An AI for Robust MCDM Ranking in a Large Number of Criteria
Abstract
1. Introduction
- A genetic algorithm that infers weight vectors of decision criteria regarding the decision-maker’s preference in the relative importance of criteria.
- A robust analysis of the weights and ranking to generate a robust solution.
2. Artificial Intelligence Procedure to Generate a Robust Ranking
2.1. Input Data
- Characteristics of the problem to be solved. This information refers to the problem to be analyzed and is provided by the decision-maker, who provides valuable data on the alternatives and criteria involved. This information is vital for the application of the model and for the analysis of its results.
- Definition of the number of criteria involved and alternatives to be evaluated.
- Ordering the criteria according to the decision-maker’s preferences, with the least important criterion at the beginning of the order and the most important being the last criterion in the order.
- Performance of the alternatives in each of the defined criteria.
- Operating data of the genetic algorithm. These parameters are provided by the problem analyst, who has specific knowledge of the type of data required by the model. This data is crucial for initially defining the number of generations and the probabilities of mutation and crossover for the genetic algorithm that the model must generate concerning the set of weights that will subsequently be required for the resulting robust ranking.
- Population size
- Number of generations
- Probability of crossover
- Probability of mutation
2.2. Parameter Inference Model
2.2.1. Case 1: Without Information on the Decision-Maker’s Preferences
2.2.2. Case 2: Complete Information on the Decision-Maker’s Preferences
2.3. Methods for Parameter Inference and Ranking of Alternatives
2.3.1. Genetic Algorithm
2.3.2. IOWA Operator
- The induced variables are represented by u1, u2, …, un;
- The values or performances of each alternative are represented by a1, a2, …, an;
- wi is the weight of the criterion, ordered according to the induced variable ui.
2.3.3. Stochastic Multicriteria Acceptability Analysis (SMAA)
3. Application of the AIP Model in a Multicriteria Decision-Making Problem
3.1. Identifying Decision-Makers’ Preferences in a Competitiveness Problem
3.2. Definition of Genetic Algorithm Parameters
3.3. Inference of Weights Based on Decision-Makers’ Preferences and Ordering of Alternatives
3.4. Descriptive Measures of SMAA
3.4.1. Acceptability Index
3.4.2. Central Weight Vector
3.5. Robust Competitiveness Ranking in Mexico
4. Analysis of Robust Ranking as a Decision Proposal
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Alternative | Reliable and Objective Legal System | ||||||||
---|---|---|---|---|---|---|---|---|---|
Homicides | Kidnappings | Vehicle Theft | Crime Cost | Crime Incidence | Reported Crimes | Perceived Safety | Notary Services | Enforcing Contracts | |
Aguascalientes | 98 | 99 | 76 | 51 | 48 | 45 | 66 | 32 | 97 |
Baja California | 0 | 21 | 0 | 22 | 10 | 82 | 55 | 4 | 25 |
Baja California Sur | 100 | 100 | 71 | 15 | 0 | 89 | 83 | 35 | 20 |
Campeche | 95 | 96 | 100 | 60 | 100 | 85 | 51 | 75 | 93 |
Coahuila | 88 | 92 | 83 | 73 | 50 | 100 | 21 | 74 | 80 |
Colima | 88 | 91 | 72 | 79 | 52 | 83 | 56 | 32 | 91 |
Chiapas | 94 | 97 | 93 | 81 | 92 | 47 | 47 | 12 | 75 |
Chihuahua | 72 | 97 | 64 | 89 | 53 | 63 | 25 | 12 | 67 |
CDMX | 94 | 91 | 63 | 0 | 43 | 43 | 25 | 17 | 10 |
Durango | 83 | 92 | 79 | 58 | 56 | 47 | 27 | 18 | 80 |
Guanajuato | 90 | 96 | 84 | 64 | 61 | 32 | 40 | 58 | 81 |
Guerrero | 58 | 58 | 75 | 43 | 70 | 0 | 20 | 3 | 17 |
Hidalgo | 96 | 91 | 84 | 77 | 66 | 97 | 40 | 33 | 55 |
Jalisco | 91 | 97 | 81 | 38 | 64 | 31 | 39 | 30 | 59 |
México | 90 | 86 | 37 | 17 | 53 | 27 | 0 | 2 | 67 |
Michoacán | 80 | 66 | 71 | 51 | 82 | 47 | 16 | 29 | 59 |
Morelos | 79 | 12 | 60 | 53 | 20 | 45 | 7 | 5 | 0 |
Nayarit | 91 | 95 | 97 | 100 | 86 | 42 | 64 | 39 | 64 |
Nuevo León | 92 | 88 | 89 | 70 | 79 | 50 | 30 | 33 | 54 |
Oaxaca | 86 | 89 | 93 | 95 | 70 | 43 | 22 | 12 | 12 |
Puebla | 96 | 93 | 93 | 71 | 63 | 57 | 44 | 23 | 42 |
Querétaro | 96 | 95 | 59 | 29 | 60 | 84 | 84 | 39 | 38 |
Quintana Roo | 91 | 95 | 99 | 53 | 30 | 58 | 38 | 30 | 49 |
San Luis Potosí | 93 | 95 | 94 | 80 | 84 | 8 | 29 | 29 | 49 |
Sinaloa | 68 | 91 | 58 | 76 | 68 | 53 | 32 | 31 | 77 |
Sonora | 81 | 95 | 68 | 55 | 66 | 94 | 56 | 36 | 48 |
Tabasco | 94 | 42 | 87 | 64 | 19 | 57 | 11 | 41 | 70 |
Tamaulipas | 82 | 0 | 65 | 56 | 73 | 48 | 11 | 100 | 44 |
Tlaxcala | 96 | 96 | 84 | 75 | 85 | 73 | 48 | 0 | 3 |
Veracruz | 95 | 74 | 87 | 70 | 77 | 68 | 17 | 42 | 30 |
Yucatán | 100 | 100 | 100 | 85 | 38 | 33 | 100 | 47 | 48 |
Zacatecas | 95 | 85 | 67 | 61 | 76 | 39 | 19 | 15 | 100 |
Alternative | Sustainable Environmental Management | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Aquifer Exploitation | Waste Water Treatment | Water Use in Agriculture | Respiratory Diseases | Forest Competitiveness | Treated Area | Protected Natural Areas | Solid Waste Volume | Solid Waste Disposal | Energy Intensity | “Clean” Companies | FONDEN Expenditures | |
Aguascalientes | 82 | 100 | 0 | 93 | 82 | 100 | 15 | 68 | 100 | 76 | 7 | 100 |
Baja California | 1 | 59 | 0 | 70 | 70 | 61 | 57 | 40 | 92 | 56 | 64 | 100 |
Baja California Sur | 41 | 64 | 1 | 90 | 80 | 99 | 33 | 55 | 84 | 64 | 4 | 0 |
Campeche | 53 | 3 | 0 | 77 | 67 | 42 | 28 | 76 | 32 | 87 | 38 | 79 |
Coahuila | 100 | 50 | 0 | 91 | 94 | 98 | 13 | 65 | 85 | 61 | 31 | 100 |
Colima | 47 | 87 | 0 | 96 | 51 | 94 | 100 | 70 | 93 | 64 | 9 | 94 |
Chiapas | 69 | 3 | 1 | 0 | 8 | 31 | 13 | 91 | 3 | 82 | 13 | 90 |
Chihuahua | 98 | 73 | 1 | 57 | 89 | 97 | 6 | 61 | 80 | 47 | 67 | 95 |
CDMX | 47 | 12 | 100 | 38 | 51 | 100 | 4 | 0 | 100 | 95 | 100 | 100 |
Durango | 31 | 75 | 1 | 89 | 83 | 96 | 4 | 73 | 53 | 70 | 20 | 91 |
Guanajuato | 60 | 33 | 0 | 83 | 57 | 97 | 6 | 62 | 87 | 44 | 15 | 100 |
Guerrero | 0 | 36 | 1 | 64 | 15 | 73 | 0 | 83 | 5 | 0 | 2 | 8 |
Hidalgo | 90 | 1 | 0 | 66 | 47 | 66 | 5 | 86 | 53 | 83 | 15 | 94 |
Jalisco | 89 | 59 | 1 | 85 | 61 | 92 | 2 | 48 | 96 | 100 | 82 | 100 |
México | 73 | 13 | 4 | 58 | 53 | 95 | 10 | 43 | 85 | 88 | 53 | 100 |
Michoacán | 39 | 25 | 0 | 64 | 41 | 79 | 5 | 84 | 71 | 65 | 29 | 98 |
Morelos | 79 | 29 | 2 | 96 | 31 | 91 | 21 | 67 | 87 | 74 | 18 | 98 |
Nayarit | 69 | 72 | 1 | 60 | 75 | 84 | 94 | 79 | 60 | 76 | 2 | 100 |
Nuevo León | 88 | 96 | 0 | 100 | 100 | 92 | 2 | 35 | 94 | 72 | 89 | 99 |
Oaxaca | 64 | 7 | 1 | 50 | 0 | 68 | 5 | 100 | 0 | 84 | 27 | 90 |
Puebla | 86 | 20 | 1 | 52 | 13 | 73 | 1 | 74 | 61 | 72 | 45 | 100 |
Querétaro | 51 | 30 | 0 | 91 | 59 | 98 | 27 | 63 | 95 | 75 | 27 | 100 |
Quintana Roo | 35 | 42 | 1 | 82 | 62 | 54 | 22 | 68 | 71 | 69 | 0 | 90 |
San Luis Potosí | 95 | 28 | 1 | 65 | 61 | 81 | 1 | 80 | 37 | 61 | 22 | 99 |
Sinaloa | 69 | 66 | 0 | 94 | 69 | 92 | 1 | 68 | 72 | 63 | 15 | 92 |
Sonora | 80 | 47 | 0 | 92 | 83 | 96 | 4 | 66 | 77 | 51 | 33 | 99 |
Tabasco | 53 | 27 | 3 | 70 | 36 | 0 | 12 | 72 | 23 | 72 | 75 | 82 |
Tamaulipas | 99 | 60 | 0 | 96 | 73 | 87 | 6 | 63 | 75 | 61 | 53 | 95 |
Tlaxcala | 82 | 16 | 2 | 70 | 73 | 97 | 10 | 87 | 93 | 59 | 25 | 100 |
Veracruz | 70 | 23 | 1 | 63 | 42 | 38 | 4 | 82 | 32 | 74 | 89 | 78 |
Yucatán | 92 | 0 | 0 | 71 | 7 | 32 | 10 | 78 | 33 | 76 | 13 | 100 |
Zacatecas | 97 | 39 | 1 | 78 | 70 | 98 | 0 | 86 | 52 | 49 | 4 | 99 |
Appendix B
Alternative | R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | R9 | R10 | R11 | R12 | R13 | R14 | R15 | R16 | R17 | R18 | R19 | R20 | R21 | R22 | R23 | R24 | R25 | R26 | R27 | R28 | R29 | R30 | R31 | R32 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aguascalientes | 97.9 | 2.1 | ||||||||||||||||||||||||||||||
Baja California | 0.1 | 99.9 | ||||||||||||||||||||||||||||||
Baja California Sur | 98.8 | 1.1 | 0.1 | |||||||||||||||||||||||||||||
Campeche | 100 | |||||||||||||||||||||||||||||||
Coahuila | 1.2 | 2.1 | 96.7 | |||||||||||||||||||||||||||||
Colima | 2.1 | 97.9 | ||||||||||||||||||||||||||||||
Chiapas | 0.1 | 99.9 | ||||||||||||||||||||||||||||||
Chihuahua | 5.2 | 10.0 | 84.8 | |||||||||||||||||||||||||||||
Ciudad de México | 100 | |||||||||||||||||||||||||||||||
Durango | 0.1 | 73.9 | 24.2 | 1.7 | 0.1 | |||||||||||||||||||||||||||
Guanajuato | 100 | |||||||||||||||||||||||||||||||
Guerrero | 100 | |||||||||||||||||||||||||||||||
Hidalgo | 0.2 | 99.7 | 0.1 | |||||||||||||||||||||||||||||
Jalisco | 96.8 | 3.2 | ||||||||||||||||||||||||||||||
México | 99.8 | 0.1 | 0.1 | |||||||||||||||||||||||||||||
Michoacán | 0.1 | 99.9 | ||||||||||||||||||||||||||||||
Morelos | 1.8 | 98.2 | ||||||||||||||||||||||||||||||
Nayarit | 100 | |||||||||||||||||||||||||||||||
Nuevo León | 100 | |||||||||||||||||||||||||||||||
Oaxaca | 99.9 | 0.1 | ||||||||||||||||||||||||||||||
Puebla | 94.8 | 5.1 | 0.1 | |||||||||||||||||||||||||||||
Querétaro | 86.4 | 13.6 | ||||||||||||||||||||||||||||||
Quintana Roo | 100 | |||||||||||||||||||||||||||||||
San Luis Potosí | 84.9 | 15.1 | ||||||||||||||||||||||||||||||
Sinaloa | 100 | |||||||||||||||||||||||||||||||
Sonora | 13.6 | 86.4 | ||||||||||||||||||||||||||||||
Tabasco | 100 | |||||||||||||||||||||||||||||||
Tamaulipas | 100 | |||||||||||||||||||||||||||||||
Tlaxcala | 0.1 | 25.9 | 74.0 | |||||||||||||||||||||||||||||
Veracruz | 99.9 | 0.1 | ||||||||||||||||||||||||||||||
Yucatán | 100 | |||||||||||||||||||||||||||||||
Zacatecas | 100 |
References
- Roszkowska, E. A Comprehensive Exploration of Hellwig’s Taxonomic Measure of Development and Its Modifications—A Systematic Review of Algorithms and Applications. Appl. Sci. 2024, 14, 10029. [Google Scholar] [CrossRef]
- Roy, B. Problems and Methods with Multiple Objective Functions. Math. Program. 1971, 1, 239–266. [Google Scholar] [CrossRef]
- Bouyssou, D. Building Criteria: A Prerequisite for MCDA. In Readings in Multiple Criteria Decision Aid; Bana, E., Costa, C.A., Eds.; Springer: Berlin/Heidelberg, Germany, 1990; pp. 58–80. ISBN 978-3-642-75937-6. [Google Scholar]
- Zhu, F.; Zhong, P.; Cao, Q.; Chen, J.; Sun, Y.; Fu, J. A Stochastic Multi-Criteria Decision Making Framework for Robust Water Resources Management under Uncertainty. J. Hydrol. 2019, 576, 287–298. [Google Scholar] [CrossRef]
- Hellwig, Z. On the Problem of Weighting in International Comparisons. UNESCO 1969, 1–29. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000023413 (accessed on 1 July 2025).
- Bouyssou, D.; Marchant, T.; Pirlot, M.; Perny, P.; Tsoukiàs, A.; Vincke, P. Dealing with Uncertainty: An Example in Electricity Production Planning. In Evaluation and Decision Models; International Series in Operations Research & Management Science; Springer: Boston, MA, USA, 2000; Volume 32, pp. 185–209. ISBN 978-1-4613-5631-8. [Google Scholar]
- Roy, B. Robustness in Operational Research and Decision Aiding: A Multi-Faceted Issue. Eur. J. Oper. Res. 2010, 200, 629–638. [Google Scholar] [CrossRef]
- Černevičienė, J.; Kabašinskas, A. Review of Multi-Criteria Decision-Making Methods in Finance Using Explainable Artificial Intelligence. Front. Artif. Intell. 2022, 5, 827584. [Google Scholar] [CrossRef]
- Popović, S.; Viduka, D.; Bašić, A.; Dimić, V.; Djukic, D.; Nikolić, V.; Stokić, A. Optimization of Artificial Intelligence Algorithm Selection: PIPRECIA-S Model and Multi-Criteria Analysis. Electronics 2025, 14, 562. [Google Scholar] [CrossRef]
- Bartholomew, E.; Kwakkel, J.H. On Considering Robustness in the Search Phase of Robust Decision Making: A Comparison of Many-Objective Robust Decision Making, Multi-Scenario Many-Objective Robust Decision Making, and Many Objective Robust Optimization. Environ. Model. Softw. 2020, 127, 104699. [Google Scholar] [CrossRef]
- Sahabuddin, M.; Khan, I. Multi-Criteria Decision Analysis Methods for Energy Sector’s Sustainability Assessment: Robustness Analysis through Criteria Weight Change. Sustain. Energy Technol. Assess. 2021, 47, 101380. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Li, K. Enhancing the Robustness of AI-Generated Text Detectors: A Survey. Mathematics 2025, 13, 2145. [Google Scholar] [CrossRef]
- Corrente, S.; Figueira, J.R.; Greco, S.; Słowiński, R. A Robust Ranking Method Extending ELECTRE III to Hierarchy of Interacting Criteria, Imprecise Weights and Stochastic Analysis. Omega 2017, 73, 1–17. [Google Scholar] [CrossRef]
- Kadziński, M.; Greco, S.; Słowiński, R. Selection of a Representative Value Function in Robust Multiple Criteria Ranking and Choice. Eur. J. Oper. Res. 2012, 217, 541–553. [Google Scholar] [CrossRef]
- Lopez-Parra, P.; Alvarez, P.A.; Bernal, M.; León-Castro, E. A Robust Ranking Model for Analysing Marginality of Regions of Mexico. IJISD 2023, 17, 104. [Google Scholar] [CrossRef]
- Cinelli, M.; Coles, S.R.; Nadagouda, M.N.; Błaszczyński, J.; Słowiński, R.; Varma, R.S.; Kirwan, K. Robustness Analysis of a Green Chemistry-Based Model for the Classification of Silver Nanoparticles Synthesis Processes. J. Clean. Prod. 2017, 162, 938–948. [Google Scholar] [CrossRef]
- Liu, H.; Du, Z.; Xue, T.; Jiang, T. An Integrated Artificial Intelligence-Driven Approach to Multi-Criteria Optimization of Building Energy Efficiency and Occupants’ Comfort: A Case Study. J. Build. Eng. 2025, 103, 111944. [Google Scholar] [CrossRef]
- Verma, M. Artificial Intelligence Role in Modern Science: Aims, Merits, Risks and Its Applications. Int. J. Trend Sci. Res. Dev. (IJTSRD) 2023, 7, 335–342. [Google Scholar]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; The MIT Press: Cambridge, MA, USA, 1992; ISBN 978-0-262-27555-2. [Google Scholar]
- Merigó, J.M. A Unified Model between the Weighted Average and the Induced OWA Operator. Expert Syst. Appl. 2011, 38, 11560–11572. [Google Scholar] [CrossRef]
- Lahdelma, R.; Hokkanen, J.; Salminen, P. SMAA—Stochastic Multiobjective Acceptability Analysis. Eur. J. Oper. Res. 1998, 106, 137–143. [Google Scholar] [CrossRef]
- IMCO Instituto Mexicano Para La Competitividad. Un Puente Entre Dos Méxicos. Índice de Competitividad Estatal 2016. Available online: https://imco.org.mx/indices/un-puente-entre-dos-mexicos/ (accessed on 17 January 2025).
- Alvarez, P.; Muñoz-Palma, M.; Miranda-Espinoza, L.E.; Lopez-Parra, P.; León-Castro, E. Multiple Criteria Hierarchy Approach for Analyzing Competitiveness of States in Mexico. RIE 2020, 20, 29–51. [Google Scholar] [CrossRef]
- Muñoz-Palma, M.; Alvarez-Carrillo, P.A.; Miranda-Espinoza, E.L.; Avilés-Ochoa, E.; León-Castro, E. Multicriteria Analysis Model for the Evaluation of the Competitiveness of the States in Mexico. In Intelligent and Complex Systems in Economics and Business. Advances in Intelligent Systems and Computing; León-Castro, E., Blanco-Mesa, F., Gil-Lafuente, A.M., Merigó, J.M., Kacprzyk, J., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–20. ISBN 978-3-030-59190-8. [Google Scholar]
- Tervonen, T.; Lahdelma, R. Implementing Stochastic Multicriteria Acceptability Analysis. Eur. J. Oper. Res. 2007, 178, 500–513. [Google Scholar] [CrossRef]
- Greco, S.; Ishizaka, A.; Matarazzo, B.; Torrisi, G. Stochastic Multi-Attribute Acceptability Analysis (SMAA): An Application to the Ranking of Italian Regions. Reg. Stud. 2018, 52, 585–600. [Google Scholar] [CrossRef]
- Yager, R.R. Heavy OWA Operators. Fuzzy Optim. Decis. Mak. 2002, 1, 379–397. [Google Scholar] [CrossRef]
- IMCO Índice de Competitividad Estatal 2016. Available online: https://imco.org.mx/indice-de-competitividad-estatal-2016/ (accessed on 4 December 2024).
Position | Alternative Region (State) | Acceptability Index in Percentage |
---|---|---|
1 | Ciudad de México | 100% |
2 | Aguascalientes | 97.9% |
3 | Colima | 97.9% |
4 | Nuevo León | 100% |
5 | Querétaro | 86.4 |
6 | Sonora | 86.4 |
7 | Sinaloa | 100 |
8 | Baja California Sur | 98.8 |
9 | Jalisco | 96.8 |
10 | Coahuila | 96.7 |
11 | Quintana Roo | 100 |
12 | Campeche | 100 |
13 | Nayarit | 100 |
14 | Tamaulipas | 100 |
15 | Yucatán | 100 |
16 | Puebla | 94.8 |
17 | San Luis Potosí | 84.9 |
18 | Chihuahua | 84.8 |
19 | Guanajuato | 100 |
20 | México | 99.8 |
21 | Hidalgo | 99.7 |
22 | Durango | 73.9 |
23 | Tlaxcala | 74.0 |
24 | Morelos | 98.2 |
25 | Baja California | 99.9 |
26 | Zacatecas | 100 |
27 | Tabasco | 100 |
28 | Veracruz | 99.9 |
29 | Michoacán | 99.9 |
30 | Oaxaca | 99.9 |
31 | Chiapas | 99.9 |
32 | Guerrero | 100 |
Alternative | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | W10 | W11 | W12 | W13 | W14 | W15 | W16 | W17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CDMX | 0.014 | 0.014 | 0.013 | 0.014 | 0.013 | 0.013 | 0.013 | 0.014 | 0.013 | 0.005 | 0.004 | 0.005 | 0.004 | 0.005 | 0.004 | 0.003 | 0.004 |
W18 | W19 | W20 | W21 | W22 | W23 | W24 | W25 | W26 | W27 | W28 | W29 | W30 | W31 | W32 | W33 | W34 | |
0.005 | 0.005 | 0.004 | 0.003 | 0.016 | 0.016 | 0.015 | 0.015 | 0.014 | 0.016 | 0.017 | 0.017 | 0.017 | 0.018 | 0.017 | 0.016 | 0.017 | |
W35 | W36 | W37 | W38 | W39 | W40 | W41 | W42 | W43 | W44 | W45 | W46 | W47 | W48 | W49 | W50 | W51 | |
0.014 | 0.016 | 0.015 | 0.015 | 0.015 | 0.017 | 0.002 | 0.002 | 0.003 | 0.002 | 0.002 | 0.003 | 0.003 | 0.003 | 0.002 | 0.019 | 0.019 | |
W52 | W53 | W54 | W55 | W56 | W57 | W58 | W59 | W60 | W61 | W62 | W63 | W64 | W65 | W66 | W67 | W68 | |
0.019 | 0.018 | 0.018 | 0.019 | 0.018 | 0.019 | 0.018 | 0.010 | 0.010 | 0.010 | 0.009 | 0.009 | 0.009 | 0.010 | 0.010 | 0.009 | 0.008 | |
W69 | W70 | W71 | W72 | W73 | W74 | W75 | W76 | W77 | W78 | W79 | W80 | W81 | W82 | W83 | W84 | W85 | |
0.008 | 0.008 | 0.007 | 0.007 | 0.007 | 0.007 | 0.007 | 0.008 | 0.008 | 0.009 | 0.011 | 0.012 | 0.011 | 0.011 | 0.012 | 0.011 | 0.011 | |
W86 | W87 | W88 | W89 | W90 | W91 | W92 | W93 | W94 | W95 | W96 | W97 | W98 | W99 | W100 | |||
0.012 | 0.010 | 0.012 | 0.012 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.006 | 0.006 | 0.006 | 0.006 | 0.006 | 0.006 |
Alternative Region (State) | IMCO 2016 Ranking Position | Robust Ranking of AIP Position |
---|---|---|
Ciudad de México | 1 | 1 |
Aguascalientes | 2 | 2 |
Nuevo León | 3 | 4 |
Colima | 4 | 3 |
Querétaro | 5 | 5 |
Sonora | 6 | 6 |
Coahuila | 7 | 10 |
Jalisco | 8 | 9 |
Sinaloa | 9 | 7 |
Yucatán | 10 | 15 |
Campeche | 11 | 12 |
Baja California Sur | 12 | 8 |
Quintana Roo | 13 | 11 |
Puebla | 14 | 16 |
Tamaulipas | 15 | 14 |
Chihuahua | 16 | 18 |
Nayarit | 17 | 13 |
Guanajuato | 18 | 19 |
San Luis Potosí | 19 | 17 |
Hidalgo | 20 | 21 |
México | 21 | 20 |
Durango | 22 | 23 |
Morelos | 23 | 24 |
Tlaxcala | 24 | 22 |
Baja California | 25 | 25 |
Zacatecas | 26 | 26 |
Tabasco | 27 | 27 |
Veracruz | 28 | 28 |
Michoacán | 29 | 29 |
Chiapas | 30 | 31 |
Oaxaca | 31 | 30 |
Guerrero | 32 | 32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Gastelum, T.S.; Uzeta-Obregon, C.R.; Álvarez-Carrillo, P.; León-Castro, E. An AI for Robust MCDM Ranking in a Large Number of Criteria. Mathematics 2025, 13, 2789. https://doi.org/10.3390/math13172789
Garcia-Gastelum TS, Uzeta-Obregon CR, Álvarez-Carrillo P, León-Castro E. An AI for Robust MCDM Ranking in a Large Number of Criteria. Mathematics. 2025; 13(17):2789. https://doi.org/10.3390/math13172789
Chicago/Turabian StyleGarcia-Gastelum, Tanya S., Cristhian R. Uzeta-Obregon, Pavel Álvarez-Carrillo, and Ernesto León-Castro. 2025. "An AI for Robust MCDM Ranking in a Large Number of Criteria" Mathematics 13, no. 17: 2789. https://doi.org/10.3390/math13172789
APA StyleGarcia-Gastelum, T. S., Uzeta-Obregon, C. R., Álvarez-Carrillo, P., & León-Castro, E. (2025). An AI for Robust MCDM Ranking in a Large Number of Criteria. Mathematics, 13(17), 2789. https://doi.org/10.3390/math13172789