Variable Dose-Constraints Method Based on Multiplicative Dynamical Systems for High-Precision Intensity-Modulated Radiation Therapy Planning
Abstract
1. Introduction
2. IMRT Treatment Planning
3. Proposed Dynamical System and Theoretical Results
3.1. Consistent Planning
- (i)
- For any , the condition is satisfied.
- (ii)
- For any , when , the condition holds, and when , the condition holds, where .
- (iii)
- For any , when , the conditions and hold. When , the conditions and hold, where .
3.2. Acceptable Planning
4. Experiments
4.1. Method
4.2. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Palta, J.R.; Mackie, T.R. (Eds.) Intensity-Modulated Radiation Therapy: The State of the Art; Medical Physics Publishing: Madison, WI, USA, 2003. [Google Scholar]
- Bortfeld, T. IMRT: A review and preview. Phys. Med. Biol. 2006, 51, R363–R379. [Google Scholar] [CrossRef] [PubMed]
- Cho, B. Intensity-modulated radiation therapy: A review with a physics perspective. Radiat. Oncol. J. 2018, 36, 1. [Google Scholar] [CrossRef] [PubMed]
- Mohan, R. Intensity-modulated radiation therapy—You can have your cake and eat it too! Med. Phys. 2023, 50, 74–79. [Google Scholar] [CrossRef]
- Wu, Q.; Mohan, R. Algorithms and functionality of an intensity modulated radiotherapy optimization system. Med. Phys. 2000, 27, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Cotrutz, C.; Lahanas, M.; Kappas, C.; Baltas, D. A multiobjective gradient-based dose optimization algorithm for external beam conformal radiotherapy. Phys. Med. Biol. 2001, 46, 2161–2175. [Google Scholar] [CrossRef]
- Wu, Q.; Mohan, R. Multiple local minima in IMRT optimization based on dose-volume criteria. Med. Phys. 2002, 29, 1514–1527. [Google Scholar] [CrossRef] [PubMed]
- Lahanas, M.; Schreibmann, E.; Baltas, D. Multiobjective inverse planning for intensity modulated radiotherapy with constraint-free gradient-based optimization algorithms. Phys. Med. Biol. 2003, 48, 2843–2871. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, H.; Wang, X.; Dong, L.; Wu, Q.; Mohan, R. Speed and convergence properties of gradient algorithms for optimization of IMRT. Med. Phys. 2004, 31, 1141–1152. [Google Scholar] [CrossRef]
- Censor, Y.; Bortfeld, T.; Martin, B.; Trofimov, A. A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 2006, 51, 2353–2365. [Google Scholar] [CrossRef]
- Bortfeld, T.; Kufer, K.H.; Monz, M.; Trofimov, A.; Niemierko, A. Problems with current IMRT prescription practices and planning systems [abstract]. Med. Phys. 2004, 31, 1761. [Google Scholar]
- Bauschke, H.H.; Borwein, J.M. On Projection Algorithms for Solving Convex Feasibility Problems. SIAM Rev. 1996, 38, 367–426. [Google Scholar] [CrossRef]
- Byrne, C. Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 2002, 18, 441–453. [Google Scholar] [CrossRef]
- Censor, Y.; Chen, W.; Combettes, P.L.; Davidi, R.; Herman, G.T. On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints. Comput. Optim. Appl. 2012, 51, 1065–1088. [Google Scholar] [CrossRef]
- Lougovski, P.; LeNoach, J.; Zhu, L.; Ma, Y.; Censor, Y.; Xing, L. Toward truly optimal IMRT dose distribution: Inverse planning with voxel-specific penalty. Technol. Cancer Res. Treat. 2010, 9, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Fu, A.; Ungun, B.; Xing, L.; Boyd, S. A convex optimization approach to radiation treatment planning with dose constraints. Optim. Eng. 2018, 20, 277–300. [Google Scholar] [CrossRef]
- Mukherjee, S.; Hong, L.; Deasy, J.O.; Zarepisheh, M. Integrating soft and hard dose-volume constraints into hierarchical constrained IMRT optimization. Med. Phys. 2019, 47, 414–421. [Google Scholar] [CrossRef]
- Zhang, T.; Bokrantz, R.; Olsson, J. Direct optimization of dose–volume histogram metrics in radiation therapy treatment planning. Biomed. Phys. Eng. Express 2020, 6, 065018. [Google Scholar] [CrossRef]
- Penfold, S.; Casiraghi, M.; Dou, T.; Schulte, R.W.; Censor, Y. SU-E-T-33: A Feasibility-Seeking Algorithm Applied to Planning of Intensity Modulated Proton Therapy: A Proof of Principle Study. Med. Phys. 2015, 42, 3338. [Google Scholar] [CrossRef]
- Penfold, S.; Zalas, R.; Casiraghi, M.; Brooke, M.; Censor, Y.; Schulte, R. Sparsity constrained split feasibility for dose-volume constraints in inverse planning of intensity-modulated photon or proton therapy. Phys. Med. Biol. 2017, 62, 3599. [Google Scholar] [CrossRef]
- Barkmann, F.; Censor, Y.; Wahl, N. Superiorization of projection algorithms for linearly constrained inverse radiotherapy treatment planning. Front. Oncol. 2023, 13. [Google Scholar] [CrossRef]
- Brooke, M.; Censor, Y.; Gibali, A. Dynamic string-averaging CQ-methods for the split feasibility problem with percentage violation constraints arising in radiation therapy treatment planning. Int. Trans. Oper. Res. 2023, 30, 181–205. [Google Scholar] [CrossRef] [PubMed]
- Aragón-Artacho, F.J.; Censor, Y.; Gibali, A.; Torregrosa-Belén, D. The superiorization method with restarted perturbations for split minimization problems with an application to radiotherapy treatment planning. Appl. Math. Comput. 2023, 440, 127627. [Google Scholar] [CrossRef]
- Obata, N.; Abou Al-Ola, O.M.; Nakada, R.; Kojima, T.; Yoshinaga, T. Variable Dose-Constraints Method for Enhancing Intensity-Modulated Radiation Therapy Treatment Planning. Mathematics 2024, 12, 3826. [Google Scholar] [CrossRef]
- Schropp, J. Using dynamical systems methods to solve minimization problems. Appl. Numer. Math. 1995, 18, 321–335. [Google Scholar] [CrossRef]
- Airapetyan, R.G. Continuous Newton method and its modification. Appl. Anal. 1999, 73, 463–484. [Google Scholar] [CrossRef]
- Ramm, A. Dynamical systems method for solving operator equations. Commun. Nonlinear Sci. Numer. Simul. 2004, 9, 383–402. [Google Scholar] [CrossRef]
- Li, L.; Han, B. A dynamical system method for solving nonlinear ill-posed problems. Appl. Math. Comput. 2008, 197, 399–406. [Google Scholar] [CrossRef]
- Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Gordon, R.; Bender, R.; Herman, G.T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 1970, 29, 471–481. [Google Scholar] [CrossRef]
- Badea, C.; Gordon, R. Experiments with the nonlinear and chaotic behaviour of the multiplicative algebraic reconstruction technique (MART) algorithm for computed tomography. Phys. Med. Biol. 2004, 49, 1455–1474. [Google Scholar] [CrossRef]
- Shepp, L.A.; Vardi, Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imag. 1982, 1, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Vishampayan, S.; Stamos, J.; Mayans, R.; Koral, K.; Clinthorne, N.; Rogers, W.L. Maximum likelihood image reconstruction for SPECT. J. Nuc. Med. (Abs. Book) 1985, 26, 20. [Google Scholar]
- Wieser, H.P.; Cisternas, E.; Wahl, N.; Ulrich, S.; Stadler, A.; Mescher, H.; Muller, L.R.; Klinge, T.; Gabrys, H.; Burigo, L.; et al. Development of the open-source dose calculation and optimization toolkit matRad. Med. Phys. 2017, 44, 2556–2568. [Google Scholar] [CrossRef] [PubMed]
Assigned Region (Colored Region in Figure 1) | Organ | Constraint [%] | Equivalent Parameter |
---|---|---|---|
OAR (blue) | Core | with and | |
PTV (red) | Target | with and | |
with and | |||
OAR (dark gray) | Body | with and |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abou Al-Ola, O.M.; Kojima, T.; Nakada, R.; Obata, N.; Hayashi, K.; Yoshinaga, T. Variable Dose-Constraints Method Based on Multiplicative Dynamical Systems for High-Precision Intensity-Modulated Radiation Therapy Planning. Mathematics 2025, 13, 1852. https://doi.org/10.3390/math13111852
Abou Al-Ola OM, Kojima T, Nakada R, Obata N, Hayashi K, Yoshinaga T. Variable Dose-Constraints Method Based on Multiplicative Dynamical Systems for High-Precision Intensity-Modulated Radiation Therapy Planning. Mathematics. 2025; 13(11):1852. https://doi.org/10.3390/math13111852
Chicago/Turabian StyleAbou Al-Ola, Omar M., Takeshi Kojima, Ryosei Nakada, Norihisa Obata, Kohei Hayashi, and Tetsuya Yoshinaga. 2025. "Variable Dose-Constraints Method Based on Multiplicative Dynamical Systems for High-Precision Intensity-Modulated Radiation Therapy Planning" Mathematics 13, no. 11: 1852. https://doi.org/10.3390/math13111852
APA StyleAbou Al-Ola, O. M., Kojima, T., Nakada, R., Obata, N., Hayashi, K., & Yoshinaga, T. (2025). Variable Dose-Constraints Method Based on Multiplicative Dynamical Systems for High-Precision Intensity-Modulated Radiation Therapy Planning. Mathematics, 13(11), 1852. https://doi.org/10.3390/math13111852