Non-Fragile H∞ Asynchronous State Estimation for Delayed Markovian Jumping NNs with Stochastic Disturbance
Abstract
1. Introduction
2. Problem Formulation and Preliminaries
3. Main Results
Algorithm 1 Detailed design procedure of estimator (3) |
Step 1:
Given the positive constants , and φ such that for every and , all components in the resulting matrix inequalities can be converted into linear expressions; Step 2: By leveraging the general MATLAB solving toolbox (https://www.mathworks.com/products/matlab.html, accessed on 28 July 2025) and handling the derived linear matrix constraints (8)–(10) and (23), the necessary matrices , , and can be derived; Step 3: Calculate the estimator gain matrices via , , , . Subsequently, an effective design for the desired estimator can be achieved. |
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xia, Y.; Wang, J. A general projection neural network for solving monotone variational inequalities and related optimization problems. IEEE Trans. Neural Netw. 2004, 15, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Feng, G. An improved neural network for convex quadratic optimization with application to real-time beamforming. Neurocomputing 2005, 64, 359–374. [Google Scholar] [CrossRef]
- Dou, H.; Shen, F.; Zhao, J.; Mu, X. Understanding neural network through neuron level visualization. Neural Netw. 2023, 168, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Electronic realisation of recurrent neural network for solving simultaneous linear equations. Electron. Lett. 1992, 28, 493–495. [Google Scholar] [CrossRef]
- Li, X.; Song, S. Stabilization of delay systems: Delay-dependent impulsive control. IEEE Trans. Autom. Control 2018, 62, 406–411. [Google Scholar] [CrossRef]
- Wei, H.; Li, Q.; Zhu, S.; Fan, D.; Zheng, Y. Event triggered resilient asynchronous estimation of stochastic Markovian jumping CVNs with missing measurements: A co-design control strategy. Inf. Sci. 2025, 712, 122167. [Google Scholar] [CrossRef]
- Li, Q.; Wei, H.; Hua, D.; Wang, J.; Yang, J. Stabilization of semi-Markovian jumping uncertain complex-valued networks with time-varying delay: A sliding-mode control approach. Neural Process. Lett. 2024, 56, 111. [Google Scholar] [CrossRef]
- Abudireman, A.; Abdurahman, A. Fixed-time synchronization of spatiotemporal fuzzy neural network via aperiodic intermittent control with hyperbolic sine function. J. Appl. Math. Comput. 2025. [Google Scholar] [CrossRef]
- Abdurahman, A.; Abudusaimaiti, M.; Jiang, H. Fixed/predefined-time lag synchronization of complex-valued BAM neural networks with stochastic perturbations. Appl. Math. Comput. 2023, 444, 127811. [Google Scholar] [CrossRef]
- Jia, C.; Hu, J.; Yi, X.; Liu, H.; Huang, J.; Cao, Z. Recursive state estimation for a class of quantized coupled complex networks subject to missing measurements and amplify-and-forward relay. Inf. Sci. 2023, 630, 53–73. [Google Scholar] [CrossRef]
- Yu, X.; Sun, X.; Li, J. Scalable distributed data-driven state estimation algorithm via Gaussian processes with guaranteed stability. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 9191–9204. [Google Scholar] [CrossRef]
- Jia, C.; Hu, J.; Liu, H.; Du, J.; Feng, S. Recursive state estimation for a class of nonlinear uncertain coupled complex networks subject to random link failures and packet disorders. ISA Trans. 2022, 127, 88–98. [Google Scholar] [CrossRef]
- Hsieh, C.S. State estimation for descriptor systems via the unknown input filtering method. Automatica 2013, 49, 1281–1286. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Z.; Li, J.-Y.; Xu, Y. State estimation for Markovian jump neural networks under probabilistic bit flips: Allocating constrained bit rates. IEEE Trans. Neural Netw. Learn. Syst. 2025, 36, 8802–8813. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhang, Y. State estimation of neural networks with both time-varying delays and norm-bounded parameter uncertainties via a delay decomposition approach. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 3517–3529. [Google Scholar] [CrossRef]
- Xu, X.; Sun, J.; Wang, C.; Zou, B. A novel hybrid CNN-LSTM compensation model against DoS attacks in power system state estimation. Neural Process. Lett. 2022, 54, 1597–1621. [Google Scholar] [CrossRef]
- Sang, H.; Zhao, J. Energy-to-peak state estimation for switched neutral-type neural networks with sector condition via sampled-data information. IEEE Trans. Neural Networks Learn. Syst. 2021, 32, 1339–1350. [Google Scholar] [CrossRef]
- Hu, X.; Wei, X.; Zhang, H.; Gong, Q.; Sun, S. Event-triggered disturbance rejection tracking for surface ships under stochastic disturbances and actuator saturation. Int. J. Robust Nonlinear Control 2024, 34, 3207–3223. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, H.; Guo, B.; Deng, F. On the convergence of tracking differentiator with multiple stochastic disturbances. Sci. China Inf. Sci. 2024, 67, 122203. [Google Scholar] [CrossRef]
- Jia, C.; Wang, Z.; Hu, J.; Dong, H. Reputation-based distributed filtering over sensor networks subject to stochastic nonlinearity and network-induced quantization. IEEE Trans. Netw. Sci. Eng. 2025, 1–14. [Google Scholar] [CrossRef]
- Guo, B.; Xiao, Y. Synchronization of Markov switching inertial neural networks with mixed delays under aperiodically on-off adaptive control. Mathmatics 2023, 11, 2906. [Google Scholar] [CrossRef]
- Pan, L.; Hu, J.; Cao, J. Pinning synchronization of delayed neural networks via Markov switched control. Syst. Control Lett. 2024, 189, 105823. [Google Scholar] [CrossRef]
- Huang, M.; Dey, S. Dynamic quantizer design for hidden Markov state estimation via multiple sensors with fusion center feedback. IEEE Trans. Signal Process. 2006, 54, 2887–2896. [Google Scholar] [CrossRef]
- Peng, H.; Lu, R.; Shi, P. Synchronization control for coupled delayed neural networks with time-varying coupling via Markov pinning strategy. IEEE Syst. J. 2022, 16, 4071–4081. [Google Scholar] [CrossRef]
- Zhu, H.-N.; Zhang, C.-K.; Bin, N. Infinite horizon linear quadratic stochastic Nash differential games of Markov jump linear systems with its application. Int. J. Syst. Sci. 2014, 45, 1196–1201. [Google Scholar] [CrossRef]
- Xu, N.; Sun, L. Synchronization control of Markov jump neural networks with mixed time-varying delay and parameter uncertain based on sample point controller. Nonlinear Dyn. 2019, 98, 1877–1890. [Google Scholar] [CrossRef]
- Li, F.; Wang, Y.-N.; Shen, H. Dual event-triggered synchronization of two-time-scale jumping neural networks and its application in image encryption and decryption. IEEE Trans. Netw. Sci. Eng. 2025, 12, 943–954. [Google Scholar] [CrossRef]
- Wang, X.; Qin, Y.; Fang, T.; Shi, K.; Shen, H. Passive state estimation for Markov jumping inertial neural networks under fading channels. Int. J. Adapt. Control Signal Process. 2022, 36, 1603–1618. [Google Scholar] [CrossRef]
- Lakshmanan, S.; Park, J.H.; Ji, D.H.; Jung, H.Y.; Nagamani, G. State estimation of neural networks with time-varying delays and Markovian jumping parameter based on passivity theory. Nonlinear Dyn. 2012, 70, 1421–1434. [Google Scholar] [CrossRef]
- Yang, G.-H.; Wang, J.L. Robust nonfragile Kalman filtering for uncertain linear systems with estimator gain uncertainty. IEEE Trans. Autom. Control 2001, 46, 343–348. [Google Scholar] [CrossRef]
- Xiao, S.; Ge, X.; Han, Q.-L.; Zhang, Y. Distributed resilient estimator design for positive systems under topological attacks. IEEE Trans. Cybern. 2021, 51, 3676–3686. [Google Scholar] [CrossRef]
- Wang, F.; Liang, J.; Dobaie, A.M. Resilient filtering for time-varying stochastic coupling networks under the event-triggering scheduling. Int. J. Gen. Syst. 2018, 47, 491–505. [Google Scholar] [CrossRef]
- Zhao, C.; Zhong, S.; Zhang, X.; Zhong, Q.; Shi, K. Novel results on nonfragile sampled-data exponential synchronization for delayed complex dynamical networks. Int. J. Robust Nonlinear Control 2020, 30, 4022–4042. [Google Scholar] [CrossRef]
- Tan, G.; Wang, Z.; Xiao, S. Nonfragile extended dissipativity state estimator design for discrete-time neural networks with time-varying delay. Neurocomputing 2023, 539, 126206. [Google Scholar] [CrossRef]
- Han, X.-X.; Wu, K.-N.; Yuan, X. Asynchronous boundary stabilization of stochastic Markovian reaction-diffusion neural networks with mode-dependent delays. IEEE Trans. Neural Netw. Learn. Syst. 2025. [Google Scholar] [CrossRef] [PubMed]
- Han, X.-X.; Wu, K.-N.; Yuan, X. Observer-based asynchronous boundary stabilization for stochastic Markovian reaction Cdiffusion neural networks. IEEE Trans. Cybern. 2024, 54, 6667–6678. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Wang, Z.; Han, L. Finite-time stochastic synchronization of time-delay neural networks with noise disturbance. Nonlinear Dyn. 2017, 88, 2747–2755. [Google Scholar] [CrossRef]
- Gu, K. An integral inequality in the stability problem of time-delay systems. In Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, 12–15 December 2000; pp. 2805–2810. [Google Scholar]
- Zhang, X.-M.; Han, Q.-L. State estimation for static neural networks with time-varying delays based on an improved reciprocally convex inequality. IEEE Trans. Neural Networks Learn. Syst. 2018, 29, 1376–1381. [Google Scholar] [CrossRef]
- Li, Q.; Liang, J.; Qu, H. H∞ estimation for stochastic semi-Markovian switching CVNNs with missing measurements and mode-dependent delays. Neural Netw. 2021, 141, 281–293. [Google Scholar] [CrossRef]
- Peng, D.; Li, X. Leader-following synchronization of complex dynamic networks via event-triggered impulsive control. Neurocomputing 2020, 412, 1–10. [Google Scholar] [CrossRef]
- Lin, A.; Cheng, J.; Park, J.H.; Yan, H.; Qi, W. Fault detection filtering of nonhomogeneous Markov switching memristive neural networks with output quantization. Inf. Sci. 2023, 632, 715–729. [Google Scholar] [CrossRef]
- Shen, H.; Huang, Z.; Cao, J.; Park, J.H. Exponential H∞ filtering for continuous-time switched neural networks under persistent dwell-time switching regularity. IEEE Trans. Cybern. 2020, 50, 2440–2449. [Google Scholar] [CrossRef]
- Li, Q.; Liang, J.; Gong, W.; Wang, K.; Wang, J. Nonfragile state estimation for semi-Markovian switching CVNs with general uncertain transition rates: An event-triggered scheme. Math. Comput. Simul. 2024, 218, 204–222. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Tang, J.; Li, Q.; Yang, X.; Zhang, H. Non-Fragile H∞ Asynchronous State Estimation for Delayed Markovian Jumping NNs with Stochastic Disturbance. Mathematics 2025, 13, 2452. https://doi.org/10.3390/math13152452
Wang L, Tang J, Li Q, Yang X, Zhang H. Non-Fragile H∞ Asynchronous State Estimation for Delayed Markovian Jumping NNs with Stochastic Disturbance. Mathematics. 2025; 13(15):2452. https://doi.org/10.3390/math13152452
Chicago/Turabian StyleWang, Lan, Juping Tang, Qiang Li, Xianwei Yang, and Haiyang Zhang. 2025. "Non-Fragile H∞ Asynchronous State Estimation for Delayed Markovian Jumping NNs with Stochastic Disturbance" Mathematics 13, no. 15: 2452. https://doi.org/10.3390/math13152452
APA StyleWang, L., Tang, J., Li, Q., Yang, X., & Zhang, H. (2025). Non-Fragile H∞ Asynchronous State Estimation for Delayed Markovian Jumping NNs with Stochastic Disturbance. Mathematics, 13(15), 2452. https://doi.org/10.3390/math13152452