The Robust Malmquist Productivity Index: A Framework for Measuring Productivity Changes over Time Under Uncertainty
Abstract
:1. Introduction
2. Literature Review and Research Gaps
3. Theoretical Background
3.1. Data Envelopment Analysis
3.2. Malmquist Productivity Index
3.3. Robust Optimization
4. The Proposed Robust Malmquist Productivity Index
4.1. The Proposed Envelopment RMPI
4.2. The Proposed Multiplier RMPI
5. Case Study: Tehran Stock Exchange
5.1. The Envelopment Approach
5.2. The Multipler Approach
6. Conclusions and Future Research Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sink, D.S.; Tuttle, T.C.; DeVries, S.J. Productivity measurement and evaluation: What is available. Natl. Product. Rev. 1984, 3, 265–287. [Google Scholar] [CrossRef]
- Singh, H.; Motwani, J.; Kumar, A. A review and analysis of the state-of-the-art research on productivity measurement. Ind. Manag. Data Syst. 2000, 100, 234–241. [Google Scholar] [CrossRef]
- Del Gatto, M.; Di Liberto, A.; Petraglia, C. Measuring productivity. J. Econ. Surv. 2011, 25, 952–1008. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Roos, P. Malmquist productivity indexes: A survey of theory and practice. In Index Numbers: Essays in Honour of Sten Malmquist; Springer: Dordrecht, The Netherlands, 1998; pp. 127–190. [Google Scholar]
- Pastor, J.T.; Lovell, C.K. A global Malmquist productivity index. Econ. Lett. 2005, 88, 266–271. [Google Scholar] [CrossRef]
- Zofio, J.L. Malmquist productivity index decompositions: A unifying framework. Appl. Econ. 2007, 39, 2371–2387. [Google Scholar] [CrossRef]
- Brzezicki, Ł. Origin and Evolution of Malmquist Productivity Index: Review of the Literature. Cent. Eur. Econ. J. 2025, 12, 102–119. [Google Scholar] [CrossRef]
- Chen, Y.; Ali, A.I. DEA Malmquist productivity measure: New insights with an application to computer industry. Eur. J. Oper. Res. 2004, 159, 239–249. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Margaritis, D. Malmquist productivity indexes and DEA. In Handbook on Data Envelopment Analysis; Springer: Boston, MA, USA, 2011; pp. 127–149. [Google Scholar]
- Zelenyuk, V.; Zhao, S. Inference for DEA estimators of Malmquist productivity indices: An overview, further improvements, and a guide for practitioners. Macroecon. Dyn. 2025, 29, e81. [Google Scholar] [CrossRef]
- Emrouznejad, A.; Tavana, M. Performance Measurement with Fuzzy Data Envelopment Analysis; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Wen, M. Uncertain Data Envelopment Analysis; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Olesen, O.B.; Petersen, N.C. Stochastic data envelopment analysis—A review. Eur. J. Oper. Res. 2016, 251, 2–21. [Google Scholar] [CrossRef]
- Peykani, P.; Hosseinzadeh Lotfi, F.; Sadjadi, S.J.; Ebrahimnejad, A.; Mohammadi, E. Fuzzy chance-constrained data envelopment analysis: A structured literature review, current trends, and future directions. Fuzzy Optim. Decis. Mak. 2022, 21, 197–261. [Google Scholar] [CrossRef]
- Bertsimas, D.; Brown, D.B.; Caramanis, C. Theory and applications of robust optimization. SIAM Rev. 2011, 53, 464–501. [Google Scholar] [CrossRef]
- Gabrel, V.; Murat, C.; Thiele, A. Recent advances in robust optimization: An overview. Eur. J. Oper. Res. 2014, 235, 471–483. [Google Scholar] [CrossRef]
- Gorissen, B.L.; Yanıkoğlu, İ.; Den Hertog, D. A practical guide to robust optimization. Omega 2015, 53, 124–137. [Google Scholar] [CrossRef]
- Peykani, P.; Mohammadi, E.; Farzipoor Saen, R.; Sadjadi, S.J.; Rostamy-Malkhalifeh, M. Data envelopment analysis and robust optimization: A review. Expert Syst. 2020, 37, e12534. [Google Scholar] [CrossRef]
- Mulvey, J.M.; Vanderbei, R.J.; Zenios, S.A. Robust optimization of large-scale systems. Oper. Res. 1995, 43, 264–281. [Google Scholar] [CrossRef]
- Snyder, L.V.; Daskin, M.S. Stochastic p-robust location problems. IIE Trans. 2006, 38, 971–985. [Google Scholar] [CrossRef]
- Assavapokee, T.; Realff, M.J.; Ammons, J.C. Min-max regret robust optimization approach on interval data uncertainty. J. Optim. Theory Appl. 2008, 137, 297–316. [Google Scholar] [CrossRef]
- Assavapokee, T.; Realff, M.J.; Ammons, J.C.; Hong, I.H. Scenario relaxation algorithm for finite scenario-based min–max regret and min–max relative regret robust optimization. Comput. Oper. Res. 2008, 35, 2093–2102. [Google Scholar] [CrossRef]
- Soyster, A.L. Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper. Res. 1973, 21, 1154–1157. [Google Scholar] [CrossRef]
- Ben-Tal, A.; Nemirovski, A. Robust solutions of linear programming problems contaminated with uncertain data. Math. Program. 2000, 88, 411–424. [Google Scholar] [CrossRef]
- Bertsimas, D.; Sim, M. The price of robustness. Oper. Res. 2004, 52, 35–53. [Google Scholar] [CrossRef]
- Fischetti, M.; Monaci, M. Light robustness. In Robust and Online Large-Scale Optimization; Springer: Berlin/Heidelberg, Germany, 2009; pp. 61–84. [Google Scholar]
- Delage, E.; Ye, Y. Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 2010, 58, 595–612. [Google Scholar] [CrossRef]
- Goh, J.; Sim, M. Distributionally robust optimization and its tractable approximations. Oper. Res. 2010, 58, 902–917. [Google Scholar] [CrossRef]
- Lin, F.; Fang, X.; Gao, Z. Distributionally robust optimization: A review on theory and applications. Numer. Algebra Control Optim. 2022, 12, 159–212. [Google Scholar] [CrossRef]
- Bertsimas, D.; Litvinov, E.; Sun, X.A.; Zhao, J.; Zheng, T. Adaptive robust optimization for the security constrained unit commitment problem. IEEE Trans. Power Syst. 2012, 28, 52–63. [Google Scholar] [CrossRef]
- Lorca, A.; Sun, X.A. Adaptive robust optimization with dynamic uncertainty sets for multi-period economic dispatch under significant wind. IEEE Trans. Power Syst. 2014, 30, 1702–1713. [Google Scholar] [CrossRef]
- Verástegui, F.; Lorca, A.; Olivares, D.E.; Negrete-Pincetic, M.; Gazmuri, P. An adaptive robust optimization model for power systems planning with operational uncertainty. IEEE Trans. Power Syst. 2019, 34, 4606–4616. [Google Scholar] [CrossRef]
- Bertsimas, D.; Sim, M.; Zhang, M. Adaptive distributionally robust optimization. Manag. Sci. 2019, 65, 604–618. [Google Scholar] [CrossRef]
- Shang, C.; Huang, X.; You, F. Data-driven robust optimization based on kernel learning. Comput. Chem. Eng. 2017, 106, 464–479. [Google Scholar] [CrossRef]
- Bertsimas, D.; Gupta, V.; Kallus, N. Data-driven robust optimization. Math. Program. 2018, 167, 235–292. [Google Scholar] [CrossRef]
- Goerigk, M.; Kurtz, J. Data-driven robust optimization using deep neural networks. Comput. Oper. Res. 2023, 151, 106087. [Google Scholar] [CrossRef]
- Jahanshahloo, G.R.; Hosseinzadeh Lotfi, F.; Valami, H.B. Malmquist productivity index with interval and fuzzy data, an application of Data envelopment analysis. Int. Math. Forum 2006, 1, 1607–1623. [Google Scholar] [CrossRef]
- Hosseinzadeh Lotfi, F.; Ghasemi, M.V. Malmquist productivity index on interval data in telecommunication firms, application of data envelopment analysis. Appl. Math. Sci. 2007, 1, 711–722. [Google Scholar]
- Jahanshahloo, G.R.; Hosseinzadeh Lotfi, F.; Nikoomaram, H.; Alimardani, M. Using a certain linear ranking function to measure the Malmquist productivity index with fuzzy data and application in insurance organization. Appl. Math. Sci. 2007, 1, 665–680. [Google Scholar]
- Emrouznejad, A.; Rostamy-Malkhalifeh, M.; Hatami-Marbini, A.; Tavana, M.; Aghayi, N. An overall profit Malmquist productivity index with fuzzy and interval data. Math. Comput. Model. 2011, 54, 2827–2838. [Google Scholar] [CrossRef]
- Hatami-Marbini, A.; Tavana, M.; Emrouznejad, A. Productivity growth and efficiency measurements in fuzzy environments with an application to health care. Int. J. Fuzzy Syst. Appl. 2012, 2, 1–35. [Google Scholar] [CrossRef]
- Khalili-Damghani, K.; Hosseinzadeh Lotfi, F. Performance measurement of police traffic centres using fuzzy DEA-based Malmquist productivity index. Int. J. Multicriteria Decis. Mak. 2012, 2, 94–110. [Google Scholar] [CrossRef]
- Payan, A.; Shariff, M. Scrutiny Malmquist productivity index on fuzzy data by credibility theory with an application to social security organizations. J. Uncertain Syst. 2013, 7, 36–49. [Google Scholar]
- Oruc, K.O. Malmquist Productivity Index with Grey Data. Int. J. Bus. Manag. 2015, 10, 186–193. [Google Scholar] [CrossRef]
- Aghayi, N.; Maleki, B.H. Interval Malmquist productivity index in DEA. Int. J. Data Envel. Anal. 2017, 5, 1243–1256. [Google Scholar]
- Atici, K.B.; Ulucan, A.; Bayar, I.U. The measurement of agricultural productivity change in OECD countries with Fuzzy data. RAIRO-Oper. Res. 2018, 52, 1003–1017. [Google Scholar] [CrossRef]
- Khalili-Damghani, K.; Haji-Sami, E. Productivity of steam power-plants using uncertain DEA-based Malmquist index in the presence of undesirable outputs. Int. J. Inf. Decis. Sci. 2018, 10, 162–180. [Google Scholar] [CrossRef]
- Peykani, P.; Seyed Esmaeili, F.S.; Rostamy-Malkhalifeh, M.; Hosseinzadeh Lotfi, F. Measuring productivity changes of hospitals in Tehran: The fuzzy Malmquist productivity index. Int. J. Hosp. Res. 2018, 7, 1–17. [Google Scholar]
- Aghayi, N.; Tavana, M.; Maleki, B. A Malmquist productivity index with the directional distance function and uncertain data. Sci. Iran. 2019, 26, 3819–3834. [Google Scholar] [CrossRef]
- Lee, Y.; Prabhu, V. Evaluation and monitoring of community youth prevention programs using a robust productivity index. Socio-Econ. Plan. Sci. 2019, 68, 100626. [Google Scholar] [CrossRef]
- Akbarian, D. Overall profit Malmquist productivity index under data uncertainty. Financ. Innov. 2020, 6, 6. [Google Scholar] [CrossRef]
- Peykani, P.; Seyed Esmaeili, F.S. Malmquist productivity index under fuzzy environment. Fuzzy Optim. Model. J. 2021, 2, 10–19. [Google Scholar]
- Hatami-Marbini, A.; Arabmaldar, A.; Asu, J.O. Robust productivity growth and efficiency measurement with undesirable outputs: Evidence from the oil industry. OR Spectr. 2022, 44, 1213–1254. [Google Scholar] [CrossRef]
- Seyed Esmaeili, F.S.; Rostamy-Malkhalifeh, M.; Hosseinzadeh Lotfi, F. Interval Network Malmquist Productivity Index for Examining Productivity Changes of Insurance Companies under Data Uncertainty: A Case Study. J. Math. Ext. 2022, 16, 9. [Google Scholar]
- Ait Sidhoum, A. Measuring farm productivity under production uncertainty. Aust. J. Agric. Resour. Econ. 2023, 67, 672–687. [Google Scholar] [CrossRef]
- Pourmahmoud, J.; Bagheri, N. Uncertain Malmquist productivity index: An application to evaluate healthcare systems during COVID-19 pandemic. Socio-Econ. Plan. Sci. 2023, 87, 101522. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Sheng, Y. Uncertain DEA-Malmquist productivity index model and its application. J. Intell. Fuzzy Syst. 2023, 44, 5295–5308. [Google Scholar] [CrossRef]
- Amirteimoori, A.; Allahviranloo, T.; Nematizadeh, M. A firm-specific Malmquist productivity index model for stochastic data envelopment analysis: An application to commercial banks. Financ. Innov. 2024, 10, 66. [Google Scholar] [CrossRef]
- Shakouri, R.; Salahi, M. Malmquist–Luenberger Productivity Index for a Two-Stage Structure in the Presence of Undesirable Outputs and Uncertainty. Adv. Oper. Res. 2024, 2024, 6905897. [Google Scholar] [CrossRef]
- Shojaie, S.E.; Sadjadi, S.J.; Tavakkoli-Moghaddam, R. Malmquist productivity index for two-stage network systems under data uncertainty: A real-world case study. PLoS ONE 2024, 19, e0307277. [Google Scholar] [CrossRef]
- Qu, J.; Liu, X.; Wang, B. Efficiency analysis of China’s energy utilization system based on the robust network DEA-Malmquist productivity index with common weights. Environ. Dev. Sustain. 2025, 27, 1041–1069. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. Ser. A (Gen.) 1957, 120, 253–281. [Google Scholar] [CrossRef]
- Cooper, W.W.; Seiford, L.M.; Zhu, J. Handbook on Data Envelopment Analysis; Springer: New York, NY, USA, 2011. [Google Scholar]
- Peykani, P.; Farzipoor Saen, R.; Seyed Esmaeili, F.S.; Gheidar-Kheljani, J. Window data envelopment analysis approach: A review and bibliometric analysis. Expert Syst. 2021, 38, e12721. [Google Scholar] [CrossRef]
- Panwar, A.; Olfati, M.; Pant, M.; Snasel, V. A review on the 40 years of existence of data envelopment analysis models: Historic development and current trends. Arch. Comput. Methods Eng. 2022, 29, 5397–5426. [Google Scholar] [CrossRef]
- Emrouznejad, A.; Yang, G.L. A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Econ. Plan. Sci. 2018, 61, 4–8. [Google Scholar] [CrossRef]
- Peykani, P.; Seyed Esmaeili, F.S.; Mirmozaffari, M.; Jabbarzadeh, A.; Khamechian, M. Input/output variables selection in data envelopment analysis: A Shannon entropy approach. Mach. Learn. Knowl. Extr. 2022, 4, 688–699. [Google Scholar] [CrossRef]
- Mergoni, A.; Emrouznejad, A.; Witte, K.D. Fifty years of data envelopment analysis. Eur. J. Oper. Res. 2025. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef]
- Emrouznejad, A.; Podinovski, V.; Charles, V.; Lu, C.; Moradi-Motlagh, A. Rajiv Banker’s lasting impact on data envelopment analysis. Ann. Oper. Res. 2025, 1–40. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S. Malmquist productivity indexes and Fisher ideal indexes. Econ. J. 1992, 102, 158–160. [Google Scholar] [CrossRef]
- Zhu, C.; Zhu, N.; Emrouznejad, A.; Ye, T. A new Malmquist productivity index with an application to commercial banks. IMA J. Manag. Math. 2024, 35, 215–240. [Google Scholar] [CrossRef]
- Karagiannis, G.; Ravanos, P. Analyzing changes in EU social inclusion using the global Malmquist productivity index. Int. Trans. Oper. Res. 2025, 32, 2798–2818. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Norris, M.; Zhang, Z. Productivity growth, technical progress, and efficiency change in industrialized countries. Am. Econ. Rev. 1994, 84, 66–83. [Google Scholar]
- Ben-Tal, A.; Nemirovski, A.; El Ghaoui, L. Robust Optimization; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Li, Z.; Ding, R.; Floudas, C.A. A comparative theoretical and computational study on robust counterpart optimization: I. Robust linear optimization and robust mixed integer linear optimization. Ind. Eng. Chem. Res. 2011, 50, 10567–10603. [Google Scholar] [CrossRef]
- Li, Z.; Tang, Q.; Floudas, C.A. A comparative theoretical and computational study on robust counterpart optimization: II. Probabilistic guarantees on constraint satisfaction. Ind. Eng. Chem. Res. 2012, 51, 6769–6788. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Floudas, C.A. A comparative theoretical and computational study on robust counterpart optimization: III. Improving the quality of robust solutions. Ind. Eng. Chem. Res. 2014, 53, 13112–13124. [Google Scholar] [CrossRef] [PubMed]
- Salahi, M.; Toloo, M.; Torabi, N. A new robust optimization approach to common weights formulation in DEA. J. Oper. Res. Soc. 2021, 72, 1390–1402. [Google Scholar] [CrossRef]
- Dehnokhalaji, A.; Khezri, S.; Emrouznejad, A. A box-uncertainty in DEA: A robust performance measurement framework. Expert Syst. Appl. 2022, 187, 115855. [Google Scholar] [CrossRef]
- Mardani Najafabadi, M.; Sabouni, M.; Azadi, H.; Taki, M. Rice production energy efficiency evaluation in north of Iran; application of Robust Data Envelopment Analysis. Clean. Eng. Technol. 2022, 6, 100356. [Google Scholar] [CrossRef]
- Li, J.; Wu, H.; Zhu, C.; Goh, M. Evaluating and analyzing renewable energy performance in OECD countries under uncertainty: A robust DEA approach with common weights. Appl. Energy 2024, 375, 124115. [Google Scholar] [CrossRef]
- Yeh, L.T. Constructing a robust data envelopment analysis model to evaluate the profitability efficiency of banks with financial loss. Appl. Econ. 2025, 57, 917–933. [Google Scholar] [CrossRef]
- Peykani, P.; Mohammadi, E.; Jabbarzadeh, A.; Rostamy-Malkhalifeh, M.; Pishvaee, M.S. A novel two-phase robust portfolio selection and optimization approach under uncertainty: A case study of Tehran stock exchange. PLoS ONE 2020, 15, e0239810. [Google Scholar] [CrossRef]
- Ghahtarani, A.; Saif, A.; Ghasemi, A. Robust portfolio selection problems: A comprehensive review. Oper. Res. 2022, 22, 3203–3264. [Google Scholar] [CrossRef]
- Peykani, P.; Gheidar-Kheljani, J.; Farzipoor Saen, R.; Mohammadi, E. Generalized robust window data envelopment analysis approach for dynamic performance measurement under uncertain panel data. Oper. Res. 2022, 22, 5529–5567. [Google Scholar] [CrossRef]
- Toloo, M.; Mensah, E.K.; Salahi, M. Robust optimization and its duality in data envelopment analysis. Omega 2022, 108, 102583. [Google Scholar] [CrossRef]
- Peykani, P.; Emrouznejad, A.; Mohammadi, E.; Gheidar-Kheljani, J. A novel robust network data envelopment analysis approach for performance assessment of mutual funds under uncertainty. Ann. Oper. Res. 2024, 339, 1149–1175. [Google Scholar] [CrossRef]
- Kao, C. Network data envelopment analysis: A review. Eur. J. Oper. Res. 2014, 239, 1–16. [Google Scholar] [CrossRef]
- Koronakos, G. A taxonomy and review of the network data envelopment analysis literature. In Machine Learning Paradigms: Applications of Learning and Analytics in Intelligent Systems; Springer: Berlin/Heidelberg, Germany, 2019; pp. 255–311. [Google Scholar]
- Peykani, P.; Mohammadi, E.; Emrouznejad, A. An adjustable fuzzy chance-constrained network DEA approach with application to ranking investment firms. Expert Syst. Appl. 2021, 166, 113938. [Google Scholar] [CrossRef]
- Alves, C.G.M.D.F.; Meza, L.A. A review of network DEA models based on slacks-based measure: Evolution of literature, applications, and further research direction. Int. Trans. Oper. Res. 2023, 30, 2729–2760. [Google Scholar] [CrossRef]
- Ratner, S.V.; Shaposhnikov, A.M.; Lychev, A.V. Network DEA and its applications (2017–2022): A systematic literature review. Mathematics 2023, 11, 2141. [Google Scholar] [CrossRef]
- Peykani, P.; Seyed Esmaeili, F.S.; Pishvaee, M.S.; Rostamy-Malkhalifeh, M.; Hosseinzadeh Lotfi, F. Matrix-based network data envelopment analysis: A common set of weights approach. Socio-Econ. Plan. Sci. 2024, 95, 102044. [Google Scholar] [CrossRef]
- Tavana, M.; Khalili-Damghani, K.; Santos Arteaga, F.J.; Hashemi, A. A Malmquist productivity index for network production systems in the energy sector. Ann. Oper. Res. 2020, 284, 415–445. [Google Scholar] [CrossRef]
- Bansal, P.; Mehra, A.; Kumar, S. Dynamic metafrontier Malmquist–Luenberger productivity index in network DEA: An application to banking data. Comput. Econ. 2022, 59, 297–324. [Google Scholar] [CrossRef]
- Ji, W.; Qin, F. Temporal-Spatial Analysis of Chinese Railway Efficiency Under CO2 Emissions: A Malmquist–Network Data Envelopment Analysis Model. Sustainability 2024, 16, 9013. [Google Scholar] [CrossRef]
- Shojaie, S.E.; Sadjadi, S.J.; Tavakkoli-Moghaddam, R. Malmquist productivity index under network structure and negative data: An application to banking industry. J. Syst. Manag. 2024, 10, 107–118. [Google Scholar]
- Nguyen, M.A.T. Productivity dynamics of US airlines and COVID-19 crisis: Insights from a two-stage network Malmquist productivity index. Appl. Econ. Lett. 2025, 1–8. [Google Scholar] [CrossRef]
- Zahedi-Seresht, M.; Jahanshahloo, G.R.; Jablonsky, J. A robust data envelopment analysis model with different scenarios. Appl. Math. Model. 2017, 52, 306–319. [Google Scholar] [CrossRef]
- Omrani, H.; Shamsi, M.; Emrouznejad, A.; Teplova, T. A robust DEA model under discrete scenarios for assessing bank branches. Expert Syst. Appl. 2023, 219, 119694. [Google Scholar] [CrossRef]
- Qu, S.; Feng, C.; Jiang, S.; Wei, J.; Xu, Y. Data-driven robust DEA models for measuring operational efficiency of endowment insurance system of different provinces in China. Sustainability 2022, 14, 9954. [Google Scholar] [CrossRef]
- Qu, S.; Xu, Y.; Ji, Y.; Feng, C.; Wei, J.; Jiang, S. Data-driven robust data envelopment analysis for evaluating the carbon emissions efficiency of provinces in China. Sustainability 2022, 14, 13318. [Google Scholar] [CrossRef]
Year | Research | DEA Model | Form | Uncertain Programming Approach | Application | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
EF | MF | FO | IP | SO | GS | RO | UT | ||||
2006 | Jahanshahloo et al. [37] | Charnes-Cooper-Rhodes | ✓ | ✓ | ✓ | Banking | |||||
2007 | Hosseinzadeh Lotfi and Ghasemi [38] | Charnes-Cooper-Rhodes | ✓ | ✓ | Telecommunication | ||||||
2007 | Jahanshahloo et al. [39] | Charnes-Cooper-Rhodes | ✓ | ✓ | Insurance | ||||||
2011 | Emrouznejad et al. [40] | Overall Profit | ✓ | ✓ | ✓ | Numerical Example | |||||
2012 | Hatami-Marbini et al. [41] | Charnes-Cooper-Rhodes Banker-Charnes-Cooper | ✓ | ✓ | Healthcare | ||||||
2012 | Khalili-Damghani and Hosseinzadeh Lotfi [42] | Charnes-Cooper-Rhodes | ✓ | ✓ | Traffic Monitoring and Control | ||||||
2013 | Payan and Shariff [43] | Charnes-Cooper-Rhodes | ✓ | ✓ | Social Security Organizations | ||||||
2015 | Oruc [44] | Charnes-Cooper-Rhodes | ✓ | ✓ | Numerical Example | ||||||
2017 | Aghayi and Maleki [45] | Directional Distance Function | ✓ | ✓ | Numerical Example | ||||||
2018 | Atici et al. [46] | Charnes-Cooper-Rhodes | ✓ | ✓ | Agriculture | ||||||
2018 | Khalili-Damghani and Haji-Sami [47] | Charnes-Cooper-Rhodes | ✓ | ✓ | Energy | ||||||
2018 | Peykani et al. [48] | Charnes-Cooper-Rhodes | ✓ | ✓ | Healthcare | ||||||
2019 | Aghayi et al. [49] | Directional Distance Function | ✓ | ✓ | ✓ | Banking | |||||
2019 | Lee and Prabhu [50] | Directional Distance Function | ✓ | ✓ | Innovation | ||||||
2020 | Akbarian [51] | Overall Profit | ✓ | ✓ | Numerical Example | ||||||
2021 | Peykani and Seyed Esmaeili [52] | Charnes-Cooper-Rhodes | ✓ | ✓ | Numerical Example | ||||||
2022 | Hatami-Marbini et al. [53] | Charnes-Cooper-Rhodes | ✓ | ✓ | Oil Refinery | ||||||
2022 | Seyed Esmaeili et al. [54] | Network DEA | ✓ | ✓ | Insurance | ||||||
2023 | Ait Sidhoum [55] | Directional Distance Function | ✓ | ✓ | Agriculture | ||||||
2023 | Pourmahmoud and Bagheri [56] | Charnes-Cooper-Rhodes Banker-Charnes-Cooper | ✓ | ✓ | Healthcare | ||||||
2023 | Wu and Sheng [57] | Charnes-Cooper-Rhodes | ✓ | ✓ | Environment | ||||||
2024 | Amirteimoori et al. [58] | Banker-Charnes-Cooper | ✓ | ✓ | Banking | ||||||
2024 | Shakouri and Salahi [59] | Network DEA | ✓ | ✓ | ✓ | Petroleum | |||||
2024 | Shojaie et al. [60] | Network DEA | ✓ | ✓ | Mutual Fund | ||||||
2025 | Qu et al. [61] | Network DEA | ✓ | ✓ | Energy | ||||||
The Current Research | Charnes-Cooper-Rhodes | ✓ | ✓ | ✓ | Stock Market |
Stocks | Inputs | Outputs | |||
---|---|---|---|---|---|
I (1) | I (2) | I (3) | O (1) | O (2) | |
Stock 01 | 1.793 | 6.053 | 0.664 | 13.838 | 23.027 |
Stock 02 | 0.536 | 3.332 | 1.680 | 8.679 | 23.263 |
Stock 03 | 0.411 | 3.752 | 6.501 | 1.797 | 13.479 |
Stock 04 | 1.260 | 6.209 | 1.196 | 10.212 | 22.428 |
Stock 05 | 1.311 | 2.402 | 1.478 | 38.539 | 95.513 |
Stock 06 | 1.174 | 6.305 | 4.012 | 5.127 | 25.694 |
Stock 07 | 1.210 | 1.757 | 4.328 | 5.923 | 31.555 |
Stock 08 | 0.748 | 3.950 | 2.088 | 7.456 | 23.023 |
Stock 09 | 1.691 | 0.248 | 0.726 | 11.446 | 54.885 |
Stock 10 | 3.435 | 0.104 | 0.203 | 6.664 | 8.015 |
Stock 11 | 1.775 | 1.511 | 0.977 | 29.772 | 58.854 |
Stock 12 | 1.085 | 0.742 | 2.544 | 19.071 | 67.587 |
Stock 13 | 1.922 | 1.337 | 1.680 | 21.337 | 57.188 |
Stock 14 | 1.204 | 2.011 | 1.664 | 26.676 | 71.055 |
Stock 15 | 1.253 | 1.423 | 2.049 | 21.847 | 66.609 |
Stocks | Inputs | Outputs | |||
---|---|---|---|---|---|
I (1) | I (2) | I (3) | O (1) | O (2) | |
Stock 01 | 1.269 | 3.775 | 0.944 | 12.904 | 25.084 |
Stock 02 | 1.038 | 1.910 | 2.234 | 1.132 | 3.662 |
Stock 03 | 0.460 | 2.230 | 4.623 | 0.467 | 2.624 |
Stock 04 | 1.384 | 3.634 | 0.852 | 7.900 | 14.635 |
Stock 05 | 0.709 | 1.649 | 3.802 | 4.898 | 23.522 |
Stock 06 | 1.317 | 4.897 | 2.986 | 4.694 | 18.706 |
Stock 07 | 1.134 | 2.237 | 2.683 | 8.641 | 28.172 |
Stock 08 | 0.342 | 2.253 | 15.061 | 0.199 | 3.193 |
Stock 09 | 2.424 | 0.277 | 0.477 | 16.122 | 15.373 |
Stock 10 | 3.807 | 0.285 | 0.152 | 25.611 | 29.516 |
Stock 11 | 1.322 | 1.238 | 1.852 | 16.712 | 47.660 |
Stock 12 | 1.120 | 0.613 | 2.867 | 13.575 | 52.498 |
Stock 13 | 1.994 | 1.195 | 1.619 | 21.173 | 55.455 |
Stock 14 | 0.915 | 1.394 | 4.015 | 8.102 | 40.634 |
Stock 15 | 1.130 | 1.073 | 2.883 | 11.561 | 44.896 |
Stocks | Γ = 0% | Γ = 25% | Γ = 50% | Γ = 100% | |||
---|---|---|---|---|---|---|---|
ϖ = 0% | ϖ = 1% | ϖ = 10% | ϖ = 1% | ϖ = 10% | ϖ = 1% | ϖ = 10% | |
Stock 01 | 0.68082 | 0.70861 | 1.01703 | 0.70861 | 1.01703 | 0.70861 | 1.01703 |
Stock 02 | 0.59572 | 0.62003 | 0.88990 | 0.62003 | 0.88990 | 0.62003 | 0.88990 |
Stock 03 | 0.45015 | 0.46852 | 0.67244 | 0.46852 | 0.67244 | 0.46852 | 0.67244 |
Stock 04 | 0.31786 | 0.33083 | 0.47482 | 0.33083 | 0.47482 | 0.33083 | 0.47482 |
Stock 05 | 1.00000 | 1.04081 | 1.49383 | 1.04081 | 1.49383 | 1.04081 | 1.49383 |
Stock 06 | 0.30040 | 0.31266 | 0.44875 | 0.31266 | 0.44875 | 0.31266 | 0.44875 |
Stock 07 | 0.37600 | 0.39134 | 0.56167 | 0.39134 | 0.56167 | 0.39134 | 0.56167 |
Stock 08 | 0.42247 | 0.43972 | 0.63110 | 0.43972 | 0.63110 | 0.43972 | 0.63110 |
Stock 09 | 1.00000 | 1.04081 | 1.49383 | 1.04081 | 1.49383 | 1.04081 | 1.49383 |
Stock 10 | 1.00000 | 1.04081 | 1.49383 | 1.04081 | 1.49383 | 1.04081 | 1.49383 |
Stock 11 | 1.00000 | 1.04081 | 1.49383 | 1.04081 | 1.49383 | 1.04081 | 1.49383 |
Stock 12 | 1.00000 | 1.04081 | 1.49383 | 1.04081 | 1.49383 | 1.04081 | 1.49383 |
Stock 13 | 0.73689 | 0.76573 | 1.08159 | 0.76697 | 1.10079 | 0.76697 | 1.10079 |
Stock 14 | 0.82695 | 0.86070 | 1.23532 | 0.86070 | 1.23532 | 0.86070 | 1.23532 |
Stock 15 | 0.82882 | 0.86264 | 1.23794 | 0.86264 | 1.23811 | 0.86264 | 1.23811 |
Stocks | Γ = 0% | Γ = 25% | Γ = 50% | Γ = 100% | |||
---|---|---|---|---|---|---|---|
ϖ = 0% | ϖ = 1% | ϖ = 10% | ϖ = 1% | ϖ = 10% | ϖ = 1% | ϖ = 10% | |
Stock 01 | 0.98961 | 1.03000 | 1.46420 | 1.03000 | 1.47830 | 1.03000 | 1.47830 |
Stock 02 | 0.08767 | 0.09125 | 0.13096 | 0.09125 | 0.13096 | 0.09125 | 0.13096 |
Stock 03 | 0.12170 | 0.12666 | 0.18179 | 0.12666 | 0.18179 | 0.12666 | 0.18179 |
Stock 04 | 0.59281 | 0.61701 | 0.86583 | 0.61701 | 0.88556 | 0.61701 | 0.88556 |
Stock 05 | 0.70779 | 0.73667 | 1.05731 | 0.73667 | 1.05731 | 0.73667 | 1.05731 |
Stock 06 | 0.32177 | 0.33490 | 0.48067 | 0.33490 | 0.48067 | 0.33490 | 0.48067 |
Stock 07 | 0.61319 | 0.63822 | 0.91600 | 0.63822 | 0.91600 | 0.63822 | 0.91600 |
Stock 08 | 0.19918 | 0.20731 | 0.29754 | 0.20731 | 0.29754 | 0.20731 | 0.29754 |
Stock 09 | 0.93386 | 0.97197 | 1.38868 | 0.97197 | 1.39503 | 0.97197 | 1.39503 |
Stock 10 | 1.00000 | 1.04081 | 1.49383 | 1.04081 | 1.49383 | 1.04081 | 1.49383 |
Stock 11 | 1.00000 | 1.04081 | 1.49383 | 1.04081 | 1.49383 | 1.04081 | 1.49383 |
Stock 12 | 1.00000 | 1.04081 | 1.49383 | 1.04081 | 1.49383 | 1.04081 | 1.49383 |
Stock 13 | 1.00000 | 1.04081 | 1.49383 | 1.04081 | 1.49383 | 1.04081 | 1.49383 |
Stock 14 | 0.94742 | 0.98609 | 1.41529 | 0.98609 | 1.41529 | 0.98609 | 1.41529 |
Stock 15 | 0.84906 | 0.88372 | 1.26835 | 0.88372 | 1.26835 | 0.88372 | 1.26835 |
Stocks | Γ = 0% | Γ = 25% | Γ = 50% | Γ = 100% | |||
---|---|---|---|---|---|---|---|
ϖ = 0% | ϖ = 1% | ϖ = 10% | ϖ = 1% | ϖ = 10% | ϖ = 1% | ϖ = 10% | |
Stock 01 | 0.48408 | 0.50384 | 0.72314. | 0.50384 | 0.72314 | 0.50384 | 0.72314 |
Stock 02 | 0.04842 | 0.05040 | 0.07234 | 0.05040 | 0.07234 | 0.05040 | 0.07234 |
Stock 03 | 0.07830 | 0.08149 | 0.11696 | 0.08149 | 0.11696 | 0.08149 | 0.11696 |
Stock 04 | 0.31365 | 0.32645 | 0.46853 | 0.32645 | 0.46853 | 0.32645 | 0.46853 |
Stock 05 | 0.45537 | 0.47396 | 0.68025 | 0.47396 | 0.68025 | 0.47396 | 0.68025 |
Stock 06 | 0.19496 | 0.20291 | 0.29123 | 0.20291 | 0.29123 | 0.20291 | 0.29123 |
Stock 07 | 0.34099 | 0.35491 | 0.50938 | 0.35491 | 0.50938 | 0.35491 | 0.50938 |
Stock 08 | 0.12815 | 0.13338 | 0.19143 | 0.13338 | 0.19143 | 0.13338 | 0.19143 |
Stock 09 | 1.56479 | 1.62865 | 2.32924 | 1.62865 | 2.33752 | 1.62865 | 2.33752 |
Stock 10 | 5.13268 | 5.34215 | 7.66733 | 5.34215 | 7.66733 | 5.34215 | 7.66733 |
Stock 11 | 0.66623 | 0.69285 | 0.98676 | 0.69342 | 0.99523 | 0.69342 | 0.99523 |
Stock 12 | 0.85678 | 0.89175 | 1.27988 | 0.89175 | 1.27988 | 0.89175 | 1.27988 |
Stock 13 | 0.77352 | 0.80509 | 1.13538 | 0.80509 | 1.15551 | 0.80509 | 1.15551 |
Stock 14 | 0.63427 | 0.66016 | 0.94749 | 0.66016 | 0.94749 | 0.66016 | 0.94749 |
Stock 15 | 0.61374 | 0.63879 | 0.91682 | 0.63879 | 0.91682 | 0.63879 | 0.91682 |
Stocks | Γ = 0% | Γ = 25% | Γ = 50% | Γ = 100% | |||
---|---|---|---|---|---|---|---|
ϖ = 0% | ϖ = 1% | ϖ = 10% | ϖ = 1% | ϖ = 10% | ϖ = 1% | ϖ = 10% | |
Stock 01 | 0.91959 | 0.95712 | 1.34665 | 0.95712 | 1.37371 | 0.95712 | 1.37371 |
Stock 02 | 1.28088 | 1.33315 | 1.91341 | 1.33315 | 1.91341 | 1.33315 | 1.91341 |
Stock 03 | 0.69967 | 0.72822 | 1.04518 | 0.72822 | 1.04518 | 0.72822 | 1.04518 |
Stock 04 | 0.73083 | 0.76065 | 1.09143 | 0.76065 | 1.09173 | 0.76065 | 1.09173 |
Stock 05 | 2.51212 | 2.61465 | 3.75210 | 2.61465 | 3.75268 | 2.61465 | 3.75268 |
Stock 06 | 0.46692 | 0.48597 | 0.69749 | 0.48597 | 0.69749 | 0.48597 | 0.69749 |
Stock 07 | 0.55636 | 0.57907 | 0.83111 | 0.57907 | 0.83111 | 0.57907 | 0.83111 |
Stock 08 | 0.79639 | 0.82889 | 1.18966 | 0.82889 | 1.18966 | 0.82889 | 1.18966 |
Stock 09 | 2.36949 | 2.46620 | 3.53961 | 2.46620 | 3.53961 | 2.46620 | 3.53961 |
Stock 10 | 0.74415 | 0.77452 | 1.11162 | 0.77452 | 1.11162 | 0.77452 | 1.11162 |
Stock 11 | 1.80349 | 1.87709 | 2.63266 | 1.87709 | 2.69410 | 1.87709 | 2.69410 |
Stock 12 | 1.43115 | 1.48956 | 2.13790 | 1.48956 | 2.13790 | 1.48956 | 2.13790 |
Stock 13 | 1.03744 | 1.07978 | 1.54976 | 1.07978 | 1.54976 | 1.07978 | 1.54976 |
Stock 14 | 1.76168 | 1.83358 | 2.63162 | 1.83358 | 2.63165 | 1.83358 | 2.63165 |
Stock 15 | 1.39076 | 1.44752 | 2.07755 | 1.44752 | 2.07755 | 1.44752 | 2.07755 |
Stocks | Γ = 0% | Γ = 25% | Γ = 50% | Γ = 100% | |||
---|---|---|---|---|---|---|---|
ϖ = 0% | ϖ = 1% | ϖ = 10% | ϖ = 1% | ϖ = 10% | ϖ = 1% | ϖ = 10% | |
Stock 01 | 0.87474 | 0.87474 | 0.87926 | 0.87474 | 0.87474 | 0.87474 | 0.87474 |
Stock 02 | 0.07459 | 0.07459 | 0.07459 | 0.07459 | 0.07459 | 0.07459 | 0.07459 |
Stock 03 | 0.17394 | 0.17394 | 0.17394 | 0.17394 | 0.17394 | 0.17394 | 0.17394 |
Stock 04 | 0.89466 | 0.89466 | 0.88475 | 0.89466 | 0.89466 | 0.89466 | 0.89466 |
Stock 05 | 0.35819 | 0.35819 | 0.35822 | 0.35819 | 0.35819 | 0.35819 | 0.35819 |
Stock 06 | 0.66876 | 0.66876 | 0.66876 | 0.66876 | 0.66876 | 0.66876 | 0.66876 |
Stock 07 | 0.99977 | 0.99977 | 0.99977 | 0.99977 | 0.99977 | 0.99977 | 0.99977 |
Stock 08 | 0.27543 | 0.27543 | 0.27543 | 0.27543 | 0.27543 | 0.27543 | 0.27543 |
Stock 09 | 0.78531 | 0.78531 | 0.78213 | 0.78531 | 0.78531 | 0.78531 | 0.78531 |
Stock 10 | 2.62629 | 2.62629 | 2.62629 | 2.62629 | 2.62629 | 2.62629 | 2.62629 |
Stock 11 | 0.60779 | 0.60754 | 0.61222 | 0.60779 | 0.60779 | 0.60779 | 0.60779 |
Stock 12 | 0.77373 | 0.77373 | 0.77373 | 0.77373 | 0.77373 | 0.77373 | 0.77373 |
Stock 13 | 1.00589 | 1.00671 | 1.00590 | 1.00590 | 1.00590 | 1.00590 | 1.00590 |
Stock 14 | 0.64225 | 0.64225 | 0.64226 | 0.64225 | 0.64225 | 0.64225 | 0.64225 |
Stock 15 | 0.67237 | 0.67237 | 0.67241 | 0.67237 | 0.67237 | 0.67237 | 0.67237 |
Stocks | Γ = 0% | Γ = 25% | Γ = 50% | Γ = 100% | |||
---|---|---|---|---|---|---|---|
ϖ = 0% | ϖ = 1% | ϖ = 10% | ϖ = 1% | ϖ = 10% | ϖ = 1% | ϖ = 10% | |
Stock 01 | 0.68082 | 0.66413 | 0.52947 | 0.65421 | 0.45655 | 0.65413 | 0.45576 |
Stock 02 | 0.59572 | 0.58099 | 0.46225 | 0.57236 | 0.41364 | 0.57236 | 0.39879 |
Stock 03 | 0.45015 | 0.43902 | 0.34929 | 0.43250 | 0.30134 | 0.43250 | 0.30134 |
Stock 04 | 0.31786 | 0.31060 | 0.25381 | 0.30596 | 0.22235 | 0.30539 | 0.21278 |
Stock 05 | 1.00000 | 0.98883 | 0.89527 | 0.97861 | 0.80880 | 0.96079 | 0.66942 |
Stock 06 | 0.30040 | 0.29298 | 0.23310 | 0.28862 | 0.20110 | 0.28862 | 0.20110 |
Stock 07 | 0.37600 | 0.36744 | 0.29975 | 0.36195 | 0.25643 | 0.36125 | 0.25170 |
Stock 08 | 0.42247 | 0.41203 | 0.32782 | 0.40591 | 0.28281 | 0.40591 | 0.28281 |
Stock 09 | 1.00000 | 0.98883 | 0.89527 | 0.97861 | 0.80880 | 0.96079 | 0.66942 |
Stock 10 | 1.00000 | 0.98386 | 0.85235 | 0.97208 | 0.75243 | 0.96079 | 0.66942 |
Stock 11 | 1.00000 | 0.98565 | 0.86818 | 0.97428 | 0.76968 | 0.96079 | 0.66942 |
Stock 12 | 1.00000 | 0.98873 | 0.89367 | 0.97837 | 0.80443 | 0.96079 | 0.66942 |
Stock 13 | 0.73689 | 0.72347 | 0.61488 | 0.71401 | 0.53585 | 0.70800 | 0.49329 |
Stock 14 | 0.82695 | 0.80831 | 0.71436 | 0.79623 | 0.63252 | 0.79452 | 0.55358 |
Stock 15 | 0.82882 | 0.81315 | 0.71106 | 0.80259 | 0.63674 | 0.79632 | 0.55483 |
Stocks | Γ = 0% | Γ = 25% | Γ = 50% | Γ = 100% | |||
---|---|---|---|---|---|---|---|
ϖ = 0% | ϖ = 1% | ϖ = 10% | ϖ = 1% | ϖ = 10% | ϖ = 1% | ϖ = 10% | |
Stock 01 | 0.98961 | 0.96874 | 0.80172 | 0.95427 | 0.68643 | 0.95080 | 0.66247 |
Stock 02 | 0.08767 | 0.08559 | 0.07095 | 0.08440 | 0.06328 | 0.08423 | 0.05869 |
Stock 03 | 0.12170 | 0.11869 | 0.09443 | 0.11693 | 0.08147 | 0.11693 | 0.08147 |
Stock 04 | 0.59281 | 0.58007 | 0.47791 | 0.57140 | 0.40947 | 0.56957 | 0.39684 |
Stock 05 | 0.70779 | 0.69029 | 0.54921 | 0.68003 | 0.47381 | 0.68003 | 0.47381 |
Stock 06 | 0.32177 | 0.31534 | 0.26380 | 0.31062 | 0.22849 | 0.30916 | 0.21540 |
Stock 07 | 0.61319 | 0.59865 | 0.48905 | 0.59036 | 0.43606 | 0.58915 | 0.41048 |
Stock 08 | 0.19918 | 0.19426 | 0.15455 | 0.19137 | 0.13334 | 0.19137 | 0.13334 |
Stock 09 | 0.93386 | 0.91198 | 0.73874 | 0.89860 | 0.63418 | 0.89724 | 0.62515 |
Stock 10 | 1.00000 | 0.98883 | 0.89527 | 0.97861 | 0.80880 | 0.96079 | 0.66942 |
Stock 11 | 1.00000 | 0.98743 | 0.87645 | 0.97630 | 0.78435 | 0.96079 | 0.66942 |
Stock 12 | 1.00000 | 0.98883 | 0.89527 | 0.97861 | 0.80880 | 0.96079 | 0.66942 |
Stock 13 | 1.00000 | 0.98835 | 0.88942 | 0.97771 | 0.79889 | 0.96079 | 0.66942 |
Stock 14 | 0.94742 | 0.92400 | 0.73515 | 0.91027 | 0.63423 | 0.91027 | 0.63423 |
Stock 15 | 0.84906 | 0.83305 | 0.71199 | 0.82196 | 0.62968 | 0.81577 | 0.56838 |
Stocks | Γ = 0% | Γ = 25% | Γ = 50% | Γ = 100% | |||
---|---|---|---|---|---|---|---|
ϖ = 0% | ϖ = 1% | ϖ = 10% | ϖ = 1% | ϖ = 10% | ϖ = 1% | ϖ = 10% | |
Stock 01 | 0.48408 | 0.47322 | 0.38729 | 0.46614 | 0.33291 | 0.46510 | 0.32406 |
Stock 02 | 0.04842 | 0.04729 | 0.03872 | 0.04659 | 0.03312 | 0.04653 | 0.03242 |
Stock 03 | 0.07830 | 0.07636 | 0.06075 | 0.07523 | 0.05241 | 0.07523 | 0.05241 |
Stock 04 | 0.31365 | 0.30671 | 0.25177 | 0.30213 | 0.21731 | 0.30135 | 0.20996 |
Stock 05 | 0.45537 | 0.44412 | 0.35335 | 0.43752 | 0.30484 | 0.43752 | 0.30484 |
Stock 06 | 0.19496 | 0.19014 | 0.15128 | 0.18731 | 0.13051 | 0.18731 | 0.13051 |
Stock 07 | 0.34099 | 0.33256 | 0.26855 | 0.32762 | 0.22967 | 0.32762 | 0.22827 |
Stock 08 | 0.12815 | 0.12498 | 0.09944 | 0.12312 | 0.08579 | 0.12312 | 0.08579 |
Stock 09 | 1.56479 | 1.53449 | 1.29130 | 1.51388 | 1.12226 | 1.50343 | 1.04750 |
Stock 10 | 5.13268 | 5.00579 | 3.99889 | 4.93142 | 3.48352 | 4.93142 | 3.43593 |
Stock 11 | 0.66623 | 0.65401 | 0.56559 | 0.64576 | 0.50628 | 0.64010 | 0.44599 |
Stock 12 | 0.85678 | 0.83923 | 0.71507 | 0.82654 | 0.63466 | 0.82318 | 0.57355 |
Stock 13 | 0.77352 | 0.75735 | 0.64246 | 0.74671 | 0.55928 | 0.74319 | 0.51781 |
Stock 14 | 0.63427 | 0.61988 | 0.50605 | 0.61062 | 0.43289 | 0.60940 | 0.42459 |
Stock 15 | 0.61374 | 0.59942 | 0.48654 | 0.59046 | 0.42365 | 0.58967 | 0.41085 |
Stocks | Γ = 0% | Γ = 25% | Γ = 50% | Γ = 100% | |||
---|---|---|---|---|---|---|---|
ϖ = 0% | ϖ = 1% | ϖ = 10% | ϖ = 1% | ϖ = 10% | ϖ = 1% | ϖ = 10% | |
Stock 01 | 0.91959 | 0.89893 | 0.73430 | 0.88549 | 0.64449 | 0.88353 | 0.61560 |
Stock 02 | 1.28088 | 1.24921 | 0.99559 | 1.23065 | 0.86718 | 1.23065 | 0.85745 |
Stock 03 | 0.69967 | 0.68237 | 0.54291 | 0.46837 | 0.67223 | 0.67223 | 0.46837 |
Stock 04 | 0.73083 | 0.71491 | 0.58855 | 0.70423 | 0.50612 | 0.70217 | 0.48923 |
Stock 05 | 2.51212 | 2.45833 | 2.05903 | 2.42159 | 1.82558 | 2.41362 | 1.68167 |
Stock 06 | 0.46692 | 0.45537 | 0.36230 | 0.44861 | 0.31256 | 0.44861 | 0.31256 |
Stock 07 | 0.55636 | 0.54261 | 0.43171 | 0.53455 | 0.37244 | 0.53455 | 0.37244 |
Stock 08 | 0.79639 | 0.77746 | 0.62427 | 0.76666 | 0.54443 | 0.76516 | 0.53312 |
Stock 09 | 2.36949 | 2.31515 | 1.95646 | 2.28364 | 1.69591 | 2.27658 | 1.58619 |
Stock 10 | 0.74415 | 0.72575 | 0.58708 | 0.71497 | 0.52631 | 0.71497 | 0.49815 |
Stock 11 | 1.80349 | 1.76429 | 1.47117 | 1.73793 | 1.29288 | 1.73277 | 1.20729 |
Stock 12 | 1.43115 | 1.39731 | 1.22894 | 1.37807 | 1.09543 | 1.37504 | 0.95805 |
Stock 13 | 1.03744 | 1.01665 | 0.89728 | 1.00344 | 0.79619 | 0.99676 | 0.69449 |
Stock 14 | 1.76168 | 1.72475 | 1.48450 | 1.69898 | 1.31578 | 1.69260 | 1.17931 |
Stock 15 | 1.39076 | 1.36528 | 1.16156 | 1.34931 | 1.03085 | 1.33622 | 0.93100 |
Stocks | Γ = 0% | Γ = 25% | Γ = 50% | Γ = 100% | |||
---|---|---|---|---|---|---|---|
ϖ = 0% | ϖ = 1% | ϖ = 10% | ϖ = 1% | ϖ = 10% | ϖ = 1% | ϖ = 10% | |
Stock 01 | 0.87474 | 0.87629 | 0.89366 | 0.87628 | 0.88127 | 0.87474 | 0.87474 |
Stock 02 | 0.07459 | 0.07468 | 0.07726 | 0.07471 | 0.07644 | 0.07459 | 0.07459 |
Stock 03 | 0.17394 | 0.17394 | 0.17394 | 0.20838 | 0.14519 | 0.17394 | 0.17394 |
Stock 04 | 0.89466 | 0.89511 | 0.89747 | 0.89511 | 0.88921 | 0.89466 | 0.89466 |
Stock 05 | 0.35819 | 0.35513 | 0.32446 | 0.35433 | 0.31276 | 0.35819 | 0.35819 |
Stock 06 | 0.66876 | 0.67038 | 0.68741 | 0.67034 | 0.68879 | 0.66876 | 0.66876 |
Stock 07 | 0.99977 | 0.99928 | 1.00741 | 0.99984 | 1.02403 | 0.99977 | 0.99977 |
Stock 08 | 0.27543 | 0.27530 | 0.27404 | 0.27517 | 0.27256 | 0.27543 | 0.27543 |
Stock 09 | 0.78531 | 0.78185 | 0.73798 | 0.78020 | 0.72033 | 0.78531 | 0.78531 |
Stock 10 | 2.62629 | 2.63292 | 2.67479 | 2.63510 | 2.66734 | 2.62629 | 2.62629 |
Stock 11 | 0.60779 | 0.60940 | 0.62298 | 0.61019 | 0.63171 | 0.60779 | 0.60779 |
Stock 12 | 0.77373 | 0.77503 | 0.76348 | 0.77455 | 0.76323 | 0.77373 | 0.77373 |
Stock 13 | 1.00589 | 1.00880 | 1.01770 | 1.00945 | 1.02336 | 1.00590 | 1.00590 |
Stock 14 | 0.64225 | 0.64097 | 0.59230 | 0.64100 | 0.57435 | 0.64225 | 0.64225 |
Stock 15 | 0.67237 | 0.67067 | 0.64762 | 0.66945 | 0.63750 | 0.67237 | 0.67237 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peykani, P.; Soltani, R.; Tanasescu, C.; Shojaie, S.E.; Jandaghian, A. The Robust Malmquist Productivity Index: A Framework for Measuring Productivity Changes over Time Under Uncertainty. Mathematics 2025, 13, 1727. https://doi.org/10.3390/math13111727
Peykani P, Soltani R, Tanasescu C, Shojaie SE, Jandaghian A. The Robust Malmquist Productivity Index: A Framework for Measuring Productivity Changes over Time Under Uncertainty. Mathematics. 2025; 13(11):1727. https://doi.org/10.3390/math13111727
Chicago/Turabian StylePeykani, Pejman, Roya Soltani, Cristina Tanasescu, Seyed Ehsan Shojaie, and Alireza Jandaghian. 2025. "The Robust Malmquist Productivity Index: A Framework for Measuring Productivity Changes over Time Under Uncertainty" Mathematics 13, no. 11: 1727. https://doi.org/10.3390/math13111727
APA StylePeykani, P., Soltani, R., Tanasescu, C., Shojaie, S. E., & Jandaghian, A. (2025). The Robust Malmquist Productivity Index: A Framework for Measuring Productivity Changes over Time Under Uncertainty. Mathematics, 13(11), 1727. https://doi.org/10.3390/math13111727