Fick’s Law Algorithm Enhanced with Opposition-Based Learning
Abstract
1. Introduction
- A novel metaheuristic framework based on the FLA that leverages Opposition-Based Learning (FLA-OBL) to achieve faster convergence, enhanced solution quality, and greater adaptability in both synthetic benchmarks (CEC2017) and real-world optimization applications.
- A thorough evaluation of FLA-OBL, including computational complexity, ablation analysis, convergence analysis, Dynamic Fitness Landscape Analysis, and computational comparison in CEC2017 with eight state-of-the-art metaheuristic algorithms. All of the above results were justified through statistical analysis.
- Integration of fuzzy logic to FLA-OBL (FFLA-OBL) and the Mamdani Fuzzy Inference System to generate balanced solutions among multiple contradicting objectives.
- Examine in proof-of-concept multi-objective path planning scenarios (minimization of traveled distance, collision risk, and path curvature) the effectiveness of FFLA-OBL compared to the baseline FLA.
2. Materials and Methods
2.1. Fick’s Law Algorithm (FLA)
2.1.1. Diffusion Operator
2.1.2. Equilibrium Operator
2.1.3. Steady-State Operator
2.2. Opposition-Based Learning (OBL)
2.3. Fick’s Law Algorithm Enhanced with Opposition-Based Learning (FLA-OBL)
Algorithm 1 FLA-OBL algorithm |
1: Initialization phase 2: initialize parameters 3: initialize the population 4: Clustering: Divide population into two groups 5: for do 6: create the opposite molecules in group : (where U and L are upper and lower bounds, respectively) 7: compute the fitness function for each module and its opposite in the group 8: compare and its opposite and keep the best one 9: find the best molecule in each group and the global optimum 10: end for 11: while do 12: if then (Diffusion Operator) 13: Calculate the direction of flow (Eq.3) 14: Calculate the number of moving particles to region (Eq.4) 15: Update particle position (Eq.5) 16: Update rest particles in same region (Eq.11) 17: Update particles in other region (Eq.12) 18: end if 19: if then (Equilibrium Operator) 20: Calculate Diffusion Rate Factor of each group region (Eq.13) 21: Calculate Group Relative Quantity (Eq.17) 22: Update particle position (Eq.18) 23: end if 24: if then (Steady State Operator) 25: Calculate Diffusion Rate Factor (Eq.20) 26: Calculate Motion Step Factor (Eq.24) 27: Update particle position (Eq.25) 28: end if 29: for do 30: Calculate opposite molecules in each group region 31: Compare the fitness score of each molecule with its opposite and keep the best 32: end for 33: Update FES 34: Find current best optimum and update global optimum 35: end while 36: Return best solution |
2.3.1. Population Initialization of FLA with OBL
2.3.2. Population Update of FLA with OBL
2.4. Fick’s Law Algorithm Enhanced with Fuzzy Logic and Opposition-Based Learning (FFLA-OBL)
3. Mathematical Modeling of UAV Multi-Objective Path Planning Problem
3.1. Mathematical Formulation of the Problem
3.1.1. Traveled Distance
3.1.2. Path Curvature
3.1.3. Collision Risk
3.2. Mamdani Fuzzy Inference System for the Fuzzy FLA-OBL (FFLA-OBL)
4. Experimental Verification
4.1. Ablation Analysis
- FLA: The original algorithm without OBL;
- FLA-OBLinit: OBL applied only during the initial population generation;
- FLA-OBLupdate: OBL applied only during the population update phase;
- FLA-OBL: OBL applied in both initialization and update.
4.2. Testbed for Computational Analysis of FLA-OBL
4.3. Convergence and Fitness Landscape Analyses
4.4. Evaluation Metrics for the UAV Multi-Objective Path Planning with FFLA-OBL
- The objective criteria: (i) traveled distance, (ii) path’s curvature, and (iii) safety, each reflecting critical aspects of path efficiency and feasibility.
- Path quality based on the defuzzification value of the Mamdani FIS (fuzzy evaluation).
- The relative percentage deviation (RPD), quantifying each algorithm’s deviation from the best-known solutions:
5. Results
5.1. Results of Ablation Analysis
5.2. CEC2017 Testbed
5.3. Convergence Velocity and Fitness Landscape Analyses
5.4. MOO UAV Path Planning
6. Discussion
7. Conclusions and Future Work
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, J.; Zhang, J. Exploration-Exploitation Tradeoffs in Metaheuristics: Survey and Analysis. In Proceedings of the 33rd Chinese Control Conference, Nanjing, China, 28–30 July 2014; pp. 8633–8638. [Google Scholar]
- Črepinšek, M.; Liu, S.-H.; Mernik, M. Exploration and Exploitation in Evolutionary Algorithms: A Survey. ACM Comput. Surv. 2013, 45, 1–33. [Google Scholar] [CrossRef]
- Hussain, K.; Salleh, M.N.M.; Cheng, S.; Shi, Y. On the Exploration and Exploitation in Popular Swarm-Based Metaheuristic Algorithms. Neural Comput. Appl. 2019, 31, 7665–7683. [Google Scholar] [CrossRef]
- Cuevas, E.; Diaz, P.; Camarena, O. Experimental Analysis Between Exploration and Exploitation. In Metaheuristic Computation: A Performance Perspective; Cuevas, E., Diaz, P., Camarena, O., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 249–269. ISBN 978-3-030-58100-8. [Google Scholar]
- Tizhoosh, H.R. Opposition-Based Learning: A New Scheme for Machine Intelligence. In Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 28–30 November 2005; Volume 1, pp. 695–701. [Google Scholar]
- Mahdavi, S.; Rahnamayan, S.; Deb, K. Opposition Based Learning: A Literature Review. Swarm Evol. Comput. 2018, 39, 1–23. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Z.; Rahnamayan, S.; Liu, Y.; Ventresca, M. Enhancing Particle Swarm Optimization Using Generalized Opposition-Based Learning. Inf. Sci. 2011, 181, 4699–4714. [Google Scholar] [CrossRef]
- Abedi, M.; Gharehchopogh, F.S. An Improved Opposition Based Learning Firefly Algorithm with Dragonfly Algorithm for Solving Continuous Optimization Problems. Intell. Data Anal. 2020, 24, 309–338. [Google Scholar] [CrossRef]
- Oliva, D.; Elaziz, M.A. An Improved Brainstorm Optimization Using Chaotic Opposite-Based Learning with Disruption Operator for Global Optimization and Feature Selection. Soft Comput. 2020, 24, 14051–14072. [Google Scholar] [CrossRef]
- Adegboye, O.R.; Feda, A.K.; Ojekemi, O.S.; Agyekum, E.B.; Hussien, A.G.; Kamel, S. Chaotic Opposition Learning with Mirror Reflection and Worst Individual Disturbance Grey Wolf Optimizer for Continuous Global Numerical Optimization. Sci. Rep. 2024, 14, 4660. [Google Scholar] [CrossRef]
- Karimzadeh Parizi, M.; Keynia, F.; Khatibi Bardsiri, A. OWMA: An Improved Self-Regulatory Woodpecker Mating Algorithm Using Opposition-Based Learning and Allocation of Local Memory for Solving Optimization Problems. J. Intell. Fuzzy Syst. 2021, 40, 919–946. [Google Scholar] [CrossRef]
- Biswas, S.; Shaikh, A.; Ezugwu, A.E.-S.; Greeff, J.; Mirjalili, S.; Bera, U.K.; Abualigah, L. Enhanced Prairie Dog Optimization with Levy Flight and Dynamic Opposition-Based Learning for Global Optimization and Engineering Design Problems. Neural Comput. Appl. 2024, 36, 11137–11170. [Google Scholar] [CrossRef]
- Hashim, F.A.; Mostafa, R.R.; Hussien, A.G.; Mirjalili, S.; Sallam, K.M. Fick’s Law Algorithm: A Physical Law-Based Algorithm for Numerical Optimization. Knowl. Based Syst. 2023, 260, 110146. [Google Scholar] [CrossRef]
- Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M. Opposition-Based Differential Evolution (ODE) with Variable Jumping Rate. In Proceedings of the 2007 IEEE Symposium on Foundations of Computational Intelligence, Honolulu, HI, USA, 1–5 April 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 81–88. [Google Scholar]
- Xu, Q.; Wang, L.; Wang, N.; Hei, X.; Zhao, L. A Review of Opposition-Based Learning from 2005 to 2012. Eng. Appl. Artif. Intell. 2014, 29, 1–12. [Google Scholar] [CrossRef]
- Harliana, P.; Rahim, R. Comparative Analysis of Membership Function on Mamdani Fuzzy Inference System for Decision Making. J. Phys. Conf. Ser. 2017, 930, 012029. [Google Scholar] [CrossRef]
- Ntakolia, C.; Lyridis, D.V. A n − D Ant Colony Optimization with Fuzzy Logic for Air Traffic Flow Management. Oper. Res. 2022, 22, 5035–5053. [Google Scholar] [CrossRef]
- Ntakolia, C.; Platanitis, K.S.; Kladis, G.P.; Skliros, C.; Zagorianos, A.D. A Genetic Algorithm Enhanced with Fuzzy-Logic for Multi-Objective Unmanned Aircraft Vehicle Path Planning Missions*. In Proceedings of the 2022 International Conference on Unmanned Aircraft Systems (ICUAS), Dubrovnik, Croatia, 21–24 June 2022; pp. 114–123. [Google Scholar]
- Ntakolia, C.; Lyridis, D.V. A Swarm Intelligence Graph-Based Pathfinding Algorithm Based on Fuzzy Logic (SIGPAF): A Case Study on Unmanned Surface Vehicle Multi-Objective Path Planning. J. Mar. Sci. Eng. 2021, 9, 1243. [Google Scholar] [CrossRef]
- Ntakolia, C.; Kladis, G.P.; Lyridis, D.V. A Fuzzy Logic Approach of Pareto Optimality for Multi-Objective Path Planning in Case of Unmanned Surface Vehicle. J. Intell. Robot. Syst. 2023, 109, 21. [Google Scholar] [CrossRef]
- Ntakolia, C.; Lyridis, D.V. A Comparative Study on Ant Colony Optimization Algorithm Approaches for Solving Multi-Objective Path Planning Problems in Case of Unmanned Surface Vehicles. Ocean Eng. 2022, 255, 111418. [Google Scholar] [CrossRef]
- Hamam, A.; Georganas, N.D. A Comparison of Mamdani and Sugeno Fuzzy Inference Systems for Evaluating the Quality of Experience of Hapto-Audio-Visual Applications. In Proceedings of the 2008 IEEE International Workshop on Haptic Audio visual Environments and Games, Ottawa, ON, Canada, 18–19 October 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 87–92. [Google Scholar]
- Bagis, A.; Konar, M. Comparison of Sugeno and Mamdani Fuzzy Models Optimized by Artificial Bee Colony Algorithm for Nonlinear System Modelling. Trans. Inst. Meas. Control 2016, 38, 579–592. [Google Scholar] [CrossRef]
- Singla, J. Comparative Study of Mamdani-Type and Sugeno-Type Fuzzy Inference Systems for Diagnosis of Diabetes. In Proceedings of the 2015 International Conference on Advances in Computer Engineering and Applications, Ghaziabad, India, 19–20 March 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 517–522. [Google Scholar]
- Floudas, C.A.; Pardalos, P.M. A Collection of Test Problems for Constrained Global Optimization Algorithms; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1990; ISBN 978-3-540-53032-9. [Google Scholar]
- Jamil, M.; Yang, X.S. A Literature Survey of Benchmark Functions for Global Optimisation Problems. Int. J. Math. Model. Numer. Optim. 2013, 4, 150. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, H.; Heidari, A.A.; Gandomi, A.H. Hunger Games Search: Visions, Conception, Implementation, Deep Analysis, Perspectives, and towards Performance Shifts. Expert Syst. Appl. 2021, 177, 114864. [Google Scholar] [CrossRef]
- Gao, S.; Yu, Y.; Wang, Y.; Wang, J.; Cheng, J.; Zhou, M. Chaotic Local Search-Based Differential Evolution Algorithms for Optimization. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 3954–3967. [Google Scholar] [CrossRef]
- Abadi, M.Q.H.; Rahmati, S.; Sharifi, A.; Ahmadi, M. HSSAGA: Designation and Scheduling of Nurses for Taking Care of COVID-19 Patients Using Novel Method of Hybrid Salp Swarm Algorithm and Genetic Algorithm. Appl. Soft Comput. 2021, 108, 107449. [Google Scholar] [CrossRef]
- Lynn, N.; Suganthan, P.N. Ensemble Particle Swarm Optimizer. Appl. Soft Comput. 2017, 55, 533–548. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Ntakolia, C.; Koutsiou, D.-C.C.; Iakovidis, D.K. Emotion-Aware Brain Storm Optimization. Memetic Comput. 2023, 15, 405–450. [Google Scholar] [CrossRef]
- Mashwani, W.K.; Shah, H.; Kaur, M.; Bakar, M.A.; Miftahuddin, M. Large-Scale Bound Constrained Optimization Based on Hybrid Teaching Learning Optimization Algorithm. Alex. Eng. J. 2021, 60, 6013–6033. [Google Scholar] [CrossRef]
- Wu, G.; Mallipeddi, R.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained Real-Parameter Optimization. In National University of Defense Technology, Changsha, Hunan, PR China and Kyungpook National University, Daegu, South Korea and Nanyang Technological University, Singapore, Technical Report; 2017, pp. 1–18. Available online: https://www.cec2017.org/ (accessed on 18 July 2025).
- Ma, L.; Cheng, S.; Shi, Y. Enhancing Learning Efficiency of Brain Storm Optimization via Orthogonal Learning Design. IEEE Trans. Syst. Man Cybern. Syst. 2020, 51, 6723–6742. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Xu, C.; Zhan, Y.; Chen, K. A Novel Hybrid Firefly Algorithm with Double-Level Learning Strategy. Mathematics 2023, 11, 3569. [Google Scholar] [CrossRef]
- Biedrzycki, R. Handling Bound Constraints in CMA-ES: An Experimental Study. Swarm Evol. Comput. 2020, 52, 100627. [Google Scholar] [CrossRef]
- Hussain, K.; Salleh, M.N.M.; Cheng, S.; Naseem, R. Common Benchmark Functions for Metaheuristic Evaluation: A Review. JOIV Int. J. Inform. Vis. 2017, 1, 218–223. [Google Scholar] [CrossRef]
- Sun, Y.; Kirley, M.; Halgamuge, S.K. A Recursive Decomposition Method for Large Scale Continuous Optimization. IEEE Trans. Evol. Comput. 2017, 22, 647–661. [Google Scholar] [CrossRef]
- Derrac, J.; García, S.; Molina, D.; Herrera, F. A Practical Tutorial on the Use of Nonparametric Statistical Tests as a Methodology for Comparing Evolutionary and Swarm Intelligence Algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [Google Scholar] [CrossRef]
- Carrasco, J.; García, S.; Rueda, M.; Das, S.; Herrera, F. Recent Trends in the Use of Statistical Tests for Comparing Swarm and Evolutionary Computing Algorithms: Practical Guidelines and a Critical Review. Swarm Evol. Comput. 2020, 54, 100665. [Google Scholar] [CrossRef]
- Naik, A.; Satapathy, S.C. A Comparative Study of Social Group Optimization with a Few Recent Optimization Algorithms. Complex Intell. Syst. 2021, 7, 249–295. [Google Scholar] [CrossRef]
- Cheng, S.; Shi, Y.; Qin, Q.; Zhang, Q.; Bai, R. Population Diversity Maintenance In Brain Storm Optimization Algorithm. J. Artif. Intell. Soft Comput. Res. 2014, 4, 83–97. [Google Scholar] [CrossRef]
- Ntakolia, C.; Moustakidis, S.; Siouras, A. Autonomous Path Planning with Obstacle Avoidance for Smart Assistive Systems. Expert Syst. Appl. 2023, 213, 119049. [Google Scholar] [CrossRef]
- Ntakolia, C.; Iakovidis, D.K. A Swarm Intelligence Graph-Based Pathfinding Algorithm (SIGPA) for Multi-Objective Route Planning. Comput. Oper. Res. 2021, 133, 105358. [Google Scholar] [CrossRef]
- Wang, M.; Li, B.; Zhang, G.; Yao, X. Population Evolvability: Dynamic Fitness Landscape Analysis for Population-Based Metaheuristic Algorithms. IEEE Trans. Evol. Comput. 2017, 22, 550–563. [Google Scholar] [CrossRef]
- Naderi, B.; Zandieh, M.; Roshanaei, V. Scheduling Hybrid Flowshops with Sequence Dependent Setup Times to Minimize Makespan and Maximum Tardiness. Int. J. Adv. Manuf. Technol. 2009, 41, 1186–1198. [Google Scholar] [CrossRef]
- Sadeghi, J.; Mousavi, S.M.; Niaki, S.T.A.; Sadeghi, S. Optimizing a Multi-Vendor Multi-Retailer Vendor Managed Inventory Problem: Two Tuned Meta-Heuristic Algorithms. Knowl. Based Syst. 2013, 50, 159–170. [Google Scholar] [CrossRef]
Steps | FLA Complexity | FLA-OBL Complexity |
---|---|---|
Initialization:
| - - | (sorted) |
Each iteration:
| - - | |
Total complexity:
| ||
Time complexity |
Advantages | Limitations |
---|---|
Improved Exploration: OBL enhances the diversity of the population by considering both candidate solutions and their opposites, helping escape local optima and better explore the search space. | Parameter Sensitivity: The performance of OBL can be sensitive to how the opposite solutions are generated (e.g., boundary definitions), which may require tuning. |
Faster Convergence: The directional nature of the FLA combined with OBL often leads to faster convergence compared to standard variants, particularly on unimodal and low–medium-complexity problems. | Increased Computational Cost: OBL adds extra evaluations (opposite candidates) during initialization and updates, potentially increasing runtime, especially in high-dimensional problems. |
Robust Performance across Benchmarks: As observed in ablation studies, FLA-OBL consistently outperforms the baseline FLA and current metaheuristics (Section 5). | Redundant Opposites in Late Stages: Applying OBL too frequently in later stages might become redundant or even counterproductive, disrupting convergence. |
Simple to Implement: OBL is easy to incorporate into the initialization and update stages without significantly altering the FLA’s core mechanism. | Lack of Adaptive Control: Static application of OBL (always applying it at the same frequency/intensity) may not be optimal across all problems or stages of optimization. |
Statistically Significant Improvements: Empirical results, backed by statistical tests (e.g., Wilcoxon signed-rank), show meaningful performance gains over the standard version (Section 5). |
Fuzzy Rules | Distance | Curvature | Collision Risk | Path Quality |
---|---|---|---|---|
Rule 1 | Short | Smooth | Low | Very High |
Rule 2 | Short | Smooth | Medium | Very High |
Rule 3 | Short | Adequate | Low | Very High |
Rule 4 | Moderate | Smooth | Low | Very High |
Rule 5 | Short | Smooth | High | High |
Rule 6 | Short | Adequate | Medium | High |
Rule 7 | Short | Brut | Low | High |
Rule 8 | Moderate | Smooth | Medium | High |
Rule 9 | Moderate | Adequate | Low | High |
Rule 10 | Long | Smooth | Low | High |
Rule 11 | Short | Adequate | High | Medium |
Rule 12 | Short | Brut | Medium | Medium |
Rule 13 | Short | Brut | High | Medium |
Rule 14 | Moderate | Smooth | High | Medium |
Rule 15 | Moderate | Adequate | Medium | Medium |
Rule 16 | Moderate | Brut | Low | Medium |
Rule 17 | Long | Smooth | Medium | Medium |
Rule 18 | Long | Smooth | High | Medium |
Rule 19 | Long | Adequate | Low | Medium |
Rule 20 | Long | Brut | Low | Medium |
Rule 21 | Moderate | Adequate | High | Low |
Rule 22 | Moderate | Brut | Medium | Low |
Rule 23 | Moderate | Brut | High | Low |
Rule 24 | Long | Adequate | Medium | Low |
Rule 25 | Long | Adequate | High | Low |
Rule 26 | Long | Brut | Medium | Low |
Rule 27 | Long | Brut | High | Very Low |
Function | Characteristics |
---|---|
Sphere | Unimodal, convex, continuous, smooth, simple landscape; good for testing convergence speed. |
Rastrigin | Highly multimodal with many local minima; non-convex; tests exploration and avoidance of premature convergence. |
Ackley | Multimodal with a nearly flat outer region and a large hole at the center; tests global search ability. |
Griewank | Multimodal with many widespread local minima; challenging due to interactions between variables. |
Rosenbrock | Non-convex with a narrow, parabolic-shaped flat valley; tests ability to navigate a curved search space. |
Schwefel | Highly multimodal with many local minima; global minimum far from origin; tests exploration and robustness. |
Zakharov | Unimodal but with high conditioning; tests convergence precision in ill-conditioned problems. |
Michalewicz | Highly multimodal and deceptive; contains deep valleys and steep ridges; challenging for exploitation. |
Levy | Multimodal with complex structure; tests ability to explore and exploit complex landscapes effectively. |
Algorithm | Year | Category | Source |
---|---|---|---|
CJADE | 2021 | Hybrid DE/physics-Inspired | [29] |
HSSAHHO | 2022 | Hybrid swarm intelligence/nature-Inspired | [30] |
EPSO | 2017 | Nature-Inspired | [31] |
FLA | 2023 | Physics-Inspired | [13] |
HGS | 2021 | Swarm intelligence with stochastic elements | [28] |
WOA | 2016 | Nature-Inspired | [32] |
EBO | 2023 | Hybrid swarm intelligence/physics-Inspired | [33] |
HTBLO | 2021 | Other hybrid learning algorithm | [34] |
Function | FLA | FLA-OBLinit | FLA-OBLupdate | FLA-OBL |
---|---|---|---|---|
Sphere | 1.20 × 10−7 | 3.80 × 10−8 * | 2.70 × 10−9 * | 2.10 × 10−10 * |
Rastrigin | 1.50 × 10−4 | 6.90 × 10−5 * | 9.10 × 10−6 * | 3.72 × 10−7 * |
Ackley | 9.50 × 10−2 | 3.20 × 10−3 * | 2.10 × 10−5 * | 1.10 × 10−7 * |
Griewank | 1.80 × 10−6 | 4.10 × 10−7 * | 1.04 × 10−7 * | 6.60 × 10−8 * |
Rosenbrock | 4.45 × 10−8 | 1.34 × 10−8 * | 2.47 × 10−9 * | 2.39 × 10−11 * |
Schwefel | 3.77 × 10−5 | 2.85 × 10−5 * | 1.93 × 10−7 * | 1.55 × 10−8 * |
Zakharov | 2.50 × 10−2 | 7.90 × 10−3 * | 6.20 × 10−3 * | 1.10 × 10−3 * |
Michalewicz | −1.22 × 10−2 | −1.35 × 10−3 * | −1.42 × 10−4 * | −1.56 × 10−5 * |
Levy | 1.84 × 10−4 | 3.91 × 10−5 * | 1.65 × 10−5 * | 4.33 × 10−6 * |
Algorithms | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Function | FLA-OBL | EBO | CJADE | HTLBO | HSSAHHO | EPSO | FLA | HGS | WOA | |
F1 | Mean Std MWU Rank | 1.37 × 10+02 6.76 × 10+01 1 | 1.74 × 10+02 1.85 × 10+02 2 | 1.48 × 10−14 3.98 × 10−15 3 | 3.22 × 10+03 3.70 × 10+03 8 | 3.03 × 10+05 1.20 × 10+08 5 | 4.57 × 10+02 5.98 × 10+02 4 | 3.61 × 10+03 4.60 × 10+03 6 | 7.04+03 4.85 × 10+03 7 | 2.29 × 10+06 1.45 × 10+06 9 |
F3 | Mean Std MWU Rank | 2.17 × 10+02 1.48 × 10+02 2 | 3.94 × 10+02 3.22 × 10+02 4 | 4.52 × 10+03 1.26 × 10+04 8 | 3.00 × 10+02 2.50 × 10−05 1 | 1.02 × 10+03 1.54 × 10+03 7 | 4.68 × 10−08 1.27 × 10−07 5 | 2.17 × 10+02 1.73 × 10+02 3 | 9.01 × 10+02 2.87 × 10+03 6 | 1.36 × 10+05 6.08 × 10+04 9 |
F4 | Mean Std MWU Rank | 4.54 × 10+02 2.97 × 10+01 1 | 4.59 × 10+02 1.99 × 10+01 2 | 3.96 × 10+01 2.90 × 10+01 8 | 4.62 × 10+02 3.19 × 10+01 3 | 5.39 × 10+02 1.01 × 10+01 4 | 3.17 × 10+01 3.20 × 10+01 9 | 9.34 × 10+01 2.54 × 10+01 6 | 8.94 × 10+01 2.49 × 10+01 7 | 1.40 × 10+02 3.38 × 10+01 5 |
F5 | Mean Std MWU Rank | 3.71 × 10+02 2.17 × 10+01 3 | 6.04 × 10+02 3.15 × 10+01 1 | 2.59 × 10+01 3.85 × 10+00 8 | 6.07 × 10+02 2.01 × 10+01 2 | 1.28 × 10+01 7.43 × 10+00 9 | 5.20 × 10+01 1.19 × 10+01 6 | 4.32 × 10+01 1.17 × 10+01 7 | 1.12 × 10+02 3.12 × 10+01 5 | 2.40 × 10+02 5.05 × 10+01 4 |
F6 | Mean Std MWU Rank | 6.32 × 10+02 5.33 × 10+00 2 | 6.46 × 10+02 7.35 × 10+00 3 | 1.18 × 10−13 2.23 × 10−14 9 | 6.19 × 10+02 6.17 × 10+00 1 | 1.02 × 10+03 1.98 × 10+02 5 | 1.93 × 10−08 1.01 × 10−07 8 | 7.82 × 10−03 2.13 × 10−03 7 | 5.46 × 10−01 7.37 × 10−01 +/* 6 | 6.53 × 10+01 1.03 × 10+01 4 |
F7 | Mean Std MWU Rank | 8.77 × 10+02 8.10 × 10+01 1 | 9.45 × 10+02 7.80 × 10+01 +/* 4 | 5.49 × 10+01 4.05 × 10+00 9 | 8.91 × 10+02 4.80 × 10+02 2 | 1.01 × 10+03 4.72 × 10+01 5 | 9.45 × 10+01 1.41 × 10+01 7 | 7.81 × 10+01 1.16 × 10+01 8 | 1.64 × 10+02 4.28 × 10+01 +/* 6 | 4.99 × 10+02 1.06 × 10+02 +/* 3 |
F8 | Mean Std MWU Rank | 8.70 × 10+02 1.24 × 10+01 1 | 8.95 × 10+02 1.58 × 10+01 3 | 2.60 × 10+01 3.78 × 10+00 7 | 8.81 × 10+02 1.64 × 10+02 2 | 6.26 × 10+03 1.19 × 10+03 9 | 5.61 × 10+01 1.55 × 10+01 6 | 4.15 × 10+01 1.13 × 10+01 8 | 1.04 × 10+02 1.70 × 10+01 5 | 2.16 × 10+02 4.28 × 10+01 4 |
F9 | Mean Std MWU Rank | 1.09 × 10+03 3.14 × 10+02 1 | 1.43 × 10+03 7.96 × 10+02 2 | 1.76 × 10−03 1.25 × 10−02 6 | 1.74 × 10+02 3.34 × 10+02 3 | 6.96 × 10+03 2.19 × 10+03 9 | 7.61 × 10+01 4.39 × 10+01 4 | 3.28 × 10+00 5.55 × 10+00 5 | 2.68 × 10+03 9.66 × 10+02 7 | 6.56 × 10+03 2.36 × 10+03 8 |
F10 | Mean Std MWU Rank | 2.64 × 10+03 5.52 × 10+02 5 | 4.56 × 10+03 5.73 × 10+02 +/* 6 | 1.92 × 10+03 2.54 × 10+02 2 | 4.74 × 10+02 7.85 × 10+02 1 | 1.14 × 10+05 8.85 × 10+04 9 | 5.23 × 10+03 3.34 × 10+02 8 | 2.62 × 10+03 5.22 × 10+02 4 | 2.55 × 10+03 4.81 × 10+02 3 | 4.89 × 10+03 7.76 × 10+02 7 |
F11 | Mean Std MWU Rank | 1.20 × 10+03 1.85 × 10+01 1 | 1.35 × 10+03 4.05 × 10+01 2 | 3.16 × 10+01 2.57 × 10+01 8 | 1.26 × 10+02 5.15 × 10+01 4 | 1.44 × 10+09 3.56 × 10+10 9 | 5.86 × 10+01 2.87 × 10+01 6 | 3.41 × 10+01 2.84 × 10+01 7 | 1.18 × 10+02 3.00 × 10+01 5 | 3.86 × 10+02 9.75 × 10+01 3 |
F12 | Mean Std MWU Rank | 2.91 × 10+04 1.30 × 10+04 4 | 1.41 × 10+06 8.30 × 10+05 7 | 1.37 × 10+03 9.43 × 10+02 1 | 2.17 × 10+04 1.43 × 10+04 2 | 3.32 × 10+09 5.04 × 10+09 9 | 2.86 × 10+04 1.37 × 10+04 3 | 5.61 × 10+05 5.01 × 10+05 5 | 9.30 × 10+05 7.21 × 10+05 6 | 4.19 × 10+07 2.95 × 10+07 8 |
F13 | Mean Std MWU Rank | 1.97 × 10+03 1.31 × 10+03 2 | 2.31 × 10+04 2.75 × 10+04 4 | 4.80 × 10+01 3.27 × 10+01 3 | 9.33 × 10+03 9.62 × 10+03 5 | 4.98 × 10+06 3.77 × 10+07 9 | 1.09 × 10+03 1.07 × 10+03 1 | 1.24 × 10+04 1.22 × 10+04 6 | 3.16 × 10+04 2.54 × 10+04 7 | 1.54 × 10+05 8.71 × 10+04 8 |
F14 | Mean Std MWU Rank | 4.85 × 10+03 2.35 × 10+03 4 | 3.73 × 10+03 4.20 × 10+03 3 | 2.73 × 10+03 5.19 × 10+03 2 | 1.54 × 10+03 4.49 × 10+02 1 | 1.50 × 10+09 1.21 × 10+09 9 | 5.95 × 10+03 8.67 × 10+03 5 | 1.03 × 10+04 1.49 × 10+04 6 | 5.45 × 10+04 4.29 × 10+04 7 | 8.10 × 10+05 8.21 × 10+05 8 |
F15 | Mean Std MWU Rank | 1.79 × 10+03 1.43 × 10+03 1 | 1.92 × 10+03 1.61 × 10+03 2 | 1.79 × 10+02 1.02 × 10+03 5 | 1.94 × 10+03 2.75 × 10+02 3 | 8.24 × 10+03 4.21 × 10+03 7 | 5.47 × 10+02 6.97 × 10+02 4 | 5.49 × 10+03 7.03 × 10+03 6 | 1.90 × 10+04 1.63 × 10+04 8 | 7.65 × 10+04 5.17 × 10+04 9 |
F16 | Mean Std MWU Rank | 1.08 × 10+03 3.75 × 10+02 1 | 2.87 × 10+03 2.27 × 10+02 7 | 4.57 × 10+02 1.59 × 10+02 5 | 2.87 × 10+03 2.43 × 10+02 8 | 4.06 × 10+04 1.27 × 10+06 9 | 6.38 × 10+02 2.13 × 10+02 4 | 3.71 × 10+02 1.59 × 10+02 6 | 1.06 × 10+03 3.74 × 10+02 2 | 1.87 × 10+03 4.15 × 10+02 3 |
F17 | Mean Std MWU Rank | 1.86 × 10+03 1.08 × 10+02 1 | 1.91 × 10+03 1.13 × 10+02 2 | 7.42 × 10+01 2.67 × 10+01 8 | 1.92 × 10+03 9.40 × 10+02 3 | 1.24 × 10+07 5.13 × 10+07 9 | 1.99 × 10+02 1.04 × 10+02 6 | 1.22 × 10+02 6.87 × 10+01 7 | 4.64 × 10+02 1.62 × 10+02 5 | 8.58 × 10+02 2.87 × 10+02 4 |
F18 | Mean Std MWU Rank | 2.48 × 10+03 3.72 × 10+04 1 | 3.32 × 10+03 2.25 × 10+04 2 | 6.72 × 10+03 3.52 × 10+04 4 | 3.77 × 10+03 2.18 × 10+02 3 | 1.53 × 10+08 6.09 × 10+08 9 | 1.04 × 10+05 8.99 × 10+04 5 | 1.71 × 10+05 1.39 × 10+05 6 | 2.40 × 10+05 2.17 × 10+05 7 | 2.79 × 10+06 2.17 × 10+06 8 |
F19 | Mean Std MWU Rank | 6.39 × 10+02 2.04 × 10+03 4 | 1.25 × 10+05 8.04 × 10+04 8 | 3.05 × 10+02 2.02 × 10+03 5 | 2.12 × 10+03 1.04 × 10+02 2 | 2.01 × 10+03 4.99 × 10+01 1 | 8.23 × 10+02 1.46 × 10+03 3 | 9.52 × 10+03 1.05 × 10+04 7 | 1.81 × 10+04 2.05 × 10+04 6 | 2.31 × 10+06 2.15 × 10+06 9 |
F20 | Mean Std Rank | 2.12 × 10+03 1.08 × 10+02 1 | 2.21 × 10+03 1.05 × 10+02 2 | 1.14 × 10+02 5.43 × 10+01 9 | 2.24 × 10+03 8.36 × 10+01 3 | 3.050 × 10+03 8.21 × 10+01 4 | 2.18 × 10+02 1.27 × 10+02 7 | 1.62 × 10+02 8.01 × 10+01 8 | 4.83 × 10+02 1.62 × 10+02 6 | 7.14 × 10+02 2.08 × 10+02 5 |
F21 | Mean Std MWU Rank | 2.54 × 10+03 1.06 × 10+01 1 | 2.95 × 10+03 8.49 × 10+01 3 | 2.26 × 10+02 3.97 × 10+00 8 | 2.59 × 10+03 1.81 × 10+01 2 | 2.18 × 10+04 1.66 × 10+03 9 | 2.54 × 10+02 3.09 × 10+01 6 | 2.44 × 10+02 1.12 × 10+01 7 | 3.19 × 10+02 3.60 × 10+01 5 | 4.54 × 10+02 6.92 × 10+01 4 |
F22 | Mean Std MWU Rank | 3.60 × 10+03 1.15 × 10+03 3 | 5.80 × 10+03 1.74 × 10+03 9 | 1.00 × 10+02 1.00 × 10−13 7 | 2.38 × 10+03 5.63 × 10+02 1 | 4.11 × 10+03 1.38 × 10+02 4 | 1.42 × 10+02 2.99 × 10+02 5 | 1.01 × 10+02 1.39 × 10+00 6 | 2.97 × 10+03 8.91 × 10+02 2 | 4.37 × 10+03 1.97 × 10+03 8 |
F23 | Mean Std MWU Rank | 2.49 × 10+03 3.43 × 10+01 2 | 2.77 × 10+03 8.29 × 10+01 3 | 3.73 × 10+02 5.24 × 10+00 9 | 2.79 × 10+03 5.07 × 10+01 4 | 2.38 × 10+03 7.61 × 10+01 1 | 4.09 × 10+02 1.44 × 10+01 7 | 3.95 × 10+02 1.19 × 10+01 8 | 4.59 × 10+02 2.23 × 10+01 6 | 7.52 × 10+02 9.65 × 10+01 5 |
F24 | Mean Std Rank | 2.66 × 10+03 3.73 × 10+01 1 | 2.93 × 10+03 5.38 × 10+01 2 | 4.42 × 10+02 4.76 × 10+00 7 | 2.94 × 10+03 4.21 × 10+01 3 | 1.24 × 10+04 1.06 × 10+04 9 | 4.81 × 10+02 5.76 × 10+01 6 | 4.61 × 10−02 1.54 × 10+01 8 | 5.95 × 10+02 5.37 × 10+01 5 | 7.70 × 10+02 8.25 × 10+01 4 |
F25 | Mean Std MWU Rank | 2.74 × 10+03 1.34 × 10+01 1 | 2.89 × 10+03 1.06 × 10+01 2 | 3.87 × 10+02 5.35 × 10−01 6 | 2.90 × 10+03 1.96 × 10+01 3 | 2.06 × 10+04 2.45 × 10+03 8 | 3.87 × 10+02 1.61 × 10+00 7 | 3.93 × 10+02 1.16 × 10+01 5 | 3.87 × 10+02 2.53 × 10+00 9 | 4.46 × 10+02 3.15 × 10+01 4 |
F26 | Mean Std MWU Rank | 1.22 × 10+03 8.22 × 10+03 4 | 6.27 × 10+03 1.52 × 10+03 9 | 1.20 × 10+03 8.20 × 10+01 3 | 4.61 × 10+03 1.14 × 10+03 8 | 4.09 × 10+03 1.09 × 10+03 5 | 7.23 × 10+02 7.03 × 10+02 6 | 1.55 × 10+03 2.35 × 10+02 2 | 2.19 × 10+03 5.72 × 10+02 1 | 4.57 × 10+03 1.21 × 10+03 7 |
F27 | Mean Std MWU Rank | 3.01 × 10+03 2.08 × 10+01 3 | 3.22 × 10+03 1.95 × 10+01 1 | 5.04 × 10+02 8.10 × 10+00 8 | 3.25 × 10+03 3.82 × 10+01 2 | 6.13 × 10+03 4.83 × 10+01 9 | 5.16 × 10+02 8.72 × 10+00 6 | 5.08 × 10+02 5.62 × 10+00 7 | 5.24 × 10+02 1.30 × 10+01 5 | 6.72 × 10+02 1.04 × 10+02 4 |
F28 | Mean Std MWU Rank | 2.91 × 10+03 1.75 × 10+01 1 | 3.14 × 10+03 2.37 × 10+01 2 | 3.34 × 10+02 5.50 × 10+01 8 | 3.47 × 10+03 5.75 × 10+01 4 | 3.42 × 10+03 1.42 × 10+01 3 | 3.31 × 10+02 5.10 × 10+01 9 | 4.81 × 10+02 2.26 × 10+01 6 | 4.12 × 10+02 3.91 × 10+01 7 | 4.94 × 10+02 2.21 × 10+01 5 |
F29 | Mean Std MWU Rank | 3.65 × 10+03 1.04 × 10+02 2 | 3.70 × 10+03 1.95 × 10+02 3 | 4.78 × 10+02 2.32 × 10+01 8 | 3.64 × 10+03 1.67 × 10+02 1 | 3.04 × 10+05 4.68 × 10+04 9 | 6.12 × 10+02 8.88 × 10+01 6 | 5.45 × 10+02 9.28 × 10+01 7 | 8.62 × 10+02 1.97 × 10+02 5 | 1.80 × 10+03 3.80 × 10+02 4 |
Total ranking | 1 | 3 | 8 | 2 | 9 | 5 | 7 | 6 | 4 | |
Total MWU | 22/2/3 | 24/1/3 | 15/4/9 | 25/0/3 | 25/1/2 | 25/2/1 | 24/2/2 | 28/0/0 |
Functions | |||||
---|---|---|---|---|---|
All | Unimodal | Multimodal | Hybrid | Composition | |
p-Value | 9.01 × 10 −22 | 2.14 × 10 −3 | 1.95 × 10 −3 | 4.64 × 10 −7 | 4.24 × 10 −10 |
Chi-squared | 117.90 | 25.57 | 24.42 | 44.47 | 60.21 |
Algorithms | |||||
---|---|---|---|---|---|
Function | Metrics | FLA-OBL | EBO | HTLBO | FLA |
F1 | EQG | 0.36 | 0.37 | 2.46 × 10−3 | 1.76 × 10−3 |
EC | 0.48 | 0.45 | 2.23 × 10−3 | 2.08 × 10−3 | |
EVP | 0.77 | 0.64 | 0.23 | 0.28 | |
F5 | EQG | 0.34 | 0.4 | 0.38 | 9.13 × 10−2 |
EC | 0.37 | 0.49 | 0.46 | 9.28 × 10−2 | |
EVP | 0.66 | 0.71 | 0.7 | 0.31 | |
F7 | EQG | 0.38 | 0.27 | 0.35 | 2.05 × 10−3 |
EC | 0.47 | 0.31 | 0.43 | 2.41 × 10−3 | |
EVP | 0.71 | 0.52 | 0.69 | 0.21 | |
F16 | EQG | 0.33 | 2.25 × 10−3 | 1.05 × 10−3 | 9.46 × 10−2 |
EC | 0.47 | 2.42 × 10−3 | 1.68 × 10−3 | 9.84 × 10−2 | |
EVP | 0.62 | 0.23 | 0.19 | 0.28 | |
F19 | EQG | 0.28 | 2.34 × 10 −3 | 0.38 | 3.66 × 10−3 |
EC | 0.36 | 2.76 × 10 −3 | 0.44 | 3.87 × 10−3 | |
EVP | 0.53 | 0.21 | 0.74 | 0.22 | |
F21 | EQG | 0.44 | 0.39 | 0.41 | 9.38 × 10−2 |
EC | 0.48 | 0.42 | 0.47 | 9.41 × 10−2 | |
EVP | 0.73 | 0.62 | 0.68 | 0.25 | |
F26 | EQG | 0.29 | 6.23 × 10−2 | 9.32 × 10−2 | 0.46 |
EC | 0.38 | 6.56 × 10−2 | 9.84 × 10−2 | 0.51 | |
EVP | 0.57 | 0.2 | 0.22 | 0.73 | |
Total Average | EQG | 0.35 | 0.21 | 0.23 | 0.11 |
EC | 0.43 | 0.25 | 0.27 | 0.12 | |
EVP | 0.66 | 0.45 | 0.49 | 0.33 |
Scenarios | Evaluation Criteria | FLA | FFLA-OBL |
---|---|---|---|
Scenario 1 (7 obstacles) | Traveled distance | 13.64 | 10.97 |
Path deviations | 5 | 3 | |
Penalty (collision risk) | 0.11 | 0 | |
Path quality | 0.75 | 0.88 | |
RPD (%) | 15 | 0 | |
Scenario 2 (12 obstacles) | Traveled distance | 15.72 | 11.73 |
Path deviations | 3 | 3 | |
Penalty (collision risk) | 0.46 | 0.08 | |
Path quality | 0.62 | 0.77 | |
RPD (%) | 23 | 0 | |
Scenario 3 (18 obstacles) | Traveled distance | 16.43 | 13.89 |
Path deviations | 8 | 4 | |
Penalty (collision risk) | 0.37 | 0 | |
Path quality | 0.52 | 0.71 | |
RPD (%) | 27 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntakolia, C. Fick’s Law Algorithm Enhanced with Opposition-Based Learning. Mathematics 2025, 13, 2556. https://doi.org/10.3390/math13162556
Ntakolia C. Fick’s Law Algorithm Enhanced with Opposition-Based Learning. Mathematics. 2025; 13(16):2556. https://doi.org/10.3390/math13162556
Chicago/Turabian StyleNtakolia, Charis. 2025. "Fick’s Law Algorithm Enhanced with Opposition-Based Learning" Mathematics 13, no. 16: 2556. https://doi.org/10.3390/math13162556
APA StyleNtakolia, C. (2025). Fick’s Law Algorithm Enhanced with Opposition-Based Learning. Mathematics, 13(16), 2556. https://doi.org/10.3390/math13162556