On Solvability of Some Inverse Problems for a Pseudoparabolic Equation with Multiple Involution
Abstract
1. Introduction
2. Statement of Problems
3. Information on the Spectral Problem and Convergence of Fourier Series
4. Uniqueness and Existence of a Solution to Problem 1
5. Uniqueness and Existence of a Solution to Problem 2
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Al-Salti, N.; Kerbal, S.; Kirane, M. Initial-boundary value problems for a time-fractional differential equation with involution perturbation. Math. Model. Nat. Phenom. 2019, 14, 312. [Google Scholar] [CrossRef]
- Al-Salti, N.; Kirane, M.; Torebek, B. On a class of inverse problems for a heat equation with involution perturbation. Hacet. J. Math. Stat. 2019, 48, 669–681. [Google Scholar] [CrossRef]
- Ashyralyev, A.; Ibrahim, S.; Hincal, E. Absolutely stable difference scheme for the delay partial differential equation with involution and Robin boundary condition. Bull. Karaganda Univ. Math. Ser. 2024, 115, 55–65. [Google Scholar] [CrossRef]
- Ashyralyev, A.; Ashyralyev, M.; Batyrova, O. A note on the telegraph type differential equation with time involution. Adv. Math. Model. Appl. 2024, 9, 173–192. [Google Scholar] [CrossRef]
- Baranetskij, Y.O.; Demkiv, I.I.; Kaleniuk, P.I. Inverse problems of determination of the time-dependent coefficient of a parabolic equation with involution and antiperiodicity conditions. J. Math. Sci. 2024, 282, 699–717. [Google Scholar] [CrossRef]
- Benabbes, F.; Boussetila, N.; Lakhdari, A. The modified fractional-order quasi-reversibility method for a class of direct and inverse problems governed by time-fractional heat equations with involution perturbation. Math. Methods Appl. Sci. 2024, 47, 9524–9555. [Google Scholar] [CrossRef]
- Kirane, M.; Sarsenbi, A.A. Solvability of mixed problems for a fourth-order equation with involution and fractional derivative. Fractal Fract. 2023, 7, 131. [Google Scholar] [CrossRef]
- Mussirepova, E.; Sarsenbi, A.A.; Sarsenbi, A.M. Solvability of mixed problems for the wave equation with reflection of the argument. Math. Methods Appl. Sci. 2022, 45, 11262–11271. [Google Scholar] [CrossRef]
- Mussirepova, E.; Sarsenbi, A.; Sarsenbi, A. The inverse problem for the heat equation with reflection of the argument and with a complex coefficient. Bound. Value Probl. 2022, 2022, 99. [Google Scholar] [CrossRef]
- Sarsenbi, A.A.; Sarsenbi, A.M. Boundary value problems for a second-order differential equation with involution in the second derivative and their solvability. AIMS Math. 2023, 8, 26275–26289. [Google Scholar] [CrossRef]
- Showalter, R.E.; Ting, T.W. Pseudoparabolic partial differential equations. SIAM J. Math. Anal. 1970, 1, 1–26. [Google Scholar] [CrossRef]
- Dodd, R.K.; Eilbeck, J.C.; Gibbon, J.D.; Morris, H.C. Solitons and Nonlinear Wave Equations; Academic Press: New York, NY, USA, 1982. [Google Scholar] [CrossRef]
- Nakhushev, A.M. Uravneniya Matematicheskoy Biologii; Vysshaya Shkola: Moskow, Russia, 1995. (In Russian) [Google Scholar]
- Aitzhanov, S.E.; Issakhov, A.A.; Kassymbekova, A.S.; Abdikalikova, Z.T. Solvability of inverse problem of a pseudoparabolic equation with fractional Caputo derivative. J. Math. Mech. Comput. Sci. 2024, 124, 3–25. [Google Scholar] [CrossRef]
- Aitzhanov, S.; Bekenayeva, K.; Abdikalikova, Z. Boundary Value Problem for a Loaded Pseudoparabolic Equation with a Fractional Caputo Operator. Mathematics 2023, 11, 3987. [Google Scholar] [CrossRef]
- Coleman, B.D.; Duffin, R.J.; Mizel, V.J. Instability, uniqueness, and nonexistence theorems for the equation on a strip. Arch. Rat. Mech. Anal. 1965, 19, 100–116. [Google Scholar] [CrossRef]
- Colton, D.L. Pseudoparabolic equations in one space variable. J. Differ. Equ. 1972, 12, 559–565. [Google Scholar] [CrossRef]
- Colton, D.L. Anosov flows with stable and unstable differentiable distributions. J. Differ. Equ. 1973, 13, 506–522. [Google Scholar] [CrossRef]
- Cuesta, E.; Ponce, R. Abstract fractional linear pseudo-parabolic equations in Banach spaces: Well-posedness, regularity, and asymptotic behavior. Fract. Calc. Appl. Anal. 2022, 25, 2332–2355. [Google Scholar] [CrossRef]
- Dekhkonov, F. On a boundary control problem for a pseudo-parabolic equation. Commun. Anal. Mech. 2023, 15, 289–299. [Google Scholar] [CrossRef]
- Dekhkonov, F. On one boundary control problem for a pseudo-parabolic equation in a two-dimensional domain. Commun. Anal. Mech. 2025, 17, 1–14. [Google Scholar] [CrossRef]
- Huntul, M.J.; Khompysh, K.; Shazyndayeva, M.K.; Iqbal, M.K. An inverse source problem for a pseudoparabolic equation with memory. AIMS Math. 2024, 9, 14186–14212. [Google Scholar] [CrossRef]
- Kozhanov, A.I. To the Question of the Solvability of the Ionkin Problem for Partial Differential Equations. Mathematics 2024, 12, 487. [Google Scholar] [CrossRef]
- Mehraliyev, Y.; Allahverdiyeva, S.; Ramazanova, A. On one coefficient inverse boundary value problem for a linear pseudoparabolic equation of the fourth order. AIMS Math. 2023, 8, 2622–2633. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Hammouch, Z.; Karapinar, E.; Tuan, N.H. On a nonlocal problem for a Caputo time-fractional pseudoparabolic equation. Math. Methods Appl. Sci. 2021, 44, 14791–14806. [Google Scholar] [CrossRef]
- Rundell, W. The construction of solutions to pseudoparabolic equations noncylindrical domains. J. Differ. Equ. 1978, 28, 394–404. [Google Scholar] [CrossRef]
- Stecher, M.; Rundell, W. Maximum principles for pseudoparabolic partial differential equations. J. Math. Anal. Appl. 1977, 57, 110–118. [Google Scholar] [CrossRef]
- Ting, T.W. Parabolic and pseudo-parabolic partial differential equations. J. Math. Soc. Jpn. 1969, 21, 440–453. [Google Scholar] [CrossRef]
- Khompysh, K.; Huntul, M.J.; Shazyndayeva, M.K.; Iqbal, M.K. An inverse problem for pseudoparabolic equation: Existence, uniqueness, stability, and numerical analysis. Quaest. Math. 2024, 47, 1979–2001. [Google Scholar] [CrossRef]
- Koleva, M.N.; Vulkov, L.G. The Numerical Solution of an Inverse Pseudoparabolic Problem with a Boundary Integral Observation. Mathematics 2025, 13, 908. [Google Scholar] [CrossRef]
- Huntul, M.J.; Tekin, I.; Iqbal, M.K.; Abbas, M. An inverse problem of recovering the heat source coefficient in a fourth-order time-fractional pseudo-parabolic equation. J. Comput. Appl. Math. 2024, 442, 115712. [Google Scholar] [CrossRef]
- Yang, F.; Xu, J.M.; Li, X.X. Regularization methods for identifying the initial value of time fractional pseudo-parabolic equation. Calcolo 2022, 59, 47. [Google Scholar] [CrossRef]
- Huntul, M.J.; Tamsir, M.; Dhiman, N. An inverse problem of identifying the time-dependent potential in a fourth-order pseudo-parabolic equation from additional condition. Numer. Meth. Part. DE. 2023, 39, 848–865. [Google Scholar] [CrossRef]
- Mondal, S. On backward fractional pseudo parabolic equation: Regularization by quasi-boundary value method, convergence rates. Proc.-Math. Sci. 2024, 134, 5. [Google Scholar] [CrossRef]
- Benabbes, F.; Boussetila, N.; Lakhdari, A. Two regularization methods for a class of inverse fractional pseudo–parabolic equations with involution perturbation. Fract. Differ. Calc. 2024, 14, 39–59. [Google Scholar] [CrossRef]
- Dekhkonov, F.N. On the boundary control problem for a pseudo-parabolic equation with involution. Eurasian J. Math. Comput. Appl. 2024, 12, 22–34. [Google Scholar] [CrossRef]
- Liang, Y.Q.; Yang, F.; Li, X.X. A hybrid regularization method for identifying the source term and the initial value simultaneously for fractional pseudo-parabolic equation with involution. Numer. Algorithms 2025, 99, 2063–2095. [Google Scholar] [CrossRef]
- Serikbaev, D. Inverse problem for fractional order pseudo-parabolic equation with involution. Ufa Math. J. 2020, 12, 122–138. [Google Scholar] [CrossRef]
- Turmetov, B.; Karachik, V. On solvability of some inverse problems for a nonlocal fourth-order parabolic equation with multiple involution. AIMS Math. 2024, 9, 6832–6849. [Google Scholar] [CrossRef]
- Turmetov, B.; Koshanova, M.; Muratbekova, M.; Orazov, I. Direct and inverse problems for a fractional parabolic equation with multiple involution. Fract. Differ. Calc. 2024, 14, 213–233. [Google Scholar] [CrossRef]
- Turmetov, B.; Karacik, V.V. On eigenfunctions and eigenvalues of a nonlocal Laplace operator with multiple involution. Symmetry 2021, 13, 1781. [Google Scholar] [CrossRef]
- Il’ln, V.A. The solvability of mixed problems for hyperbolic and parabolic equations. Russ. Math. Surv. 1960, 15, 85–142. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koshanova, M.; Nazarova, K.; Turmetov, B.; Usmanov, K. On Solvability of Some Inverse Problems for a Pseudoparabolic Equation with Multiple Involution. Mathematics 2025, 13, 2587. https://doi.org/10.3390/math13162587
Koshanova M, Nazarova K, Turmetov B, Usmanov K. On Solvability of Some Inverse Problems for a Pseudoparabolic Equation with Multiple Involution. Mathematics. 2025; 13(16):2587. https://doi.org/10.3390/math13162587
Chicago/Turabian StyleKoshanova, Maira, Kulzina Nazarova, Batirkhan Turmetov, and Kairat Usmanov. 2025. "On Solvability of Some Inverse Problems for a Pseudoparabolic Equation with Multiple Involution" Mathematics 13, no. 16: 2587. https://doi.org/10.3390/math13162587
APA StyleKoshanova, M., Nazarova, K., Turmetov, B., & Usmanov, K. (2025). On Solvability of Some Inverse Problems for a Pseudoparabolic Equation with Multiple Involution. Mathematics, 13(16), 2587. https://doi.org/10.3390/math13162587