New Asymptotic and Oscillatory Results for Third-Order Noncanonical Advanced Differential Equations
Abstract
1. Introduction
- (H1)
- and is a quotient of odd positive integers;
- (H2)
- such that for all and ;
- (H3)
- and
Motivation
2. Preliminary Results
- (i)
- ;
- (i)
- and , where
3. Main Results
3.1. Conditions for Excluding Solutions of Type (9)
3.2. Conditions for Excluding Solutions of Type (10)
- and
- and
3.3. Oscillation Criteria
4. Examples
- 1-
- The inequality defines a lower bound on μ for each
- 2-
- Thus, the inequality carves out a curved region in the (λ,μ)-plane, where:
- (a)
- μ must increase with λ to maintain validity.
- (b)
- As λ increases, the inequality becomes harder to satisfy, so μ must increase sharply to compensate.
- (c)
- As λ decreases, we still need a moderate μ to maintain the inequality because becomes very small near 1.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erbe, L.H.; Kong, Q.; Zhang, B.G. Oscillation Theory for Functional Differential Equations; Marcel Dekker: New York, NY, USA, 1994. [Google Scholar]
- Došlý, O.; Řehák, P. Half-Linear Differential Equations; North-Holland: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Hale, J.K. Functional Differential Equations; Oxford Applied Mathematical Sciences; Springer: New York, NY, USA, 1971; Volume 3. [Google Scholar]
- Masood, F.; Moaaz, O.; Santra, S.S.; Fernandez-Gamiz, U.; El-Metwally, H.A.; Marib, Y. Oscillation theorems for fourth-order quasi-linear delay differential equations. AIMS Math. 2023, 8, 16291–16307. [Google Scholar] [CrossRef]
- Gopalsamy, K. Stability and Oscillations in Delay Differential Equations of Population Dynamics; Springer: Berlin/Heidelberg, Germany, 2013; p. 74. [Google Scholar] [CrossRef]
- Berezansky, L.; Domoshnitsky, A.; Koplatadze, R. Oscillation, Nonoscillation, Stability and Asymptotic Properties for Second and Higher Order Functional Differential Equations; Chapman and Hall/CRC: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Kubiaczyk, I.; Saker, S.H. Oscillation and stability in nonlinear delay differential equations of population dynamics. Math. Comput. Model. 2002, 35, 295–301. [Google Scholar] [CrossRef]
- Hale, J.K. Theory of Functional Differential Equations; Springer-Verlag: New York, NY, USA, 1977. [Google Scholar] [CrossRef]
- Aldiaiji, M.; Qaraad, B.; Iambor, L.F.; Elabbasy, E.M. New Oscillation Theorems for Second-Order Superlinear Neutral Differential Equations with Variable Damping Terms. Symmetry 2023, 15, 1630. [Google Scholar] [CrossRef]
- Baculíková, B. New monotonicity properties and oscillation of n-th order functional differential equations with deviating argument. Electron. J. Qual. Theory Differ. Equ. 2023, 30, 1–10. [Google Scholar] [CrossRef]
- Batiha, B.; Alshammari, N.; Aldosari, F.; Masood, F.; Bazighifan, O. Asymptotic and Oscillatory Properties for Even-Order Nonlinear Neutral Differential Equations with Damping Term. Symmetry 2025, 17, 87. [Google Scholar] [CrossRef]
- Gyori, I.; Ladas, G. Oscillation Theory of Delay Differential Equations with Applications; Clarendon Press: Oxford, UK, 1991. [Google Scholar] [CrossRef]
- Al-Jaser, A.; Qaraad, B.; Bazighifan, O.; Iambor, L.F. Second-Order Neutral Differential Equations with Distributed Deviating Arguments: Oscillatory Behavior. Mathematics 2023, 11, 2605. [Google Scholar] [CrossRef]
- Baculíková, B.; Džurina, J. Oscillation of half-linear differential equation with mixed type of argument. Electron. J. Qual. Theory Differ. Equ. 2022, 10, 1–8. [Google Scholar] [CrossRef]
- Shin, Y.; Park, C.G. A Study of the Applicability of a MEMS Oscillator for GNSS Receivers According to Environmental Tests. Int. J. Aeronaut. Space Sci. 2021, 22, 397–414. [Google Scholar] [CrossRef]
- Tian, Y.; Shao, Y. Mini-review on periodic properties of MEMS oscillators. Front. Phys. 2024, 12, 1498185. [Google Scholar] [CrossRef]
- Weng, C.H.; Pillai, G.; Li, S.S. A thin-film piezoelectric-on-silicon MEMS oscillator for mass sensing applications. IEEE Sens. J. 2020, 20, 7001–7009. [Google Scholar] [CrossRef]
- Baculíková, B.; Džurina, J.; Jadlovská, I. On asymptotic properties of solutions to third-order delay differential equations. Electron. J. Qual. Theory Differ. Equ. 2019, 7, 1–12. [Google Scholar] [CrossRef]
- Baculíková, B.; Džurina, J. The fourth order strongly noncanonical operators. Open Math. 2018, 16, 1667–1674. [Google Scholar] [CrossRef]
- Džurina, J.; Jadlovská, I. Oscillation of third-order differential equations with noncanonical operators. Appl. Math. Comput. 2018, 336, 394–402. [Google Scholar] [CrossRef]
- Grace, S.R.; Džurina, J.; Jadlovská, I.; Li, T. On the oscillation of fourth-order delay differential equations. Adv. Differ. Equ. 2019, 118, 1–15. [Google Scholar] [CrossRef]
- Koplatadze, R.; Kvinkadze, G.; Stavroulakis, I.P. Properties A and B of n-th order linear differential equations with deviating arguments. Georgian Math. J. 1999, 6, 553–566. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Srinivasan, R.; Thandapani, E. Oscillation and property B for semi-canonical third-order advanced difference equations. Nonauton. Dyn. Syst. 2022, 9, 11–20. [Google Scholar] [CrossRef]
- Džurina, J.; Baculíková, B. Oscillation of third-order quasilinear advanced differential equations. Differ. Equ. Appl. 2012, 4, 411–421. [Google Scholar]
- Almarri, B.; Batiha, B.; Bazighifan, O.; Masood, F. Third-Order Neutral Differential Equations with Non-Canonical Forms: Novel Oscillation Theorems. Axioms 2024, 13, 755. [Google Scholar] [CrossRef]
- Yao, J.; Zhang, X.; Yu, J. New oscillation criteria for third-order half-linear advanced differential equations. arXiv 2020, arXiv:2001.01415. [Google Scholar] [CrossRef]
- Baculíková, B.; Džurina, J. Oscillation and property B for third-order differential equations with advanced arguments. Electron. J. Differ. Equ. 2016, 2016, 1–10. [Google Scholar]
- Kiguradze, I.T.; Chanturiya, T.A. Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Rani, B.; Chatzarakis, G.E.; Thandapani, E. Noncanonical Third-Order Advanced Differential Equations of Unstable Type: Oscillation and Property B via Canonical Transform. Axioms 2025, 14, 91. [Google Scholar] [CrossRef]
- Trench, W.F. Canonical forms and principal systems for general disconjugate equations. Trans. Amer. Math. Soc. 1974, 184, 319–327. [Google Scholar] [CrossRef]
- Baculíková, B.; Džurina, J. Asymptotic properties of even-order functional differential equations with deviating argument. Carpathian J. Math. 2024, 40, 15–23. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Althemairi, A.; Serra-Capizzano, S.; Qaraad, B.; Ramos, H. New Asymptotic and Oscillatory Results for Third-Order Noncanonical Advanced Differential Equations. Mathematics 2025, 13, 2494. https://doi.org/10.3390/math13152494
Althemairi A, Serra-Capizzano S, Qaraad B, Ramos H. New Asymptotic and Oscillatory Results for Third-Order Noncanonical Advanced Differential Equations. Mathematics. 2025; 13(15):2494. https://doi.org/10.3390/math13152494
Chicago/Turabian StyleAlthemairi, Asma, Stefano Serra-Capizzano, Belgees Qaraad, and Higinio Ramos. 2025. "New Asymptotic and Oscillatory Results for Third-Order Noncanonical Advanced Differential Equations" Mathematics 13, no. 15: 2494. https://doi.org/10.3390/math13152494
APA StyleAlthemairi, A., Serra-Capizzano, S., Qaraad, B., & Ramos, H. (2025). New Asymptotic and Oscillatory Results for Third-Order Noncanonical Advanced Differential Equations. Mathematics, 13(15), 2494. https://doi.org/10.3390/math13152494