Global Existence for the Cauchy Problem of the Parabolic–Parabolic–ODE Chemotaxis Model with Indirect Signal Production on the Plane
Abstract
1. Introduction
2. Proof of Theorem 1
3. The Critical Case m(u0; R2) = 8πδ
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laurençot, P. Global bounded and unbounded solutions to a chemotaxis system with indirect signal production. Discret. Contin. Dyn. Syst. B 2019, 24, 6419–6444. [Google Scholar] [CrossRef]
- Osaki, K.; Yasgi, A. Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkcial. Ekvac. 2001, 44, 441–469. [Google Scholar]
- Strohm, S.; Tyson, R.C.; Powell, J.A. Pattern formation in a model for mountain pine beetle dispersal: Linking model predictions to data. Bull. Math. Biol. 2013, 75, 1778–1797. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.A.; Velazquez, J.L.L. A blow-up mechanism for chemotaxis model. Ann. Della Sc. Norm. Super. Pisa Sci. 1997, 24, 633–683. [Google Scholar]
- Horstmann, D. From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. Jahresber DMV 2003, 105, 103–165. [Google Scholar]
- Keller, E.F.; Segel, L.A. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 1970, 26, 399–415. [Google Scholar] [CrossRef]
- Winkler, M. Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J. Math. Pures. Appl. 2013, 100, 748–767. [Google Scholar] [CrossRef]
- Tao, Y.; Winkler, M. Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production. J. Eur. Math. Soc. (JEMS) 2017, 19, 3641–3678. [Google Scholar] [CrossRef]
- Xiang, T. Boundedness and global existence in the higher-dimensional parabolic-parabolic chemotaxis system with/without growth source. J. Differ. Equ. 2015, 258, 4275–4323. [Google Scholar] [CrossRef]
- Mao, X.; Li, Y. Finite-Time Blowup in a Parabolic-Parabolic-Elliptic Chemotaxis Model Involving Indirect Signal Production. Appl. Math. Optim. 2025, 92, 10. [Google Scholar] [CrossRef]
- Nagai, T. Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two dimensional domains. J. Inequal. Appl. 2001, 6, 37–55. [Google Scholar] [CrossRef]
- Chen, Y.; Xiang, T. Negligibility of haptotaxis on global dynamics in a chemotaxis-haptotaxis system with indirect signal production. J. Differ. Equ. 2024, 409, 1–48. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, S.; Xiang, T. Global dynamics in a Keller-Segel system with rotation and indirect signal production. Nonlinearity 2025, 38, 035011. [Google Scholar] [CrossRef]
- Laurençot, P.; Stinner, C. Singular limit of a chemotaxis model with indirect signal production and phenotype switching. Nonlinearity 2024, 37, 105007. [Google Scholar] [CrossRef]
- Painter, K.J.; Winkler, M. Phenotype switching in chemotaxis aggregation models controls the spon-taneous emergence of large densities. SIAM J. Appl. Math. 2023, 83, 2096–2117. [Google Scholar] [CrossRef]
- Tao, Y.; Winkler, M. A switch in dimension dependence of critical blow-up exponents in a Keller-Segel system involving indirect signal production. J. Differ. Equ. 2025, 423, 197–239. [Google Scholar] [CrossRef]
- Calvez, V.; Corrias, L. The parabolic-parabolic Keller-Segel model in R2. Commun. Math. Sci. 2008, 6, 417–447. [Google Scholar] [CrossRef]
- Nagai, T.; Ogawa, T. Brezi-Merle inequalities and application to the global existence problem of the Keller-Segel system. Commun. Contemp. Math. 2011, 13, 795–812. [Google Scholar] [CrossRef]
- Biler, P.; Nadzieja, T. Existence and nonexistence of solutions for a model of gravitational interactions of particles. Colloq. Math. 1994, 66, 319–334. [Google Scholar] [CrossRef]
- Nagai, T. Blow-up of radially symmeric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 1995, 5, 581–601. [Google Scholar]
- Mizoguchi, N. Global existence for the Cauchy problem of the parabolic-parabolic Keller-Segel system on the plane. Calc. Var. 2013, 48, 491–505. [Google Scholar] [CrossRef]
- Xiang, Z.; Yang, L. Critical mass for the Cauchy problem of a chemotaxis model with indirect signal mechanism. J. Evol. Equ. 2025, 25, 26. [Google Scholar] [CrossRef]
- Moser, J. A sharp form of an inequality. Indiana Univ. Math. J. 1971, 20, 1077–1092. [Google Scholar] [CrossRef]
- Trudinger, N.S. On imbedding into Orlicz spaces and some applications. J. Math. Mech. 1967, 17, 473–484. [Google Scholar] [CrossRef]
- Nagai, T.; Senba, T.; Suzuki, T. Chemotactic collapse in parabolic system of mathematical biology. Hiroshima Math. J. 2000, 30, 463–497. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Li, D. Global Existence for the Cauchy Problem of the Parabolic–Parabolic–ODE Chemotaxis Model with Indirect Signal Production on the Plane. Mathematics 2025, 13, 2624. https://doi.org/10.3390/math13162624
Liu Q, Li D. Global Existence for the Cauchy Problem of the Parabolic–Parabolic–ODE Chemotaxis Model with Indirect Signal Production on the Plane. Mathematics. 2025; 13(16):2624. https://doi.org/10.3390/math13162624
Chicago/Turabian StyleLiu, Qian, and Dan Li. 2025. "Global Existence for the Cauchy Problem of the Parabolic–Parabolic–ODE Chemotaxis Model with Indirect Signal Production on the Plane" Mathematics 13, no. 16: 2624. https://doi.org/10.3390/math13162624
APA StyleLiu, Q., & Li, D. (2025). Global Existence for the Cauchy Problem of the Parabolic–Parabolic–ODE Chemotaxis Model with Indirect Signal Production on the Plane. Mathematics, 13(16), 2624. https://doi.org/10.3390/math13162624