Maritime Mobile Edge Computing for Sporadic Tasks: A PPO-Based Dynamic Offloading Strategy
Abstract
1. Introduction
- (1)
- In order to address the limited communication capabilities and inadequate processing power of MIoT edge devices, we integrated the structures of object detection models with the sporadic nature of maritime observation tasks. This integration helped construct a marine-edge-computing scenario driven by object-detection tasks.
- (2)
- To address the sporadic nature of maritime observation tasks, this paper proposes a vertical partitioning-based offloading and dynamic scheduling strategy for task models, which is grounded in the structure of object detection and the sporadic characteristics of tasks. By constructing a time-series task blocking model, the optimization objective is formulated to minimize the total blocking delay of the task queue.
- (3)
- We formulate the problem of minimizing the total blocking delay of the task queue as an MDP and propose the ON-PPO algorithm. The application of orthogonal encoding for task category states and state normalization has mitigated the update conflicts that PPO encounters when dealing with different task categories and enhanced its ability to extract features from different dimensions. Experimental results demonstrate that the proposed algorithm can maintain the lowest blocking time and total delay under varying task intervals.
2. Materials and Methods
3. System Model
3.1. System Architecture
3.2. Computing Model
3.3. Communication Model
3.4. Task Queue Model
3.5. Problem Definition
4. Algorithm Design
4.1. Markov Decision Process Construction
- (1)
- State: As edge devices continuously receive new tasks, the system’s blocking delay dynamically changes with task progression through decision making. Aiming to reduce task blocking time, the factors with task k are the task data transmission rate , the edge device’s computing resource , the cloud device’s computing resource , the computational demand and data output volume , and . Therefore, the state is represented as
- (2)
- Action: The device influences the environment through actions. In this paper, based on the environmental state of task k, we determine the layer sets on the edge device and on the cloud device. Therefore, the action for processing task k can be represented as
- (3)
- Reward: In the MDP framework, the reward represents the system gain achieved at state k. Upon the arrival of each new task k, we can calculate the blocking time for task k by analyzing the state information of tasks 1 to . To minimize this blocking time, the reward for state is defined as the negative value of the blocking time. Thus, the reward can be expressed as
4.2. Deep Reinforcement Learning Solutions
4.2.1. Structure ON-PPO
Algorithm 1 The ON-PPO algorithm. |
|
4.2.2. Task Category Orthogonality and State Normalization
4.2.3. Complexity Analysis
5. Simulation Results
5.1. Simulation Setup
5.2. Convergence Analysis
5.3. Performance Evaluation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MMEC | Maritime mobile edge computing |
MDP | Markov Decision Process |
ON-PPO | Orthogonalization-Normalization Proximal Policy Optimization |
MIoT | Maritime Internet of Things |
CNN | Convolutional Neural Network |
References
- Su, J.; Xu, D.; Qiu, L.; Xu, Z.; Lin, L.; Zheng, J. A High-Accuracy Underwater Object Detection Algorithm for Synthetic Aperture Sonar Images. Remote Sens. 2025, 17, 2112. [Google Scholar] [CrossRef]
- Yang, Z.; Yu, Q.; Yang, Z.; Wan, C. A data-driven Bayesian model for evaluating the duration of detention of ships in PSC inspections. Transp. Res. Part E Logist. Transp. Rev. 2024, 181, 103371. [Google Scholar] [CrossRef]
- Hemal, M.M.; Rahman, A.; Nurjahan.; Islam, F.; Ahmed, S.; Kaiser, M.S.; Ahmed, M.R. An Integrated Smart Pond Water Quality Monitoring and Fish Farming Recommendation Aquabot System. Sensors 2024, 24, 3682. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Xu, D.; Lin, L.; Song, L.; Song, D.; Sun, Y.; Chen, Q. Integrated Object Detection and Communication for Synthetic Aperture Radar Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 294–307. [Google Scholar] [CrossRef]
- Yuan, Y.; Gao, S.; Zhang, Z.; Wang, W.; Xu, Z.; Liu, Z. Edge-Cloud Collaborative UAV Object Detection: Edge-Embedded Lightweight Algorithm Design and Task Offloading Using Fuzzy Neural Network. IEEE Trans. Cloud Comput. 2024, 12, 306–318. [Google Scholar] [CrossRef]
- Li, H.; Wu, S.; Jiao, J.; Lin, X.H.; Zhang, N.; Zhang, Q. Energy-Efficient Task Offloading of Edge-Aided Maritime UAV Systems. IEEE Trans. Veh. Technol. 2023, 72, 1116–1126. [Google Scholar] [CrossRef]
- Huyan, L.; Li, Y.; Jiang, D.; Zhang, Y.; Zhou, Q.; Li, B.; Wei, J.; Liu, J.; Zhang, Y.; Wang, P.; et al. Remote Sensing Imagery Object Detection Model Compression via Tucker Decomposition. Mathematics 2023, 11, 856. [Google Scholar] [CrossRef]
- Guo, S.; Chen, Y.; Xu, L.; Deng, J.; Chen, H.; Heidari, A.A. Multiscale attention feature deep fusion network for iris region localization and segmentation from dual-spectral iris image. Appl. Soft Comput. 2025, 179, 113334. [Google Scholar] [CrossRef]
- Qian, Y.; Rao, L.; Ma, C.; Wei, K.; Ding, M.; Shi, L. Toward Efficient and Secure Object Detection With Sparse Federated Training Over Internet of Vehicles. IEEE Trans. Intell. Transp. Syst. 2024, 25, 14507–14520. [Google Scholar] [CrossRef]
- Li, C.; Lyu, H.; Duan, K. A lightweight and efficient detector for concealed object in active millimeter wave images. Knowl.-Based Syst. 2025, 310, 112995. [Google Scholar] [CrossRef]
- Zhou, T.; Liu, K.; Li, X.; Jiang, N.; Li, C. Joint Data Compression, Secure Multi-Part Collaborative Task Offloading and Resource Assignment in Ultra-Dense Networks. IEEE Trans. Netw. Sci. Eng. 2025, 1–18. [Google Scholar] [CrossRef]
- Li, M.; Qian, L.P.; Dong, X.; Lin, B.; Wu, Y.; Yang, X. Secure Computation Offloading for Marine IoT: An Energy-Efficient Design via Cooperative Jamming. IEEE Trans. Veh. Technol. 2023, 72, 6518–6531. [Google Scholar] [CrossRef]
- Chen, X.; Liu, G. Energy-Efficient Task Offloading and Resource Allocation via Deep Reinforcement Learning for Augmented Reality in Mobile Edge Networks. IEEE Internet Things J. 2021, 8, 10843–10856. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, B.; Ye, Q.; Peng, H. Two-Tier Task Offloading for Satellite-Assisted Marine Networks: A Hybrid Stackelberg–Bargaining Game Approach. IEEE Internet Things J. 2025, 12, 13047–13060. [Google Scholar] [CrossRef]
- Zhang, C.; Lin, B.; Chen, Z.; Cai, L.X.; Duan, J. Mobile Edge Deployment and Resource Management for Maritime Wireless Networks. IEEE Trans. Veh. Technol. 2025, 74, 7928–7939. [Google Scholar] [CrossRef]
- Feng, Y.; Hu, S.; Chen, L.; Li, G. An intelligent scheduling framework for DNN task acceleration in heterogeneous edge networks. Comput. Commun. 2023, 201, 91–101. [Google Scholar] [CrossRef]
- Mondal, M.K.; Banerjee, S.; Das, D.; Ghosh, U.; Al-Numay, M.S.; Biswas, U. Toward Energy-Efficient and Cost-Effective Task Offloading in Mobile Edge Computing for Intelligent Surveillance Systems. IEEE Trans. Consum. Electron. 2024, 70, 4087–4094. [Google Scholar] [CrossRef]
- Chu, Z.; Wang, F.; Lei, T.; Luo, C. Path Planning Based on Deep Reinforcement Learning for Autonomous Underwater Vehicles Under Ocean Current Disturbance. IEEE Trans. Intell. Veh. 2023, 8, 108–120. [Google Scholar] [CrossRef]
- Qu, K.; Zhuang, W.; Wu, W.; Li, M.; Shen, X.; Li, X.; Shi, W. Stochastic Cumulative DNN Inference with RL-Aided Adaptive IoT Device-Edge Collaboration. IEEE Internet Things J. 2023, 10, 18000–18015. [Google Scholar] [CrossRef]
- Kim, S.; Jung, S.; Lee, H.W. Distributed Computation of DNN via DRL With Spatiotemporal State Embedding. IEEE Internet Things J. 2024, 11, 12686–12701. [Google Scholar] [CrossRef]
- Xing, B.; Wang, W.; Qian, J.; Pan, C.; Le, Q. A Lightweight Model for Real-Time Monitoring of Ships. Electronics 2023, 12, 3804. [Google Scholar] [CrossRef]
- Yang, S.; Xue, L.; Hong, X.; Zeng, X. A Lightweight Network Model Based on an Attention Mechanism for Ship-Radiated Noise Classification. J. Mar. Sci. Eng. 2023, 11, 432. [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, S.; Yang, J.; Cheng, C. A Tiny Model for Fast and Precise Ship Detection via Feature Channel Pruning. Sensors 2022, 22, 9331. [Google Scholar] [CrossRef]
- Chen, S.; Zhan, R.; Wang, W.; Zhang, J. Learning Slimming SAR Ship Object Detector Through Network Pruning and Knowledge Distillation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1267–1282. [Google Scholar] [CrossRef]
- Sun, S.; Xu, Z.; Cao, X.; Zheng, J.; Yang, J.; Jin, N. A High-Performance and Lightweight Maritime Target Detection Algorithm. Remote Sens. 2025, 17, 1012. [Google Scholar] [CrossRef]
- Liu, G.; Dai, F.; Xu, X.; Fu, X.; Dou, W.; Kumar, N.; Bilal, M. An adaptive DNN inference acceleration framework with end–edge–cloud collaborative computing. Future Gener. Comput. Syst. 2023, 140, 422–435. [Google Scholar] [CrossRef]
- Pacheco, R.G.; Couto, R.S.; Simeone, O. On the impact of deep neural network calibration on adaptive edge offloading for image classification. J. Netw. Comput. Appl. 2023, 217, 103679. [Google Scholar] [CrossRef]
- Liu, C.; Liu, K. Toward Reliable DNN-Based Task Partitioning and Offloading in Vehicular Edge Computing. IEEE Trans. Consum. Electron. 2024, 70, 3349–3360. [Google Scholar] [CrossRef]
- Duan, Y.; Wu, J. Optimizing Job Offloading Schedule for Collaborative DNN Inference. IEEE Trans. Mob. Comput. 2024, 23, 3436–3451. [Google Scholar] [CrossRef]
- Fan, W.; Gao, L.; Su, Y.; Wu, F.; Liu, Y. Joint DNN Partition and Resource Allocation for Task Offloading in Edge–Cloud-Assisted IoT Environments. IEEE Internet Things J. 2023, 10, 10146–10159. [Google Scholar] [CrossRef]
- Huang, B.; Huang, X.; Liu, X.; Ding, C.; Yin, Y.; Deng, S. Adaptive partitioning and efficient scheduling for distributed DNN training in heterogeneous IoT environment. Comput. Commun. 2024, 215, 169–179. [Google Scholar] [CrossRef]
- Xu, W.; Luo, W.; Sun, Y.; Gao, Z.; Wu, B.; Lai, L. MADRL-Based Edge Computing: Joint Energy-Latency Optimization for Marine Internet of Things. IEEE Internet Things J. 2025, 12, 30228–30241. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, D.; Yin, C.; Tang, J.; Wang, Y.; Xue, G. A Co-Scheduling Framework for DNN Models on Mobile and Edge Devices With Heterogeneous Hardware. IEEE Trans. Mob. Comput. 2023, 22, 1275–1288. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, B.; Ye, Q.; Fang, Y.; Han, X. Joint Computation Offloading and Resource Allocation for Maritime MEC With Energy Harvesting. IEEE Internet Things J. 2024, 11, 19898–19913. [Google Scholar] [CrossRef]
- Zhang, P.; Li, D. Automatic counting of lettuce using an improved YOLOv5s with multiple lightweight strategies. Expert Syst. Appl. 2023, 226, 120220. [Google Scholar] [CrossRef]
- Liu, K.; Wang, J.; Zhang, K.; Chen, M.; Zhao, H.; Liao, J. A Lightweight Recognition Method for Rice Growth Period Based on Improved YOLOv5s. Sensors 2023, 23, 6738. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Z.; Chen, J.; Gao, H.; Wang, T. Railway Foreign Object Intrusion Detection Using UAV Images and YOLO-UAT. IEEE Access 2025, 13, 18498–18509. [Google Scholar] [CrossRef]
- Qi, S.; Lin, B.; Deng, Y.; Chen, X.; Fang, Y. Minimizing Maximum Latency of Task Offloading for Multi-UAV-Assisted Maritime Search and Rescue. IEEE Trans. Veh. Technol. 2024, 73, 13625–13638. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Task arrival interval | {0.2 s, 0.5 s, 1.0 s} |
Edge device FLOPS | [10, 15] |
Cloud device FLOPS | [20, 30] |
Bandwith B | 5 MHz |
Transmission power of the edge device | 1 W |
Noise power | dBm |
large-scale attenuation coefficient |
Parameter | Value |
---|---|
Learning rate of actor | 0.001 |
Learning rate of critic | 0.001 |
Discount rate | 0.9 |
Clip range | 0.2 |
Number of Iteration | 4 |
Number of episode | 1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Luo, W.; Xu, Z.; Lin, B.; Xu, W.; Liu, W. Maritime Mobile Edge Computing for Sporadic Tasks: A PPO-Based Dynamic Offloading Strategy. Mathematics 2025, 13, 2643. https://doi.org/10.3390/math13162643
Sun Y, Luo W, Xu Z, Lin B, Xu W, Liu W. Maritime Mobile Edge Computing for Sporadic Tasks: A PPO-Based Dynamic Offloading Strategy. Mathematics. 2025; 13(16):2643. https://doi.org/10.3390/math13162643
Chicago/Turabian StyleSun, Yanglong, Wenqian Luo, Zhiping Xu, Bo Lin, Weijian Xu, and Weipeng Liu. 2025. "Maritime Mobile Edge Computing for Sporadic Tasks: A PPO-Based Dynamic Offloading Strategy" Mathematics 13, no. 16: 2643. https://doi.org/10.3390/math13162643
APA StyleSun, Y., Luo, W., Xu, Z., Lin, B., Xu, W., & Liu, W. (2025). Maritime Mobile Edge Computing for Sporadic Tasks: A PPO-Based Dynamic Offloading Strategy. Mathematics, 13(16), 2643. https://doi.org/10.3390/math13162643