Symbolic Methods Applied to a Class of Identities Involving Appell Polynomials and Stirling Numbers
Abstract
:1. Introduction
- Example.
- the s-Appell subgroup for .
- the Lagrange (associated) subgroup .
- the k-Bell subgroup , where k is a fixed positive integer.
- the hitting-time subgroup .
- the derivative subgroup .
- the checkerboard subgroup where g is an even function, and f is an odd function.
2. Main Identity
- Examples.
- Consider the generalized Fibonacci numbers , , [30]. They are defined by the following generating series:In this case, we have the following binomial identity:So, by Theorem 2, we have
- For the Bell numbers [9], we have the following binomial identities:Hence, by Theorem 2, we have
- The generalized derangement numbers with [31,32] have exponential generating seriesTherefore, by Theorem 2, we have
- For the harmonic numbers and the harmonic numbers of the second kind we have the following binomial identities [33,34]:Consequently, by Theorem 2, we haveSimilarly, for the skew harmonic numbers (or alternating harmonic numbers) we have the following binomial identities:Then,
- Recall that the beta function is defined by the following:Now, if we multiply both sides of (24) by and we integrate from 0 to 1, we haveThat is,In particular, for , we have
3. Appell Sequences
- Examples.
- Ordinary powers : .
- Generalized Hermite polynomials (cf. [35], (Vol. 2, p. 192)):Generalized Hermite numbers: .
- Laguerre polynomials (cf. [35] (Vol.2, p.189, Formula(19))):
- Generalized derangement numbers: .
- Generalized Bernoulli polynomials and generalized Euler polynomials (cf. [11] (p. 93, p. 100) and [35] (Vol. 3, p. 252)):Generalized Bernoulli numbers: and . Generalized Euler numbers: .
- Genocchi numbers: .
- Examples.
- Using (28), we may obtain the following identities for the s-Appell sequences recalled in the initial examples:Some of these identities can be rewritten in a different way. Indeed, since , from (29) we obtain the following:In particular, for , we have the Bernoulli numbers , and the last identity becomesSimilarly, since , (29) impliesIn particular, for , we have , which changes the last identity to the following:Moreover, we have the Euler numbers . So, for , we have the following identity:Finally, since , (29) yields the following identity:In particular, for , we have , and the above identity becomes
- From these formulas we can deduce some other interesting identities. For instance, since , , and . Then, identity (31) for becomes the following:
4. Remarks on the Case of Appell Sequences
5. Other Polynomial Sequences
- Examples.
- The generalized exponential polynomials [41,42] and generalized Fubini polynomials have exponential generating series:So, we can apply Theorem 7, obtaining the following identities:
- The Tricomi continuants [43] are defined by the exponential generating seriesThis time, we use the case described in Theorem 8. So,
6. Riordan and Sheffer-Type Matrices
- Examples.
- Consider the following Riordan matrices:Then, identity (42) becomes the following:In particular, for and , we haveSimilarly, for , we haveFinally, for and , we have
- Let
- Example.
- Examples.
- Consider the following Sheffer matrices:In particular, for and , we have the following identities:
- Consider the following Sheffer matrices:In particular, for and , we have the following identities:
7. q-Analogues
- Examples.
- For , identity (51) reduces to the formula
- For , identity (51) becomes the following:
- Examples.
- The q-Pochhammer symbol and the Gaussian polynomials are defined by the following:Hence, using the q-binomial inversion theorem, we have
- Equivalently, we haveIn particular, if we consider the q-Bell numbers [52,54] defined byIn this way, we have the q-Bell numbers expressed in terms of the q-derangement numbers. Notice that similar results have been obtained in [52], where the formulas involve the q-Stirling numbers of the first and second kind:This means that in this case, we have to apply Theorem 2:
- For q-harmonic numbers and q-harmonic numbers of the second kind , defined byHence, by Theorem (12), we have
- Examples.
- The Gaussian polynomials form a q-Appell sequence as follows:So, by Theorem 14, we haveIn particular, for and , we have
- The generalized q-Bernoulli numbers and generalized q-Bernoulli polynomials are defined, respectively, by the q-exponential generating series [57,58]:Then, using Theorem 14, we have
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Knuth, D.E. Johann Faulhaber and Sums of Powers. Math. Comput. 1993, 61, 277–294. [Google Scholar] [CrossRef]
- Edwards, A.W.F. A Quick Route to Sums of Powers. Amer. Math. Monthly 1986, 93, 451–455. [Google Scholar] [CrossRef]
- He, T.-X.; Shiue, P.J.-S. Divisibility of the sums of the power of consecutive integers. Notes Number Theory Discret. Math. 2024, 30, 557–574. [Google Scholar] [CrossRef]
- Jordan, C. Calculus of Finite Differences; Chelsea: Providence, RI, USA, 1965; Available online: https://www.amazon.com/Calculus-Finite-Differences-Charles-Jordan/dp/1470441004 (accessed on 9 April 2025).
- Milne-Thomson, L.M. The Calculus of Finite Differences; Macmillan Inc.: London, UK, 1933; Available online: https://archive.org/details/in.ernet.dli.2015.211803 (accessed on 9 April 2025).
- Bourbaki, N. Algèbre; Springer: Berlin/Heidelberg, Germany, 1959; Available online: https://link.springer.com/book/10.1007/978-3-540-35339-3 (accessed on 9 April 2025).
- Comtet, L. Advanced Combinatorics; Reidel: Dordrecht, The Netherlands, 1974. [Google Scholar]
- Gould, H.W. Combinatorial Identities. Morgantown, W. Va. 1972. Available online: https://www.semanticscholar.org/paper/Combinatorial-Identities%3A-A-Standardized-Set-of-500-Gould/2ecc76e757cd73c08017738406d3ef7866d23283 (accessed on 9 April 2025).
- Graham, R.L.; Knuth, D.E.; Partashnik, O. Concrete Mathematics; Addison-Wesley Publishing Company: Reading, MA, USA, 1994. [Google Scholar]
- Wilf, H.S. Generatingfunctionology; Academic Press: New York, NY, USA, 1990. [Google Scholar]
- Roman, S. The Umbral Calculus; Academic Press: New York, NY, USA, 1984. [Google Scholar]
- Munarini, E. Combinatorial identities for Appell polynomials. Appl. Anal. Discrete Math. 2018, 12, 362–388. [Google Scholar] [CrossRef]
- Appell, P. Sur une classe de polynômes. Ann. Sci. École Norm. Sup. 1880, 9, 119–144. [Google Scholar] [CrossRef]
- Roman, S.M.; Rota, G.-C. The umbral calculus. Adv. Math. 1978, 27, 95–188. [Google Scholar] [CrossRef]
- Shapiro, L.W.; Sprugnoli, R.; Barry, P.; Cheon, G.-S.; He, T.-X.; Merlini, D.; Wang, W. The Riordan Group and Applications; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Shapiro, L.W.; Getu, S.; Woan, W.J.; Woodson, L. The Riordan group. Discrete Appl. Math. 1991, 34, 229–239. [Google Scholar] [CrossRef]
- He, T.-X.; Hsu, L.C.; Shiue, P.J.-S. The Sheffer group and the Riordan group. Discrete Appl. Math. 2007, 155, 1895–1909. [Google Scholar] [CrossRef]
- Merlini, D.; Rogers, D.G.; Sprugnoli, R.; Verri, M.C. On some alternative characterizations of Riordan matrices. Can. J. Math. 1997, 49, 301–320. [Google Scholar] [CrossRef]
- Rogers, D.G. Pascal triangles, Catalan numbers and renewal matrices. Discret. Math. 1978, 22, 301–310. [Google Scholar] [CrossRef]
- He, T.-X.; Sprugnoli, R. Sequence Characterization of Riordan Arrays. Discret. Math. 2009, 309, 3962–3974. [Google Scholar] [CrossRef]
- Jean-Louis, C.; Nkwanta, A. Some algebraic structure of the Riordan group. Linear Algebra Appl. 2013, 438, 2018–2035. [Google Scholar] [CrossRef]
- Luzón, A.; Morón, M.A.; Prieto-Martinez, L.F. A formula to construct all involutions in Riordan matrix groups. Linear Algebra Appl. 2017, 533, 397–417. [Google Scholar] [CrossRef]
- Luzón, A.; Morón, M.A.; Prieto-Martinez, L.F. The group generated by Riordan involutions. Rev. Mat. Complut. 2022, 35, 199–217. [Google Scholar] [CrossRef]
- He, T.-X. Matrix characterizations of Riordan matrices. Linear Algebra Appl. 2015, 465, 15–42. [Google Scholar] [CrossRef]
- Sheffer, I.M. Some properties of polynomial sets of type zero. Duke Math. J. 1939, 5, 590–622. [Google Scholar] [CrossRef]
- Barry, P. Riordan Arrays: A Primer; LOGIC Press: Kilcock, Ireland, 2016. [Google Scholar]
- Shapiro, L.W. Bijections and the Riordan group. Theoret. Comput. Sci. 2003, 307, 403–413. [Google Scholar] [CrossRef]
- Grunert, J.A. Über die Summirung der Reihen von der Form Aφ(0), A1φ(1)x, A2φ(2)x2,…, Anφ(n)xn,…, wo A eine beliebige constante Grösse, An eine beliebige und φ(n) eine ganze rationale algebraische Function der positiven ganzen Zahl n bezeichnet. J. Reine Angew. Math. 1843, 25, 240–279. [Google Scholar]
- Gould, H.W. Euler’s formula for nth differences of powers. Amer. Math. Monthly 1978, 85, 450–467. [Google Scholar] [CrossRef]
- Munarini, E. A combinatorial interpretation of the generalized Fibonacci numbers. Adv. Appl. Math. 1998, 19, 306–318. [Google Scholar] [CrossRef]
- Capparelli, S.; Ferrari, M.M.; Munarini, E.; Salvi, N.Z. A Generalization of the “problème des rencontres”. J. Integer Seq. 2018, 18, 1–26. [Google Scholar]
- Ferrari, M.M.; Munarini, E.; Zagaglia Salvi, N. Some combinatorial properties of the generalized derangement numbers. Riv. Math. Univ. Parma (N.S.) 2020, 11, 217–249. [Google Scholar]
- Boyadzhiev, K.N. Binomial transform of products. Ars Combin. 2016, 126, 415–434. [Google Scholar]
- Wang, X.; Chu, W. Harmonic number sums and q-analogues. Int. J. Comput. Math. Comput. Syst. Theory 2019, 4, 48–56. [Google Scholar] [CrossRef]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. (Eds.) Higher Transcendental Functions; The Bateman Manuscript project; McGraw-Hill: New York, NY, USA, 1953–1955; Volume I–III, Available online: https://authors.library.caltech.edu/records/cnd32-h9x80 (accessed on 9 April 2025).
- Ferrari, M.M.; Munarini, E. Decomposition of some Hankel matrices generated by the generalized rencontres polynomials. Linear Algebra Appl. 2019, 567, 180–201. [Google Scholar] [CrossRef]
- Genocchi, A. Intorno all’espressione generale de’numeri Bernulliani. Nota. Ann. Sci. Mat. Fis. 1852, 3, 395–405. [Google Scholar]
- Horadam, A.F. Genocchi polynomials. In Proceedings of the Fourth International Conference on Fibonacci Numbers and Their Amplications; Kluwer: Dordrecht, The Netherlands, 1991; pp. 145–166. [Google Scholar]
- Springer, T.A. Remarks on a combinatorial problem. Nieuw Arch. Wisk. 1971, 19, 30–36. [Google Scholar]
- He, T.-X. Methods for the Summation of Series; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Toscano, L. Una classe di polinomi della matematica attuariale. Riv. Mat. Univ. Parma 1950, 1, 459–470. [Google Scholar]
- Toscano, L. Generalizzazioni dei polinomi di Laguerre e dei polinomi attuariali. Riv. Mat. Univ. Parma 1970, 11, 191–226. [Google Scholar]
- Munarini, E. Tricomi continuants. Mathematics 2024, 12, 401. [Google Scholar] [CrossRef]
- He, T.-X. The multiple Riordan group and the multiple Riordan semigroup. arXiv 2025, arXiv:2504.04049. [Google Scholar]
- Jackson, F.H. A basic-sine and cosine with symbolical solutions of certain differential equations. Proc. Edinburgh Math. Soc. 1904, 22, 28–39. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edin. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Ernst, T. q-Stirling numbers, an umbral approach. Adv. Dyn. Syst. Appl. 2008, 3, 251–282. [Google Scholar]
- Comtet, L. Nombres de Stirling généraux et fonctions symétriques. C. R. Acad. Sci. Paris Sér. A-B 1972, 275, A747–A750. [Google Scholar]
- D’Antona, O.M.; Munarini, E. A Combinatorial Interpretation of the Connection Constants for Persistent Sequences of Polynomials. Eur. J. Combin. 2005, 26, 1105–1118. [Google Scholar] [CrossRef]
- Wachs, M.L. On q-derangement numbers. Proc. Am. Math. Soc. 1989, 106, 273–278. [Google Scholar] [CrossRef]
- Chen, W.Y.C.; Rota, G.-C. q-analogs of the inclusion-exclusion principle and permutations with restricted position. Discrete Math. 1992, 104, 7–22. [Google Scholar] [CrossRef]
- Munarini, E. q-derangement identities. J. Integer Seq. 2020, 23, 8. [Google Scholar]
- Rota, G.-C. The number of partitions of a set. Amer. Math. Monthly 1964, 71, 498–504. [Google Scholar] [CrossRef]
- Wagner, C.G. Partition statistics and q-Bell numbers (q = −1). J. Integer. Seq. 2004, 7, 2–3. [Google Scholar]
- Van Hamme, L. Advanced problem 6407. Amer. Math. Mon. 1982, 40, 703–704. [Google Scholar]
- Al-Salam, W.A. q-Appell polynomials. Ann. Mat. Pura Appl. 1967, 77, 31–45. [Google Scholar] [CrossRef]
- Munarini, E. Two-parameter identities for q-Appell polynomials. J. Integer Seq. 2023, 26, 3. [Google Scholar]
- Al-Salam, W.A. q-Bernoulli numbers and polynomials. Math. Nachr. 1959, 17, 239–260. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, T.-X.; Munarini, E. Symbolic Methods Applied to a Class of Identities Involving Appell Polynomials and Stirling Numbers. Mathematics 2025, 13, 1732. https://doi.org/10.3390/math13111732
He T-X, Munarini E. Symbolic Methods Applied to a Class of Identities Involving Appell Polynomials and Stirling Numbers. Mathematics. 2025; 13(11):1732. https://doi.org/10.3390/math13111732
Chicago/Turabian StyleHe, Tian-Xiao, and Emanuele Munarini. 2025. "Symbolic Methods Applied to a Class of Identities Involving Appell Polynomials and Stirling Numbers" Mathematics 13, no. 11: 1732. https://doi.org/10.3390/math13111732
APA StyleHe, T.-X., & Munarini, E. (2025). Symbolic Methods Applied to a Class of Identities Involving Appell Polynomials and Stirling Numbers. Mathematics, 13(11), 1732. https://doi.org/10.3390/math13111732