A Novel Consistency Index CI-G: Recruiting Compatibility Index G for Consistency Analysis
Abstract
1. Introduction
2. Theoretical Framework
2.1. The Compatibility Index G
2.1.1. Overview
2.1.2. Properties
2.2. Scales, Homogeneity and Consistency
2.3. Input Data and the Absolute Consistency Threshold
2.4. Consistency Indices in the Literature
3. Analytical Approach for Proposed CI-G Index: Cases and Results
- 1.
- Normalize each column of the initial PCM by dividing each element by the sum of all elements in that column;
- 2.
- Compute the priority vector from the normalized matrix using the eigenvector method;
- 3.
- Calculate the compatibility index Gi for each normalized column relative to the priority vector, take the average of Gi and calculate the complement (1 minus average Gi) that constitutes the CI-G index; that is:
- 4.
- The CI-G represents the degree of incompatibility (1 − G) or the weighted deviation with respect to the matrix eigenvector.
- 5.
- If the CI-G value is less than or equal to 10%, the matrix is considered consistent. In some contexts, a threshold of up to 15% may be deemed acceptable; however, values exceeding this level are not recommended due to the increased risk of inconsistency [38]. Table 1 shows the different possible thresholds and their interpretations.
- 6.
- If the matrix does not meet the consistency threshold, identify the smallest Gi index. The “i” index indicates the column most responsible for the inconsistency.
- 7.
- To determine the specific inconsistent cell within the identified column, compute the deviation matrix. The deviation matrix is obtained by taking the absolute difference between each element of the normalized matrix and the corresponding element in the priority vector, divided by the G index of the given column. (Note: Normalizing each column by Gi preserves the precedence order within the deviation matrix).
- 8.
- Finally, from the deviation matrix, identify the highest value “j” in column “i”. This pair (i,j) corresponds to the cell that should be revised in the original PCM. If the identified cell is below the diagonal, its reciprocal value (above the diagonal) should be considered.
Intensity | (CI-G) Value Range | (CI-G) Description | PCM Principal Eigenvector Compatibility G Value Range | PCM Principal Eigenvector Compatibility G Description |
---|---|---|---|---|
Very high | [0.0–0.1] | Highly consistent matrix | [0.90–1.00] | Fully compatible vectors |
High | [0.11–0.15] | Limited consistent matrix | [0.85–0.89] | Almost compatible vectors |
Moderate | [0.16–0.25] | Inconsistent matrix | [0.75–0.84] | Moderately compatible vectors (not cardinal compatibility) |
Low | [0.26–0.35] | Inconsistent matrix | [0.65–0.74] | Low compatible vectors |
Very low | [0.36–0.40] | Inconsistent matrix (random values) | [0.60–0.64] | Very low compatibility (random values) |
Null | [0.41–1.00] | Inconsistent matrix (random values) | [0.00–0.59] | Totally incompatible vectors (random values) |
- CI-G can be applied only over normalized priority vectors, which is the case in AHP/ANP pairwise comparison matrices.
- CI-G can be applied in PCMs that follow Axiom 1 (reciprocal PCM) and Axiom 2 (elements’ homogeneity in the PCM) of AHP/ANP.
3.1. Case 1: A 3 × 3 Consistent PCM
3.2. Case 2: A 3 × 3 Inconsistent PCM
3.3. Case 3: A 3 × 3 PCM with 3 Iterations of Consistency Adjustment
3.4. Case 4: A 5 × 5 PCM with 3 Iterations of Consistency Adjustment
3.5. Case 5: A 4 × 4 PCM with 3 Iterations of Consistency Adjustment
4. Conclusions
4.1. Limitations of the Study
4.2. Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PCM | Pairwise comparison matrix |
CI-G | Consistency Index-G |
AHP | Analytic hierarchy process |
ANP | Analytic network process |
CR | Consistency ratio |
RI | Random index |
Appendix A. Compatibility and Consistency
Saaty’s compatibility index: | C(A,B) = [ΣiΣj aij (bij)−1] n−2 |
Garuti’s compatibility index (G index): | C(A,B) = ½ Σ((ai + bi)Min(ai,bi)/Max(ai,bi)) |
Hilbert’s compatibility index: | C(A,B) = Log(Max(ai/bi)/Min(ai/bi) |
Inner vector product inverted: | C(A,B) = (Σaibi−1)/n |
Weighted inner vector product inverted: | C(A,B) = Σa(i)b(i)−1w(i)) |
Euclidean formula normalized: | C(A,B) = SQRT(½Σ(ai − bi)2) |
Vector Coordinates | Hadamard Prod. | (1-G) | Hilbert’s | 1-IVP | 1-Euclidean | ||
---|---|---|---|---|---|---|---|
Saaty’s Index | Garuti’s Index | Index | Dot Prod. | Normal. | |||
Case | Parallel Trend | Distance or Incompatibility | |||||
0 | 0.500 | 0.500 | 1.010% | 9.523% | 8.715% | 1.010% | 5.000% |
0.450 | 0.550 | ||||||
1 | 0.533 | 0.467 | 0.058% | 2.371% | 2.097% | 0.218% | 1.200% |
0.545 | 0.455 | ||||||
2 | 0.633 | 0.367 | 0.068% | 2.369% | 2.259% | 0.760% | 1.200% |
0.645 | 0.355 | ||||||
3 | 0.733 | 0.267 | 0.097% | 2.363% | 2.702% | 1.548% | 1.200% |
0.745 | 0.255 | ||||||
4 | 0.833 | 0.167 | 0.198% | 2.348% | 3.860% | 3.161% | 1.200% |
0.845 | 0.155 | ||||||
5 | 0.933 | 0.067 | 1.108% | 2.285% | 9.126% | 10.274% | 1.200% |
0.945 | 0.055 | ||||||
6 | 0.987 | 0.013 | 280.851% | 1.839% | 111.919% | 599.399% | 1.200% |
0.999 | 0.001 | ||||||
7 | 0.99900 | 0.00100 | 2452.727% | 0.149% | 200.043% | 4949.950% | 0.099% |
0.99999 | 0.00001 | ||||||
Case | Perpendicular Trend | Distance or Incompatibility | |||||
0 | 0.500 | 0.500 | 0.28% | 9.523% | 8.72% | 5.56% | 5.00% |
0.550 | 0.450 | ||||||
1 | 0.533 | 0.467 | 2.76% | 14.471% | 13.58% | 64.40% | 7.80% |
0.455 | 0.545 | ||||||
2 | 0.633 | 0.367 | 36.32% | 43.504% | 49.61% | 17.61% | 27.80% |
0.355 | 0.645 | ||||||
3 | 0.733 | 0.267 | 153.63% | 64.680% | 90.42% | 61.65% | 47.80% |
0.255 | 0.745 | ||||||
4 | 0.833 | 0.167 | 630.74% | 80.808% | 143.45% | 178.56% | 67.80% |
0.155 | 0.845 | ||||||
5 | 0.933 | 0.067 | 5931.69% | 93.780% | 242.26% | 751.73% | 88.30% |
0.050 | 0.950 | ||||||
6 | 0.987 | 0.013 | 1,896,128.85% | 99.291% | 487.99% | 49,250.65% | 98.60% |
0.001 | 0.999 | ||||||
7 | 0.9999 | 0.0001 | 249,994,999.976% | 99.999% | 999.999% | 4999.5% | 99.998% |
0.0001 | 0.9999 |
Decision-Maker | Cardinal Preferences | Ordinal Preferences |
---|---|---|
P1 | {0.364; 0.325; 0.311} | 1 2 3 |
P2 | {0.310; 0.325; 0.365} | 3 2 1 |
P3 | {0.501; 0.325; 0.174} | 1 2 3 |
- G(P1, P2) = 0.90 (90%) → Compatible
- G(P1, P3) = 0.77 (77%) → Not compatible
- G(P2, P3) = 0.70 (70%) → Not compatible
Alternatives | A | B | C | D | E | F | G | W (Eigenvector) | Actual |
---|---|---|---|---|---|---|---|---|---|
Electric range (A) | 1 | 2 | 5 | 8 | 7 | 9 | 9 | 0.393 | 0.392 |
Refrigerator (B) | 1/2 | 1 | 4 | 5 | 5 | 7 | 9 | 0.0261 | 0.242 |
TV (C) | 1/5 | 1/4 | 1 | 2 | 5 | 6 | 8 | 0.131 | 0.167 |
Dishwasher (D) | 1/8 | 1/5 | 1/2 | 1 | 4 | 9 | 9 | 0.110 | 0.120 |
Iron (E) | 1/7 | 1/5 | 1/5 | 1/4 | 1 | 5 | 9 | 0.061 | 0.047 |
Hair-dryer (F) | 1/9 | 1/7 | 1/6 | 1/9 | 1/5 | 1 | 5 | 0.028 | 0.028 |
Radio (G) | 1/9 | 1/9 | 1/8 | 1/9 | 1/9 | 1/5 | 1 | 0.016 | 0.003 |
Alternatives | Metric by AHP | Actual GNP Values (1972) | Metric by Fuzzy AHP |
---|---|---|---|
US | 0.427 | 0.413 | 0.469 |
USSR | 0.230 | 0.225 | 0.184 |
China | 0.021 | 0.43 | 0.030 |
France | 0.052 | 0.069 | 0.063 |
UK | 0.052 | 0.055 | 0.060 |
Japan | 0.123 | 0.104 | 0.107 |
W.Germany | 0.094 | 0.091 | 0.087 |
Compatibility of the Metric | G = 92.6% > 90% → Compatible | G = 88.2% < 90% → Incompatible |
Alternatives | Metric by AHP | Actual Weights | Metric by Fuzzy AHP |
---|---|---|---|
Radio | 0.09 | 0.10 | 0.081 |
Typewriter | 0.40 | 0.39 | 0.406 |
Large Attache Case | 0.20 | 0.20 | 0.193 |
Projector | 0.29 | 0.27 | 0.28 |
Small Attache Case | 0.04 | 0.04 | 0.04 |
Compatibility of the Metric | G = 94.2% > 90% → Compatible | G = 95% > 90% → Compatible |
Alternatives | AHP Metric | Actual Cost | Fuzzy AHP Metric |
---|---|---|---|
Mercedes | 0.2371 | 0.2453 | 0.247 |
BMW | 0.2303 | 0.2264 | 0.231 |
Acura-TL | 0.1516 | 0.1415 | 0.190 ** |
Lexus-ES | 0.1874 | 0.1887 | 0.063 |
Audi-AG | 0.1935 | 0.1981 | 0.168 |
Incompatibility of the Metric | G = 97.2% > 90% → Compatible | G = 89.9% (Borderline case) |
Appendix B. Equation (1) Numerical Demonstration
Appendix C. When the Inconsistency Source Is Not Located in the PCM
References
- Ishizaka, A.; Mu, E. What is so special about the Analytic Hierarchy and Network Process? Ann. Oper. Res. 2023, 326, 625–634. [Google Scholar] [CrossRef]
- Saaty, T.L. What is the analytic hierarchy process? In Mathematical Models for Decision Support; Springer: Boston, MA, USA, 1988; pp. 109–121. [Google Scholar]
- Brunelli, M. Introduction to the Analytic Hierarchy Process; Springer: New York, NY, USA, 2015. [Google Scholar]
- Saaty, T.L. Scaling Method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Crawford, G.B. The geometric mean procedure for estimating the scale of a judgment matrix. Mathl. Model. 1987, 9, 327–334. [Google Scholar] [CrossRef]
- Aguaron, J.; Moreno-Jimenez, J. The geometric consistency index: Approximated threshold. Eur. J. Oper. Res. 2003, 147, 137–145. [Google Scholar] [CrossRef]
- Fedrizzi, M.; Civolani, N.; Critch, A. Inconsistency evaluation in pairwise comparison using norm-based distances. Decis. Econ. Financ. 2020, 43, 657–672. [Google Scholar] [CrossRef]
- Lamata, M.T.; Peláez, J.I. A method for improving the consistency of judgments. Int. J. Uncertain. Fuzziness 2002, 10, 677–686. [Google Scholar] [CrossRef]
- Pelaéz, J.; Lamata, M. A new measure of consistency for positive reciprocal matrices. Comput. Math. Appl. 2003, 46, 1839–1845. [Google Scholar] [CrossRef]
- Benitez, J.; Delgado-Galván, X.; Gutierrez, J.A.; Izquierdo, J. Balancing Consistency and Expert Judgment In AHP. Math. Comput. 2011, 54, 1785–1790. [Google Scholar] [CrossRef]
- Benitez, J.; Delgado-Galván, X.; Izquierdo, J.; Pérez-García, R. Achieving Matrix Consistency in AHP Through Linearization. Appl. Math. Model. 2011, 35, 4449–4457. [Google Scholar] [CrossRef]
- Koczkodaj, W.W. A new definition of consistency of pairwise comparisons. Math. Comput. Model. 1993, 18, 79–84. [Google Scholar] [CrossRef]
- Duszak, Z.; Koczkodaj, W.W. Generalization of a new definition of consistency for pairwise comparisons. Inf. Process. Lett. 1994, 52, 273–276. [Google Scholar] [CrossRef]
- Pant, S.; Kumar, A.; Ram, M.; Klochkov, Y.; Sharma, H.K. Consistency Indices in Analytic Hierarchy Process: A Review. Mathematics 2022, 10, 1206. [Google Scholar] [CrossRef]
- Saaty, T.L. Theory and Applications of the Analytic Network Process; RWS Publications: Pittsburgh, PA, USA, 2005. [Google Scholar]
- Saaty, T.L. Decision Making with Dependence and Feedback: The Analytic Network Process; RWS Publications: Pittsburgh, PA, USA, 1996. [Google Scholar]
- Saaty, T.L.; Peniwati, K. Group Decision Making: Drawing out and Reconciling Differences; RWS Publications: Pittsburgh, PA, USA, 2008. [Google Scholar]
- Salomon, V.; Shimizu, T. Performance of three different methods of multiple criteria decision making applied to the supplier selection. In Proceedings of the 18th International Conference of MCDM Chania, Chania, Greece, 19–23 June 2006. [Google Scholar]
- Mu, E. A unified framework for site selection and business forecasting using ANP. J. Syst. Sci. Syst. Eng. 2006, 15, 178–188. [Google Scholar] [CrossRef]
- Garuti, C. Measuring compatibility (closeness) in weighted environments. In Proceedings of the International Symposium of the Analytic Hierarchy Process, Viña del Mar, Chile, 6 August 2007. [Google Scholar]
- Garuti, C.; Salomon, V. Compatibility indices between priority vectors. Int. J. Anal. Hierarchy Process 2012, 4, 152–160. [Google Scholar] [CrossRef]
- Garuti, C. Measuring in Weighted Environments: Moving from Metric to Order Topology; Universidad Tecnica Federico Santa Maria Press: Santiago de Chile, Chile, 2012. [Google Scholar]
- Saaty, T.L. Principia Mathematica Decernendi: Mathematical Principles of Decision Making; RWS Publications: Pittsburgh, PA, USA, 2010. [Google Scholar]
- Pereyra-Rojas, M.; Mu, E.; Gaskin, J. The Higher-Ed Organizational-Scholar Tension: How Scholarship Compatibility and the Alignment of Organizational and Faculty Skills, Values and Support Affect Scholar’s Performance and Well-Being. Front. Psychol. 2017, 8, 450. [Google Scholar] [CrossRef]
- Leon, Y.L.; Mu, E. Organizational MIndfulness Assessment and Its Impact on Rational Decision Making. Mathematics 2021, 9, 1851. [Google Scholar] [CrossRef]
- Garuti, C. A set theory justification of Garuti’s compatibility index. J. Multicriteria Decis. Anal. 2019, 27, 50–60. [Google Scholar] [CrossRef]
- Ovchinnikov, S. Functional Analysis: An Introductory Course; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Brunelli, M.; Fedrizzi, M. Axiomatic properties of inconsistency indices for pairwise comparisons. J. Oper. Res. Soc. 2015, 66, 1–15. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision Making for Leaders: The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Miller, G. The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychol. Rev. 1956, 63, 81–97. [Google Scholar] [CrossRef]
- Bose, A. Consistency re-evaluation in analytic hierarchy process based on simulated consistent matrices. J. Multicriteria Decis. Anal. 2022, 29, 393–401. [Google Scholar] [CrossRef]
- Garuti, C.; Mu, E. A Rate of Change and Center of Gravity Approach to Calculating Composite Indicator Thresholds: Moving from an Empirical to a Theoretical Perspective. Mathematics 2024, 12, 2019. [Google Scholar] [CrossRef]
- Ishizaka, A.; Labib, A. Review of the main developments in the analytic hierarchy process. Expert Syst. Appl. 2011, 38, 14336–14345. [Google Scholar] [CrossRef]
- Pelaéz, J.; Martinez, E.A.; Vargas, L.G. Consistency in Positive Reciprocal Matrices: An Improvement in Measurement Methods. IEEE Access 2018, 6, 25600–25609. [Google Scholar] [CrossRef]
- Salomon, V.A.P.; Gomes, L.F.A.M. Consistency Improvement in the Analytic Hierarchy Process. Mathematics 2024, 12, 828. [Google Scholar] [CrossRef]
- Sato, Y.; Tan, K.H. Inconsistency indices in pairwise comparisons: An improvement of the Consistency Index. Ann. Oper. Res. 2023, 326, 809–830. [Google Scholar] [CrossRef]
- Srdjevic, B.; Srdjevic, Z. Prioritisation in the analytic hierarchy process for real and generated comparison matrices. Expert Syst. Appl. 2023, 225, 120015. [Google Scholar] [CrossRef]
- Garuti, C. Reflections on scales from measurements, not measurement from scales. Int. J. Anal. Hierarchy Process 2017, 9, 349–360. [Google Scholar] [CrossRef]
- Garuti, C. New advances of the compatibility index “G” in weighted environments. Int. J. Anal. Hierarchy Process 2016, 8, 514–536. [Google Scholar] [CrossRef]
- Wu, Z.; Tu, J. Managing transitivity and consistency of preferences in AHP group decision making based on minimum modifications. Inf. Fusion 2021, 67, 125–135. [Google Scholar] [CrossRef]
- Whitetaker, R.W. Validation examples of the Analytic Hierarchy Process. Math. Comput. Model. 2007, 46, 840–859. [Google Scholar] [CrossRef]
- Barzilai, J.; Cook, W.D.; Golany, B. Consistent weights for judgments matrices of the relative importance of alternatives. Oper. Reearch Lett. 1987, 6, 131–134. [Google Scholar] [CrossRef]
- Kendall, M.G.; Smith, B.B. On the method of paired comparisons. Biometrika 1940, 31, 324–345. [Google Scholar] [CrossRef]
- Barzilai, J. Consistency measures for pairwise comparison matrices. J. Multi-Criteria Decis. Anal. 1998, 7, 123–132. [Google Scholar] [CrossRef]
- Stein, W.E.; Mizzi, P.J. The harmonic consistency index for the analytic hierarchy process. Eur. J. Oper. Res. 2007, 177, 488–497. [Google Scholar] [CrossRef]
- Golden, B.L.; Wasil, A.E.; Harker, P.T. An Alternative Measure of Consistency. In The Analytic Hierarchy Process: Applications and Studies; Golden, B.L., Wasil, A.E., Harker, P.T., Eds.; Springer: Berlin/Heidelberg, Germany, 1989; pp. 68–81. [Google Scholar]
- Ramik, J.; Koviny, P. Inconsistency of pair-wise comparison matrix with fuzzy elements based on geometric mean. Fuzzy Sets Syst. 2010, 161, 1604–1613. [Google Scholar] [CrossRef]
- Salo, A.; Hamalein, R. On the measurement of preference in the analytic hierarchy process. J. Multi-Criteria Decis. Anal. 1997, 6, 309–319. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, J. A consistency and consensus based decision support model for group decision making with multiplicative preference relations. Decis. Support Syst. 2012, 52, 757–767. [Google Scholar] [CrossRef]
- Kou, G.; Lin, C. A cosine maximization method for the priority vector derivation in AHP. Eur. J. Oper. Res. 2014, 235, 225–232. [Google Scholar] [CrossRef]
- Mazurek, J.; Ramik, J. Some new properties of inconsistent pairwise comparisons matrices. Int. J. Approx. Reason. 2019, 113, 119–132. [Google Scholar] [CrossRef]
- Del Moral, M.J.; Trillo, J.R.; Perez, I.J.; Tapia-Garcia, C.; Tapia, J.M. An Alternative Consensus Measure Based on the Gini Index for Group Decision-Making Problems. J. Adv. Comput. Intell. Intell. Inform. 2025, 29, 379–388. [Google Scholar] [CrossRef]
- Soon, M. Notes on the Use of Compatibility Index in the Analytic Hierarchy Process. In Proceedings of the International Symposium of the Analytic Hierarchy Process 2020, Virtual, 3–6 December 2020. [Google Scholar]
- Saaty, T.L. Fuzzy Judgments and Fuzzy Sets. Int. J. Strateg. Decis. Sci. 2008, 1, 18. [Google Scholar] [CrossRef]
Precision Test (Circle to Rectangle) | Precision Test (Circle to Triangle) | ||||
---|---|---|---|---|---|
a(1,5) | CR | CI-G | a(1,2) | CR | CI-G |
0.85 | 10% | 21.6% | 1.54 | 10% | 23.3% |
1.25 | 6% | 20.8% | 2 | 7% | 20.8% |
2 | 2% | 14.6% | 4 | 2% | 13.1% |
3 | 1% | 8.7% | 5 | 1% | 10.2% |
4 | 0% | 4.2% | 6.50 | 0% | 6.4% |
5.10 | 0% | 0.0% | 9.70 | 0% | 0.0% |
Exact Ratio, Circle to Rectangle = 5.11 | Exact Ratio, Circle to Triangle = 9.69 |
Item | Consistency | Weight | Projection | Threshold |
---|---|---|---|---|
(Index) | (Importance) | (Alignment) | (Independent?) | |
0 | CI-G | Satisfies | Satisfies | Yes |
1 | CI [4] | Dissatisfies | Dissatisfies | No |
2 | CI+ [13,40] | Dissatisfies | Dissatisfies | No |
3 | GCI [41] | Dissatisfies | Dissatisfies | No |
4 | CM [12,13] | Dissatisfies | Dissatisfies | No |
5 | RE [42] | Dissatisfies | Dissatisfies | No |
6 | HCI [43] | Dissatisfies | Dissatisfies | No |
7 | GW [44] | Dissatisfies | Dissatisfies | No |
8 | NIσn [45] | Dissatisfies | Dissatisfies | No |
9 | CMSH [46] | Dissatisfies | Dissatisfies | No |
10 | CIH [47] | Dissatisfies | Dissatisfies | No |
11 | CCI [48] | Partially Satisfies | Satisfies | No |
12 | RIC [49] | Partially Satisfies | Dissatisfies | No |
13 | Bose CR [31] | Dissatisfies | Dissatisfies | No |
14 | Inner dot product inverted [22] | Dissatisfies | Satisfies | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garuti, C.; Mu, E. A Novel Consistency Index CI-G: Recruiting Compatibility Index G for Consistency Analysis. Mathematics 2025, 13, 2666. https://doi.org/10.3390/math13162666
Garuti C, Mu E. A Novel Consistency Index CI-G: Recruiting Compatibility Index G for Consistency Analysis. Mathematics. 2025; 13(16):2666. https://doi.org/10.3390/math13162666
Chicago/Turabian StyleGaruti, Claudio, and Enrique Mu. 2025. "A Novel Consistency Index CI-G: Recruiting Compatibility Index G for Consistency Analysis" Mathematics 13, no. 16: 2666. https://doi.org/10.3390/math13162666
APA StyleGaruti, C., & Mu, E. (2025). A Novel Consistency Index CI-G: Recruiting Compatibility Index G for Consistency Analysis. Mathematics, 13(16), 2666. https://doi.org/10.3390/math13162666