UAV Formation for Cargo Transport by PID Control with Neural Compensation
Abstract
1. Introduction
1.1. Motivation
1.2. Contributions
- (i)
- The feasibility of a cascade control system based on null-space kinematic control together with internal dynamic PID control with neural compensation.
- (ii)
- The PID internal control proposal with its adaptable neural system that allows the dynamics to be adjusted to any type of payload.
- (iii)
- Simplicity of implementation, using each vehicle’s internal PID.
- (iv)
- A freight transport system in formation that can be expanded to a larger number of vehicles.
1.3. Organization
2. Problem Description
- (i)
- Avoid collisions (obstacle avoidance).
- (ii)
- Payload positioning must follow a reference trajectory as closely as possible, indicated by .
- (iii)
- The distance between two transport quadrotors is indicated by ; this distance must be maintained within safe ranges. .
- (iv)
- For balanced distribution of the payload weight, the angle of elevation must ensure that , where is the tension force of the cables on each quadrotor, which was filtered out. And balances the weight ratio of the payload suspended by each quadrotor.
- (v)
- For tangential cargo transport, the yaw orientation of the formation line must be and the transport line of the formation must be tangential to the trajectory.
- (vi)
- The yaw orientation of each quadrotor must allow for forward movement.
3. Numerical Simulation
UAV Payload Considerations
4. UAV Mathematical Model
5. Dynamic Controller Design
Neural Correction System Design
6. Stability Analysis and Update Rules
7. Simulation Results
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VTOL | Vertical Take-Off and Landing |
UAV | Unmanned Aerial Vehicle |
PID | Proportional–Integral–Derivative (controller) |
RBF-FT | Radial Basis Function—Fully Tuned |
ANN | Adaptive Neural Network |
References
- Zhang, Y.; Zhao, Q.; Mao, P.; Bai, Q.; Li, F.; Pavlova, S. Design and control of an ultra-low-cost logistic delivery fixed-wing UAV. Appl. Sci. 2024, 14, 4358. [Google Scholar] [CrossRef]
- Raffo, G.V.; Almeida, M.M.d. A Load Transportation Nonlinear Control Strategy Using a Tilt-Rotor UAV. J. Adv. Transp. 2018, 2018, 1467040. [Google Scholar] [CrossRef]
- Fredericks, W.L.; Sripad, S.; Bower, G.C.; Viswanathan, V. Performance metrics required of next-generation batteries to electrify vertical takeoff and landing (VTOL) aircraft. ACS Energy Lett. 2018, 3, 2989–2994. [Google Scholar] [CrossRef]
- Ismail, K.B.; Rahim, A.H.A.; Zawawi, F. Design and development of heavy-lift hexacopter for heavy payload. J. Transp. Syst. Eng. 2020, 7, 53–63. [Google Scholar]
- Shirani, B.; Najafi, M.; Izadi, I. Cooperative load transportation using multiple UAVs. Aerosp. Sci. Technol. 2019, 84, 158–169. [Google Scholar] [CrossRef]
- Salinas, L.R.; Gimenez, J.; Gandolfo, D.C.; Rosales, C.D.; Carelli, R. Unified motion control for multilift unmanned rotorcraft systems in forward flight. IEEE Trans. Control Syst. Technol. 2023, 31, 1607–1621. [Google Scholar] [CrossRef]
- Rossomando, F.; Rosales, C.; Gimenez, J.; Salinas, L.; Soria, C.; Sarcinelli-Filho, M.; Carelli, R. Aerial load transportation with multiple quadrotors based on a kinematic controller and a neural SMC dynamic compensation. J. Intell. Robot. Syst. 2020, 100, 519–530. [Google Scholar] [CrossRef]
- Meissen, C.; Klausen, K.; Arcak, M.; Fossen, T.I.; Packard, A. Passivity-based formation control for UAVs with a suspended load. IFAC-PapersOnLine 2017, 50, 13150–13155. [Google Scholar] [CrossRef]
- Garcia-Aunon, P.; Roldan, J.; De Leon, J.; Del Cerro, J.; Barrientos, A. Practical applications using multi-UAV systems and aerial robotic swarms. Rev. Iberoam. Autom. Inform. Ind. 2021, 18, 230–241. [Google Scholar]
- Zhu, L.; Ma, C.; Li, J.; Lu, Y.; Yang, Q. Connectivity-maintenance UAV formation control in complex environment. Drones 2023, 7, 229. [Google Scholar] [CrossRef]
- Cruz, P.J.; Fierro, R. Cable-suspended load lifting by a quadrotor UAV: Hybrid model, trajectory generation, and control. Auton. Robot. 2017, 41, 1629–1643. [Google Scholar] [CrossRef]
- Alothman, Y.; Guo, M.; Gu, D. Using iterative LQR to control two quadrotors transporting a cable-suspended load. IFAC-PapersOnLine 2017, 50, 4324–4329. [Google Scholar] [CrossRef]
- Guerrero-Sánchez, M.E.; Mercado-Ravell, D.A.; Lozano, R.; García-Beltrán, C.D. Swing-attenuation for a quadrotor transporting a cable-suspended payload. ISA Trans. 2017, 68, 433–449. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Qiu, J.; Karimi, H.R.; Gao, H. A Novel Finite-Time Control for Nonstrict Feedback Saturated Nonlinear Systems With Tracking Error Constraint. IEEE Trans. Syst. Man Cybern. Syst. 2019, 51, 3968–3979. [Google Scholar] [CrossRef]
- Qiu, J.; Sun, K.; Wang, T.; Gao, H. Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. 2019, 27, 2152–2162. [Google Scholar] [CrossRef]
- Sun, K.; Mou, S.; Qiu, J.; Wang, T.; Gao, H. Adaptive fuzzy control for nontriangular structural stochastic switched nonlinear systems with full state constraints. IEEE Trans. Fuzzy Syst. 2018, 27, 1587–1601. [Google Scholar] [CrossRef]
- Babaie, R.; Ehyaie, A.F. Robust optimal motion planning approach to cooperative grasping and transporting using multiple UAVs based on SDRE. Trans. Inst. Meas. Control 2017, 39, 1391–1408. [Google Scholar] [CrossRef]
- Estevez, J.; Graña, M.; Lopez-Guede, J.M. Online fuzzy modulated adaptive PD control for cooperative aerial transportation of deformable linear objects. Integr. Comput.-Aided Eng. 2017, 24, 41–55. [Google Scholar] [CrossRef]
- Dai, S.; Lee, T.; Bernstein, D.S. Adaptive control of a quadrotor UAV transporting a cable-suspended load with unknown mass. In Proceedings of the 53rd IEEE Conference on Decision and Control, Los Angeles, CA, USA, 15–17 December 2014. [Google Scholar]
- Lee, T. Geometric control of quadrotor UAVs transporting a cable-suspended rigid body. IEEE Trans. Control Syst. Technol. 2017, 26, 255–264. [Google Scholar] [CrossRef]
- Santos, M.C.P.; Rosales, C.D.; Sarcinelli-Filho, M.; Carelli, R. A novel null-space-based uav trajectory tracking controller with collision avoidance. IEEE/ASME Trans. Mechatronics 2017, 22, 2543–2553. [Google Scholar] [CrossRef]
- Rossomando, F.; Soria, C.; Carelli, R. Adaptive neural sliding mode compensator for a class of nonlinear systems with unmodeled uncertainties. Eng. Appl. Artif. Intell. 2013, 26, 2251–2259. [Google Scholar] [CrossRef]
- Gimenez, J.; Gandolfo, D.; Salinas, L.; Rosales, C.; Carelli, R. Multi-objective control for cooperative payload transport with rotorcraft UAVs. ISA Trans. 2018, 80, 491–502. [Google Scholar] [CrossRef]
- Hajikarimi, P.; Moghadas Nejad, F. Chapter 3—Mechanical models of viscoelasticity. In Applications of Viscoelasticity; Hajikarimi, P., Moghadas Nejad, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 27–61. [Google Scholar] [CrossRef]
- Santana, L.V.; Brandao, A.S.; Sarcinelli-Filho, M.; Carelli, R. A Trajectory Tracking and 3D Positioning Controller for the AR.Drone Quadrotor. In Proceedings of the International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, 27–30 May 2014; pp. 756–767. [Google Scholar]
- Kumar, R. Autonomous Control of Advanced Multirotor Unmanned Aerial Systems. Ph.D. Thesis, University of Cincinnati, Cincinnati, OH, USA, 2022. [Google Scholar]
- Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control. Signals Syst. 1989, 2, 303–314. [Google Scholar] [CrossRef]
Parameters | Valor |
---|---|
Number of supporting cables | 2 |
Number of mass particles per s. cable | 40 |
Mass of support cable | 0.001 [kg] |
Cable diameter | 0.0005 [m] |
Cable drag coefficient | 1.0 |
Mass of payload | 0.4 [kg] |
Payload edge length | 0.1 [m] |
Payload drag coefficient | 1.05 |
Spring length | 0.08 [m] |
Elasticity index | 5000 [N/m] |
Spring friction | 0.6 [N·s/m] |
Gravity acceleration | 9.7917 [m/s2] |
Air density | 1.151 [kg/m3] |
Air friction | 0.02 [N·s/m] |
Soil repulsion | 100 [N/m] |
Soil friction | 0.2 [N·s/m] |
Soil absorption | 0.05 [N·s/m] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boubaker, S.; Vacca, C.; Rosales, C.; Kamel, S.; Alsubaei, F.S.; Rossomando, F. UAV Formation for Cargo Transport by PID Control with Neural Compensation. Mathematics 2025, 13, 2650. https://doi.org/10.3390/math13162650
Boubaker S, Vacca C, Rosales C, Kamel S, Alsubaei FS, Rossomando F. UAV Formation for Cargo Transport by PID Control with Neural Compensation. Mathematics. 2025; 13(16):2650. https://doi.org/10.3390/math13162650
Chicago/Turabian StyleBoubaker, Sahbi, Carlos Vacca, Claudio Rosales, Souad Kamel, Faisal S. Alsubaei, and Francisco Rossomando. 2025. "UAV Formation for Cargo Transport by PID Control with Neural Compensation" Mathematics 13, no. 16: 2650. https://doi.org/10.3390/math13162650
APA StyleBoubaker, S., Vacca, C., Rosales, C., Kamel, S., Alsubaei, F. S., & Rossomando, F. (2025). UAV Formation for Cargo Transport by PID Control with Neural Compensation. Mathematics, 13(16), 2650. https://doi.org/10.3390/math13162650