing for scene classification. IEEE Sensors Lett. 2022, 6, 1–4. [Google Scholar] [CrossRef]
- Islam, M.; Chowdhury, M.; Khan, Z.; Khan, S.M. Hybrid quantum-classical neural network for cloud-supported in-vehicle cyberattack detection. IEEE Sensors Lett. 2022, 6, 1–4. [Google Scholar] [CrossRef]
- Salek, M.S.; Biswas, P.K.; Pollard, J.; Hales, J.; Shen, Z.; Dixit, V.; Chowdhury, M.; Khan, S.M.; Wang, Y. A novel hybrid quantum-classical framework for an in-vehicle controller area network intrusion detection. IEEE Access 2023, 11, 96081–96092. [Google Scholar] [CrossRef]
- Hohenfeld, H.; Heimann, D.; Wiebe, F.; Kirchner, F. Quantum deep reinforcement learning for robot navigation tasks. IEEE Access 2024, 12, 87217–87236. [Google Scholar] [CrossRef]
- Bar, N.F.; Yetis, H.; Karakose, M. An approach based on quantum reinforcement learning for navigation problems. In Proceedings of the 2022 International Conference on Data Analytics for Business and Industry (ICDABI), Virtual Conference, 25–26 October 2022. [Google Scholar]
- Alomari, A.; Kumar, S.A. ReLAQA: Reinforcement Learning-Based Autonomous Quantum Agent for Quantum Applications. IEEE Trans. Artif. Intell. 2024, 6, 549–558. [Google Scholar] [CrossRef]
- Yun, W.J.; Kim, J.P.; Jung, S.; Kim, J. Quantum multiagent actor–critic neural networks for Internet-connected multirobot coordination in smart factory management. IEEE Internet Things J. 2023, 10, 9942–9952. [Google Scholar] [CrossRef]
- Hu, L.; Wei, C.; Yin, L. Fuzzy A∗ quantum multi-stage Q-learning artificial potential field for path planning of mobile robots. Eng. Appl. Artif. Intell. 2025, 141, 109866. [Google Scholar] [CrossRef]
- Li, Y.; Aghvami, A.H.; Dong, D. Intelligent trajectory planning in UAV-mounted wireless networks: A quantum-inspired reinforcement learning perspective. IEEE Wirel. Commun. Lett. 2021, 10, 1994–1998. [Google Scholar] [CrossRef]
- Silvirianti; Narottama, B.; Shin, S.Y. Layerwise quantum deep reinforcement learning for joint optimization of UAV trajectory and resource allocation. IEEE Internet Things J. 2023, 11, 430–443. [Google Scholar] [CrossRef]
- Li, Y.; Aghvami, A.H.; Dong, D. Path planning for cellular-connected UAV: A DRL solution with quantum-inspired experience replay. IEEE Trans. Wirel. Commun. 2022, 21, 7897–7912. [Google Scholar] [CrossRef]
- Park, C.; Yun, W.J.; Kim, J.P.; Rodrigues, T.K.; Park, S.; Jung, S.; Kim, J. Quantum multiagent actor–critic networks for cooperative mobile access in multi-UAV systems. IEEE Internet Things J. 2023, 10, 20033–20048. [Google Scholar] [CrossRef]
- Silvirianti; Narottama, B.; Shin, S.Y. UAV coverage path planning with quantum-based recurrent deep deterministic policy gradient. IEEE Trans. Veh. Technol. 2023, 73, 7424–7429. [Google Scholar] [CrossRef]
- Mirzoev, A.A.; Gelchinski, B.R.; Rempel, A.A. Neural network prediction of interatomic interaction in multielement substances and high-entropy alloys: A review. In Doklady Physical Chemistry; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Aboukarima, A.M.; Elsoury, H.A.; Menyawi, M. Artificial neural network model for the prediction of the cotton crop leaf area. Int. J. Plant Soil Sci. 2015, 8, 1–13. [Google Scholar] [CrossRef]
- Bertsekas, D.; Gallager, R. Data Networks; Athena Scientific: Nashua, NH, USA, 2021. [Google Scholar]
- Meduri, S. Activation functions in neural networks: A comprehensive overview. Int. J. Res. Comput. Appl. Inf. Technol. (IJRCAIT) 2024, 7, 214–227. [Google Scholar] [CrossRef]
- Fathi, E.; Shoja, B.M. Deep neural networks for natural language processing. In Handbook of Statistics; Elsevier: Amsterdam, The Netherlands, 2018; pp. 229–316. [Google Scholar]
- Fazilat, M.; Zioui, N. Quantum Particle Swarm Optimization (QPSO)-Based Enhanced Dynamic Model Parameters Identification for an Industrial Robotic Arm. Mathematics 2025, 13, 2631. [Google Scholar] [CrossRef]
- Fazilat, M.; Zioui, N. Investigating Quantum Artificial Neural Networks for singularity avoidance in robotic manipulators. In Proceedings of the 2024 12th International Conference on Systems and Control (ICSC), Batna, Algeria, 3–5 November 2024. [Google Scholar]
- Fazilat, M.; Zioui, N.; St-Arnaud, J. A novel quantum model of forward kinematics based on quaternion/Pauli gate equivalence: Application to a six-jointed industrial robotic arm. Results Eng. 2022, 14, 100402. [Google Scholar] [CrossRef]
- Fazilat, M.; Zioui, N. Quantum-Inspired Sliding-Mode Control to Enhance the Precision and Energy Efficiency of an Articulated Industrial Robotic Arm. Robotics 2025, 14, 14. [Google Scholar] [CrossRef]
- Zioui, N.; Mahmoudi, A.; Fazilat, M.; Kone, O.; Dermouche, R.; Tadjine, M. Quantum Space Vector Pulse Width Modulation for Speed Control of Permanent Magnet Synchronous Machines. e-Prime-Adv. Electr. Eng. Electron. Energy 2025, 13, 101074. [Google Scholar] [CrossRef]
- Reda, D.; Talaoubrid, A.; Fazilat, M.; Zioui, N.; Tadjine, M. A quantum direct torque control method for permanent magnet synchronous machines. Comput. Electr. Eng. 2025, 122, 109994. [Google Scholar] [CrossRef]
- Feraoun, H.; Fazilat, M.; Dermouche, R.; Bentouba, S.; Tadjine, M.; Zioui, N. Quantum maximum power point tracking (QMPPT) for optimal solar energy extraction. Syst. Soft Comput. 2024, 6, 200118. [Google Scholar] [CrossRef]
- Numbi, J.; Zioui, N.; Tadjine, M. The Concept of Quantum Teleportation for Remote Control of a Car-like Mobile Robot. Robotics 2025, 14, 25. [Google Scholar] [CrossRef]
- Numbi, J.; Zioui, N.; Tadjine, M. Quantum Particle Swarm Optimisation Proportional–Derivative Control for Trajectory Tracking of a Car-like Mobile Robot. Electronics 2025, 14, 832. [Google Scholar] [CrossRef]
Biological Neuron | Analogous Element in ANNs | Function |
---|---|---|
Dendrites | Inputs | Receive signals from other neurons |
Synapse | Weights | Modulate the strength of input signals |
Soma (Cell Body) | Summation Node (Neuron) | Aggregates input signal for activation function |
Axon | Output | Transmits the processed signal to neurons |
Axon Terminals | Output Layer Connections | Interface with the next layer in the network |
Activation | Classical Definition | Quantum-Inspired Definition | Key Behavioral Difference |
---|---|---|---|
Sigmoid | Q-Sigmoid | Both map to 0.5, but Q-Sigmoid saturates faster, giving larger outputs for positive inputs. | |
ReLU | Both are zero for negatives; near , Q-ReLU slightly reduces output, smoothing transitions. | ||
Linear | Q-Linear , where | Similar to classical, but Q-Linear rescales slopes around the origin, adding small adaptive shifts. |
Parameter | CANN | QANN |
---|---|---|
Input nodes | 20 | 20 |
Hidden layer nodes | 20 | 20 |
Output nodes | 2 | 2 |
Learning rate | 0.0050233 | 0.0091494 |
Epochs | 5000 | 5000 |
Metric | Iteration | QANN | CANN | Performance Insight |
---|---|---|---|---|
Mass RMSE (kg) | 1 | 4.30 | 11.70 | QANN starts with significantly lower initial error |
2000 | 0.031 | 0.041 | QANN reduces RMSE rapidly during early stages | |
5000 | 0.0028 | 0.0031 | Final RMSE notably lower for QANN | |
Moment of Inertia RMSE (kg·m2) | 1 | 0.038 | 3.8 | QANN begins with a smaller error margin |
1000 | 0.025 | 0.71 | QANN converges faster | |
5000 | 0.013 | 0.18 | Final error consistently lower for QANN | |
Mass Prediction Accuracy | – | ±0.0028 kg | ±0.0031 kg | QANN closer to actual values in all cases |
Moment of Inertia Prediction | – | 0.013 kg·m2 | 0.18 kg·m2 | QANN maintains precision across full mass range |
Overfitting Tendencies | – | Not observed | Present | QANN stable; CANN affected by overfitting |
Prediction Stability (100 runs) | – | High | Variable | QANN shows greater consistency and robustness |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Numbi, J.; Fazilat, M.; Zioui, N. A Quantum-Inspired Hybrid Artificial Neural Network for Identifying the Dynamic Parameters of Mobile Car-Like Robots. Mathematics 2025, 13, 2856. https://doi.org/10.3390/math13172856
Numbi J, Fazilat M, Zioui N. A Quantum-Inspired Hybrid Artificial Neural Network for Identifying the Dynamic Parameters of Mobile Car-Like Robots. Mathematics. 2025; 13(17):2856. https://doi.org/10.3390/math13172856
Chicago/Turabian StyleNumbi, Joslin, Mehdi Fazilat, and Nadjet Zioui. 2025. "A Quantum-Inspired Hybrid Artificial Neural Network for Identifying the Dynamic Parameters of Mobile Car-Like Robots" Mathematics 13, no. 17: 2856. https://doi.org/10.3390/math13172856
APA StyleNumbi, J., Fazilat, M., & Zioui, N. (2025). A Quantum-Inspired Hybrid Artificial Neural Network for Identifying the Dynamic Parameters of Mobile Car-Like Robots. Mathematics, 13(17), 2856. https://doi.org/10.3390/math13172856