Image Visibility Enhancement Under Inclement Weather with an Intensified Generative Training Set
Abstract
1. Introduction
2. Related Works
2.1. Cycle-Consistent Generative Adversarial Network
2.2. Training Image Classification Model
3. Proposed Method
3.1. Generating Training Data
3.1.1. Training the CycleGAN-Based Virtual Water-Droplet Generation Module
3.1.2. Data Augmentation
3.1.3. Training the Data Classification Model
Algorithm 1 Generating training data |
1: 2: 3: 4: 5: Train two generators 6: 7: 8: do 9: 10: 11: 12: do 13: 14: 15: end for 16: to distinguish 17: well-formed vs. poorly formed droplets 18: do 19: == well-formed then 20: 21: end for |
3.2. Image Visibility Enhancement
3.2.1. Training the CycleGAN-Based Rem_Module
3.2.2. Training the CycleGAN-Based Rem&TM_Module
3.2.3. Final Testing with the Two Modules
Algorithm 2 Image Visibility Enhancement |
1: 2: 3: 4: 5: Train Rem_Module 6: 7: Train Rem&TM_Module 8: 9: 10: channels 11: 12: channels 13: |
4. Simulations
4.1. Comparative Experiments
4.2. Quantitative Evaluations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kwon, H.-J.; Lee, S.-H. Raindrop-removal image translation using target-mask network with attention module. Mathematics 2023, 11, 3318. [Google Scholar] [CrossRef]
- Zheng, X.; Liao, Y.; Guo, W.; Fu, X.; Ding, X. Single-Image-Based Rain and Snow Removal Using Multi-guided Filter. In Neural Information Processing; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8228 LNCS, pp. 258–265. [Google Scholar] [CrossRef]
- Bijelic, M.; Gruber, T.; Mannan, F.; Kraus, F.; Ritter, W.; Dietmayer, K.; Heide, F. Seeing Through Fog Without Seeing Fog: Deep Multimodal Sensor Fusion in Unseen Adverse Weather. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Halder, S.S.; Lalonde, J.-F.; de Charette, R. Physics-Based Rendering for Improving Robustness to Rain. 2019. Available online: https://team.inria.fr/rits/computer-vision/weather-augment/ (accessed on 5 July 2025).
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014, 27, 2672–2680. [Google Scholar]
- Isola, P.; Zhu, J.-Y.; Zhou, T.; Efro, A.A.s. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Zhu, J.-Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]
- Saharia, C.; Chan, W.; Chang, H.; Lee, C.; Ho, J.; Salimans, T.; Fleet, D.; Norouzi, M. Palette: Image-to-image diffusion models. In Proceedings of the SIGGRAPH’22: Special Interest Group on Computer Graphics and Interactive Techniques Conference, Vancouver, BC, Canada, 7–11 August 2022. [Google Scholar] [CrossRef]
- Xia, B.; Zhang, Y.; Wang, S.; Wang, Y.; Wu, X.; Tian, Y.; Yang, W.; Van Gool, L. Diffir: Efficient diffusion model for image restoration. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 1–6 October 2023; Available online: http://openaccess.thecvf.com/content/ICCV2023/html/Xia_DiffIR_Efficient_Diffusion_Model_for_Image_Restoration_ICCV_2023_paper.html (accessed on 25 August 2025).
- Zamir, S.W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F.S.; Yang, M.-H. Restormer: Efficient transformer for high-resolution image restoration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; Available online: http://openaccess.thecvf.com/content/CVPR2022/html/Zamir_Restormer_Efficient_Transformer_for_High-Resolution_Image_Restoration_CVPR_2022_paper.html (accessed on 25 August 2025).
- Ying, X. An overview of overfitting and its solutions. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2019; p. 022022. [Google Scholar]
- Torralba, A.; Efros, A.A. Unbiased look at dataset bias. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 1521–1528. [Google Scholar] [CrossRef]
- Kiyoiti, F.H.; Tanaka, S.; Aranha, C.; Lee, W.S.; Suzuki, T. Data Augmentation Using GANs. arXiv 2019, arXiv:1904.09135. Available online: https://arxiv.org/pdf/1904.09135 (accessed on 5 July 2025). [CrossRef]
- Janocha, K.; Czarnecki, W.M. On loss functions for deep neural networks in classification. arXiv 2017, arXiv:1702.05659. [Google Scholar] [CrossRef]
- Mejjati, Y.A.; Richardt, C.; Tompkin, J.; Cosker, D.; Kim, K.I. Unsupervised Attention-guided Image-to-Image Translation. Adv. Neural Inf. Process. Syst. 2018, 31, 3693–3703. [Google Scholar]
- Kim, J.Y.; Son, D.-M.; Lee, S.-H. Retinex Jointed Multiscale CLAHE Model for HDR Image Tone Compression. Mathematics 2024, 12, 1541. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Springer: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. [Google Scholar] [CrossRef]
- Kinga, D.; Adam, J.B. A method for stochastic optimization. In Proceedings of the International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 2002, 86, 2278–2324. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Jang, C.Y.; Kim, T.Y. Hand feature enhancement and user decision making for CNN hand gesture recognition algorithm. J. Inst. Electron. Inf. Eng. 2020, 57, 60–70. [Google Scholar] [CrossRef]
- Glorot, X.; Bordes, A.; Bengio, Y. Deep Sparse Rectifier Neural Networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011; Available online: https://proceedings.mlr.press/v15/glorot11a.html (accessed on 5 July 2025).
- Dumoulin, V.; Visin, F.; Box, G.E.P. A guide to convolution arithmetic for deep learning. arXiv 2016, arXiv:1603.07285. Available online: https://arxiv.org/pdf/1603.07285 (accessed on 5 July 2025).
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. Available online: https://arxiv.org/pdf/1409.1556 (accessed on 5 July 2025).
- Qian, R.; Tan, R.T.; Yang, W.; Su, J.; Liu, J. Attentive Generative Adversarial Network for Raindrop Removal from a Single Image. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2482–2491. [Google Scholar] [CrossRef]
- Jung, S.-W.; Kwon, H.-J.; Lee, S.-H. Enhanced Tone Mapping Using Regional Fused GAN Training with a Gamma-Shift Dataset. Appl. Sci. 2021, 11, 7754. [Google Scholar] [CrossRef]
- Han, Y.-K.; Jung, S.-W.; Kwon, H.-J.; Lee, S.-H. Rainwater-Removal Image Conversion Learning with Training Pair Augmentation. Entropy 2023, 25, 118. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 2012, 21, 4695–4708. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, B.; Huang, H.; Bovik, A.C. No-reference image quality assessment based on spatial and spectral entropies. Signal Process. Image Commun. 2014, 29, 856–863. [Google Scholar] [CrossRef]
- Vu, C.T.; Chandler, D.M. S3: A spectral and spatial sharpness measure. In Proceedings of the First International Conference on Advances in Multimedia, Colmar, France, 20–25 July 2009; pp. 37–43. [Google Scholar] [CrossRef]
- Hassen, R.; Wang, Z.; Salama, M.M.A. Image sharpness assessment based on local phase coherence. IEEE Trans. Image Process. 2013, 22, 2798–2810. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a ‘completely blind’ image quality analyzer. IEEE Signal Process. Lett. 2013, 20, 209–212. [Google Scholar] [CrossRef]
- Sazzad, Z.M.P.; Kawayoke, Y.; Horita, Y. No reference image quality assessment for JPEG2000 based on spatial features. Signal Process. Image Commun. 2008, 23, 257–268. [Google Scholar] [CrossRef]
Module Trained with a Paired Dataset (800 Images) | Module Trained with an Unpaired Dataset (400 Images) | Total Images | |
---|---|---|---|
Well formed | 685 | 515 | 1200 |
Poorly formed | 1315 | 1485 | 2800 |
Total | 2000 | 2000 | 4000 |
RWM [25] | Pix2pix [6] | Han et al. [26] | CycleGAN [7] | Pallete [8] | Proposed | |
---|---|---|---|---|---|---|
Process time | 0.111 s | 0.192 s | 0.201 s | 0.067 s 1 | 40.060 s | 0.106 s 2 |
RWM [28] | Pix2pix [6] | Han et al. [29] | CycleGAN [7] | Pallete [8] | Proposed | |
---|---|---|---|---|---|---|
BRISQUE (↓) | 22.095 | 23.435 | 24.186 | 20.308 | 18.191 | 17.795 1 |
SSEQ (↓) | 28.314 | 22.195 | 23.696 | 14.282 | 12.206 | 21.931 3 |
S3 (↑) | 0.180 | 0.244 | 0.228 | 0.239 | 0.251 | 0.255 1 |
LPC_SI (↑) | 0.928 | 0.936 | 0.941 | 0.931 | 0.935 | 0.943 1 |
NIQE (↓) | 4.927 | 5.406 | 5.002 | 5.006 | 6.522 | 4.916 1 |
JPEG_2000 (↑) | 80.220 | 80.206 | 80.189 | 80.266 | 80.259 | 80.261 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-W.; Lee, S.-H.; Son, D.-M.; Lee, S.-H. Image Visibility Enhancement Under Inclement Weather with an Intensified Generative Training Set. Mathematics 2025, 13, 2833. https://doi.org/10.3390/math13172833
Lee S-W, Lee S-H, Son D-M, Lee S-H. Image Visibility Enhancement Under Inclement Weather with an Intensified Generative Training Set. Mathematics. 2025; 13(17):2833. https://doi.org/10.3390/math13172833
Chicago/Turabian StyleLee, Se-Wan, Seung-Hwan Lee, Dong-Min Son, and Sung-Hak Lee. 2025. "Image Visibility Enhancement Under Inclement Weather with an Intensified Generative Training Set" Mathematics 13, no. 17: 2833. https://doi.org/10.3390/math13172833
APA StyleLee, S.-W., Lee, S.-H., Son, D.-M., & Lee, S.-H. (2025). Image Visibility Enhancement Under Inclement Weather with an Intensified Generative Training Set. Mathematics, 13(17), 2833. https://doi.org/10.3390/math13172833