A Sixth-Order Iterative Scheme Through Weighted Rational Approximations for Computing the Matrix Sign Function
Abstract
1. Introduction
- The Jordan canonical form representation. If , where
- The algebraic representation.
- The integral representation.
- 1.
- V is involutory: .
- 2.
- V is diagonalizable with spectrum .
- 3.
- V commutes with L: .
- 4.
- Reality preservation: .
- 5.
- The operators are projectors onto the invariant subspaces corresponding to the eigenvalues in the right/left half-planes.
2. Deriving a New Iteration Solver
2.1. Foundational Equations
2.2. Developed Iterative Scheme
- It establishes a new class of iterative methods distinct from traditional Padé approximations.
- It guarantees computational efficiency while maintaining global convergence properties.
2.3. Convergence Analysis
ClearAll["Global‘*"] g[e_] := dfa (e^1 + Subscript[\[Mu], 2] e^2 + Subscript[\[Mu], 3] e^3 + Subscript[\[Mu], 4] e^4 + Subscript[\[Mu], 5] e^5 + Subscript[\[Mu], 6] e^6) ge = g[e]; g1e = g’[e]; d = e - Series[(ge/g1e), {e, 0, 7}] // FullSimplify; gd = g[d]; x = e - ((151 gd - 150 ge)/(301 gd - 150 ge)) ge/g1e // FullSimplify; gx = g[x]; DDO1 = (gx - gd)/(x - d); p = x - gx/DDO1 // FullSimplify; gp = g[p]; DDO2 = (gp - ge)/(p - e); e1 = p - gp/DDO2 // FullSimplify
2.4. Matrix Iteration Formulation
ClearAll["Global‘*"] g[x_] := x^2 - 1 gt = g[X]; g1t = g’[X]; y = X - gt/g1t // FullSimplify; gy = g[y]; h = X - ((-150 gt + 151 gy)/(-150 gt + 301 gy)) gt/g1t // FullSimplify; gh = g[h]; ddo = (y - h)^-1 (gy - gh); e1 = h - gh/ddo // Simplify; ddo2 = (e1 - X)^-1 (g[e1] - gt); e2 = e1 - g[e1]/ddo2 // FullSimplify
- Spectral Decomposition: Consider the Jordan decomposition , where contains Jordan blocks. The iteration preserves this structure, as follows:
- Eigenvalue Analysis: For each eigenvalue of , the iteration maps the following:The fixed points satisfy , with the following asymptotic behavior:
- Error Propagation: The iteration kernel is defined as follows:The error evolution is as follows:
- Convergence Rate: Taking 2-norms yields the following sixth-order convergence:
3. Global Convergence and Stability
4. Computational Performance
SeedRandom[12]; numb = 10; Table[L[n] = RandomComplex[{-15 - 15 I, 15 + 15 I}, {100 n, 100 n}];, {n, 1, numb}];
5. Conclusions and Future Perspectives
- Development of adaptive-order schemes to optimize performance based on spectral properties.
- Implementation on GPU platforms and distributed systems for large-scale problems.
- Extension of the methodology to other matrix functions such as square roots, sector functions, or logarithms.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Algorithm of Newton
Algorithm A1 Scaled Newton Iteration for MSF | |
Require: with no pure imaginary eigenvalues | |
Require: (tolerances) | |
Ensure: | |
1: | |
2: | |
3: for do | |
4: | ▹ Compute inverse |
5: if then | |
6: Compute scaling factor | |
7: else | |
8: | |
9: end if | |
10: | |
11: | |
12: if and then | |
13: | |
14: end if | |
15: if then | |
16: break | |
17: end if | |
18: if and then | |
19: break | ▹ Roundoff dominates |
20: end if | |
21: end for | |
22: return |
References
- Higham, N.J. Functions of Matrices: Theory and Computation; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2008. [Google Scholar]
- Roberts, J.D. Linear model reduction and solution of the algebraic Riccati equation by use of the sign function. Int. J. Cont. 1980, 32, 677–687. [Google Scholar] [CrossRef]
- Byers, R. Solving the algebraic Riccati equation with the matrix sign function. Linear Algebra Appl. 1987, 85, 267–279. [Google Scholar] [CrossRef]
- Kenney, C.S.; Laub, A.J. Rational iterative methods for the matrix sign function. SIAM J. Matrix Anal. Appl. 1991, 12, 273–291. [Google Scholar] [CrossRef]
- Iannazzo, B. A family of rational iterations and its application to the computation of the matrix pth root. SIAM J. Matrix Anal. Appl. 2009, 30, 1445–1462. [Google Scholar] [CrossRef]
- Gomilko, O.; Greco, F.; Ziȩtak, K. A Padé family of iterations for the matrix sign function and related problems. Numer. Lin. Alg. Appl. 2012, 19, 585–605. [Google Scholar] [CrossRef]
- Soleymani, F.; Stanimirović, P.S.; Shateyi, S.; Haghani, F.K. Approximating the matrix sign function using a novel iterative method. Abstr. Appl. Anal. 2014, 2014, 105301. [Google Scholar] [CrossRef]
- Soheili, A.R.; Toutounian, F.; Soleymani, F. A fast convergent numerical method for matrix sign function with application in SDEs. J. Comput. Appl. Math. 2015, 282, 167–178. [Google Scholar] [CrossRef]
- Neuberger, H. Exactly Massless Quarks on the Lattice. Phys. Lett. B 1998, 417, 141–144. [Google Scholar] [CrossRef]
- Bini, D.; Iannazzo, B.; Meini, B. Numerical Solution of Algebraic Riccati Equations; SIAM: Bangkok, Thailand, 2012. [Google Scholar]
- Rani, L.; Kansal, M. Numerically stable iterative methods for computing matrix sign function. Math. Meth. Appl. Sci. 2023, 46, 8596–8617. [Google Scholar] [CrossRef]
- Kansal, M.; Sharma, V.; Sharma, P. Computation of invariant subspaces associated with certain eigenvalues using an approach based on matrix sign function. J. Comput. Appl. Math. 2026, 472, 116800. [Google Scholar] [CrossRef]
- Soleymani, F. An efficient twelfth-order iterative method for finding all the solutions of nonlinear equations. J. Comput. Methods Sci. Eng. 2013, 13, 309–320. [Google Scholar] [CrossRef]
- Ogbereyivwe, O.; Izevbizua, O. A three-free-parameter class of power series based iterative method for approximation of nonlinear equations solution. Iran. J. Numer. Anal. Optim. 2023, 13, 157–169. [Google Scholar]
- Soleymani, F.; Stanimirović, P.S.; Stojanović, I. A novel iterative method for polar decomposition and matrix sign function. Discrete Dyn. Nat. Soc. 2015, 2015, 649423. [Google Scholar] [CrossRef]
- McNamee, J.M. Numerical Methods for Roots of Polynomials—Part I; Elsevier: London, UK, 2007. [Google Scholar]
- McNamee, J.M.; Pan, V.Y. Numerical Methods for Roots of Polynomials—Part II; Elsevier: London, UK, 2013. [Google Scholar]
- Soleymani, F.; Haghani, F.K.; Shateyi, S. Several numerical methods for computing unitary polar factor of a matrix. Adv. Differ. Equ. 2016, 2016, 4. [Google Scholar] [CrossRef]
- Rani, L.; Soleymani, F.; Kansal, M.; Kumar Nashine, H. An optimized Chebyshev-Halley type family of multiple solvers: Extensive analysis and applications. Math. Meth. Appl. Sci. 2025, 48, 7037–7055. [Google Scholar] [CrossRef]
- Jung, D.; Chun, C. A general approach for improving the Padé iterations for the matrix sign function. J. Comput. Appl. Math. 2024, 436, 115348. [Google Scholar] [CrossRef]
- Liu, T.; Zaka Ullah, M.; Alshahrani, K.M.A.; Shateyi, S. From fractal behavior of iteration methods to an efficient solver for the sign of a matrix. Fractal Fract. 2023, 7, 32. [Google Scholar] [CrossRef]
- Zainali, N.; Lotfi, T. A globally convergent variant of mid-point method for finding the matrix sign. Comp. Appl. Math. 2018, 37, 5795–5806. [Google Scholar] [CrossRef]
- Feng, Y.; Zaka Othman, A. An accelerated iterative method to find the sign of a nonsingular matrix with quartical convergence. Iran. J. Sci. 2023, 47, 1359–1366. [Google Scholar] [CrossRef]
- Bhatia, R. Matrix Analysis; Graduate Texts in Mathematics; Springer: New York, NY, USA, 1997; Volume 169. [Google Scholar]
- Styś, K.; Styś, T. Lecture Notes in Numerical Analysis with Mathematica; Bentham eBooks: Sharjah, United Arab Emirates, 2014. [Google Scholar]
- Zaka Ullah, M.; Muaysh Alaslani, S.; Othman Mallawi, F.; Ahmad, F.; Shateyi, S.; Asma, M. A fast and efficient Newton-type iterative scheme to find the sign of a matrix. AIMS Math. 2023, 8, 19264–19274. [Google Scholar] [CrossRef]
Size | N2 | H3 | Z4 | P61 | P62 |
---|---|---|---|---|---|
15 | 9 | 7 | 6 | 6 | |
16 | 11 | 7 | 6 | 6 | |
14 | 9 | 6 | 5 | 5 | |
17 | 11 | 7 | 6 | 6 | |
18 | 11 | 8 | 6 | 6 | |
23 | 14 | 10 | 8 | 8 | |
17 | 11 | 8 | 8 | 7 | |
18 | 11 | 8 | 7 | 7 | |
18 | 12 | 8 | 7 | 7 | |
22 | 14 | 10 | 8 | 7 | |
Average | 17.8 | 11.3 | 7.9 | 6.7 | 6.5 |
Size | N2 | H3 | Z4 | P61 | P62 |
---|---|---|---|---|---|
0.01 | 0.01 | 0.01 | 0.00 | 0.01 | |
0.05 | 0.04 | 0.05 | 0.04 | 0.03 | |
0.13 | 0.10 | 0.08 | 0.08 | 0.08 | |
0.26 | 0.25 | 0.21 | 0.18 | 0.20 | |
0.48 | 0.41 | 0.36 | 0.31 | 0.33 | |
0.92 | 0.77 | 0.69 | 0.62 | 0.65 | |
0.98 | 0.85 | 0.81 | 0.89 | 0.82 | |
1.42 | 1.17 | 1.10 | 1.09 | 1.15 | |
1.88 | 1.74 | 1.48 | 1.45 | 1.51 | |
3.06 | 2.68 | 2.41 | 2.12 | 1.89 | |
Average | 0.92 | 0.80 | 0.72 | 0.68 | 0.67 |
Size | N2 | H3 | Z4 | P61 | P62 |
---|---|---|---|---|---|
19 | 12 | 8 | 7 | 7 | |
18 | 11 | 8 | 7 | 7 | |
16 | 11 | 7 | 6 | 6 | |
22 | 14 | 10 | 8 | 7 | |
19 | 12 | 9 | 7 | 7 | |
22 | 14 | 10 | 8 | 9 | |
19 | 12 | 8 | 7 | 7 | |
26 | 16 | 11 | 9 | 9 | |
20 | 13 | 9 | 8 | 8 | |
20 | 13 | 9 | 8 | 8 | |
Average | 20.1 | 12.8 | 8.9 | 7.5 | 7.5 |
Size | N2 | H3 | Z4 | P61 | P62 |
---|---|---|---|---|---|
0.03 | 0.03 | 0.02 | 0.03 | 0.04 | |
0.11 | 0.11 | 0.11 | 0.12 | 0.11 | |
0.30 | 0.30 | 0.27 | 0.25 | 0.27 | |
0.79 | 0.74 | 0.69 | 0.64 | 0.58 | |
1.16 | 1.10 | 1.10 | 0.93 | 1.16 | |
2.12 | 2.01 | 1.83 | 1.73 | 2.21 | |
2.79 | 2.59 | 2.21 | 2.24 | 2.39 | |
5.42 | 4.82 | 4.34 | 3.92 | 4.07 | |
6.00 | 5.51 | 4.76 | 4.79 | 4.94 | |
8.68 | 7.64 | 6.70 | 6.75 | 6.89 | |
Average | 2.74 | 2.48 | 2.20 | 2.14 | 2.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Zhao, B.; Ren, W.; Cao, R.; Liu, T. A Sixth-Order Iterative Scheme Through Weighted Rational Approximations for Computing the Matrix Sign Function. Mathematics 2025, 13, 2849. https://doi.org/10.3390/math13172849
Zhang C, Zhao B, Ren W, Cao R, Liu T. A Sixth-Order Iterative Scheme Through Weighted Rational Approximations for Computing the Matrix Sign Function. Mathematics. 2025; 13(17):2849. https://doi.org/10.3390/math13172849
Chicago/Turabian StyleZhang, Ce, Bo Zhao, Wenjing Ren, Ruosong Cao, and Tao Liu. 2025. "A Sixth-Order Iterative Scheme Through Weighted Rational Approximations for Computing the Matrix Sign Function" Mathematics 13, no. 17: 2849. https://doi.org/10.3390/math13172849
APA StyleZhang, C., Zhao, B., Ren, W., Cao, R., & Liu, T. (2025). A Sixth-Order Iterative Scheme Through Weighted Rational Approximations for Computing the Matrix Sign Function. Mathematics, 13(17), 2849. https://doi.org/10.3390/math13172849