Mathematical Modelling and Performance Assessment of Neural Network-Based Adaptive Law of Model Reference Adaptive System Estimator at Zero and Very Low Speeds in the Regenerating Mode
Abstract
1. Introduction
- ➢
- Considering rotor flux dynamics as correction terms in the estimation process.
- ➢
- Proposing a modified stator current-based MRAS estimator integrated with correction terms using rotor flux dynamics to continually update the value of the estimated speed to the correct value.
- ➢
- Using a neural network (NN) instead of a traditional PI controller for the adaptive law of the MRAS observer to enhance the accuracy of speed estimation.
- ➢
- Examining the developed method using simulation and experimental results at zero and very low speeds in motoring and regenerating modes.
- ➢
- Comparing the proposed NN-based adaptation mechanism for a stator current-based MRAS observer with a traditional PI controller.
2. IM Dynamic Model
3. Conventional MRAS Observer
- is the d-axis stator current error.
- is the q-axis stator current error.
- is the speed estimation error using the conventional method.
- is the estimated speed using the conventional method.
Speed Estimation Law
4. Stator Current-Based MRAS Observer with Rotor Flux Correction Terms
- is the speed estimation error using a modified method.
- is the estimated speed using a modified method.
5. Instability of Speed Sensorless IM Drives in the Regenerating Mode
6. Laboratory System Implementation
6.1. Speed Reversal at Very Low Speed
6.2. Sudden Load Disturbances at Zero Speed
6.3. Zero Stator Frequency, Plugging, and Regenerative Operations
7. Comparison of Conventional and Proposed MRAS Observers
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | Value | Parameter | Value |
---|---|---|---|
Rated power | 5.5 kW | Ls | 57.3 mH |
No. of pole pairs (p) | 2 | Lr | 57.3 mH |
Stator resistance (Rs) | 0.294 Ω | Lm | 56.43 mH |
Rotor resistance (Rr) | 0.14325 Ω | Rated voltage | 186 V |
Supply frequency | 50 Hz |
References
- Holtz, J. Sensorless control of induction motor drives. Proc. IEEE 2002, 90, 1359–1394. [Google Scholar] [CrossRef]
- Holtz, J. Sensorless Control of Induction Machines—With or Without Signal Injection? IEEE Trans. Ind. Electron. 2006, 53, 7–30. [Google Scholar] [CrossRef]
- Gao, Q.; Asher, G.M.; Sumner, M. Sensorless Position and Speed Control of Induction Motors Using High Frequency Injection and Without Offline Pre-Commissioning. IEEE Trans. Ind. Electron. 2007, 54, 2474–2481. [Google Scholar]
- Staines, C.S.; Caruana, C.; Asher, G.M.; Sumner, M. Sensorless Control of Induction Machines at Zero and Low Frequency Using Zero Sequence Currents. IEEE Trans. Ind. Electron. 2006, 53, 195–206. [Google Scholar] [CrossRef]
- Hinkkanen, M.; Leppänen, V.-M.; Luomi, J. Flux Observer Enhanced with Low-Frequency Signal Injection Allowing Sensorless Zero-Frequency Operation of Induction Motors. IEEE Trans. Ind. Appl. 2005, 41, 52–59. [Google Scholar] [CrossRef]
- Metwaly, M.K.; Elkalashy, N.I.; Zaky, M.S.; Wolbank, T.M. Slotting Saliency Extraction for Sensorless Torque Control of Standard Induction Machines. IEEE Trans. Energy Convers. 2018, 33, 68–77. [Google Scholar] [CrossRef]
- Ni, R.; Xu, D.; Blaabjerg, F.; Lu, K.; Wang, G.; Zhang, G. Square-Wave Voltage Injection Algorithm for PMSM Position Sensorless Control with High Robustness to Voltage Errors. IEEE Trans. Power Electron. 2017, 32, 5425–5437. [Google Scholar] [CrossRef]
- Smith, A.N.; Gadoue, S.M.; Finch, J.W. Improved Rotor Flux Estimation at Low Speeds for Torque MRAS-Based Sensorless Induction Motor Drives. IEEE Trans. Energy Convers. 2016, 31, 270–282. [Google Scholar] [CrossRef]
- Alsofyani, I.M.; Idris, N.R.N. Simple Flux Regulation for Improving State Estimation at Very Low and Zero Speed of a Speed Sensorless Direct Torque Control of an Induction Motor. IEEE Trans. Power Electron. 2016, 31, 3027–3035. [Google Scholar] [CrossRef]
- Zaky, M.S.; Metwaly, M.K.; Azazi, H.Z.; Deraz, S.A. A New Adaptive SMO for Speed Estimation of Sensorless Induction Motor Drives at Zero and Very Low Frequencies. IEEE Trans. Ind. Electron. 2018, 65, 6901–6911. [Google Scholar] [CrossRef]
- Zbede, Y.B.; Gadoue, S.M.; Atkinson, D.J. Model Predictive MRAS Estimator for Sensorless Induction Motor Drives. IEEE Trans. Ind. Electron. 2016, 63, 3511–3521. [Google Scholar] [CrossRef]
- Lefebvre, G.; Gauthier, J.-Y.; Hijazi, A.; Lin-Shi, X.; Le Digarcher, V. Observability-Index-Based Control Strategy for Induction Machine Sensorless Drive at Low Speed. IEEE Trans. Ind. Electron. 2017, 64, 1929–1938. [Google Scholar] [CrossRef]
- Sun, W.; Yu, Y.; Wang, G.; Li, B.; Xu, D. Design Method of Adaptive Full Order Observer with or without Estimated Flux Error in Speed Estimation Algorithm. IEEE Trans. Power Electron. 2016, 31, 2609–2626. [Google Scholar] [CrossRef]
- Kumar, R.; Das, S.; Syam, P.; Chattopadhyay, A.K. Review on Model Reference Adaptive System for Sensorless Vector Control of Induction Motor Drives. IET Electr. Power Appl. 2015, 9, 496–511. [Google Scholar] [CrossRef]
- Korzonek, M.; Tarchala, G.; Orlowska-Kowalska, T. Simple Stability Enhancement Method for Stator Current Error-Based MRAS-Type Speed Estimator for Induction Motor. IEEE Trans. Ind. Electron. 2020, 67, 5854–5866. [Google Scholar] [CrossRef]
- Sun, W.; Wang, Z.; Xu, D.; Wang, B. Robust Stability Improvement for Speed Sensorless Induction Motor Drive at Low Speed Range by Virtual Voltage Injection. IEEE Trans. Ind. Electron. 2020, 67, 2642–2654. [Google Scholar] [CrossRef]
- Lipcak, O.; Bauer, J. MRAS-Based Induction Machine Magnetizing Inductance Estimator with Included Effect of Iron Losses and Load. IEEE Access 2021, 9, 166234–166248. [Google Scholar] [CrossRef]
- Nguyen, N.-D.; Nam, N.N.; Yoon, C.; Lee, Y.I. Speed Sensorless Model Predictive Torque Control of Induction Motors Using a Modified Adaptive Full-Order Observer. IEEE Trans. Ind. Electron. 2022, 69, 6162–6172. [Google Scholar] [CrossRef]
- Zhou, M.; Cheng, S.; Feng, Y.; Xu, W.; Wang, L.; Cai, W. Full-Order Terminal Sliding-Mode-Based Sensorless Control of Induction Motor with Gain Adaptation. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 1978–1991. [Google Scholar] [CrossRef]
- Wang, T.; Wang, B.; Yu, Y.; Xu, D. High-Order Sliding-Mode Observer with Adaptive Gain for Sensorless Induction Motor Drives in the Wide-Speed Range. IEEE Trans. Ind. Electron. 2023, 70, 11055–11066. [Google Scholar] [CrossRef]
- Wang, T.; Wang, B.; Yu, Y.; Xu, D. Discrete Sliding-Mode-Based MRAS for Speed-Sensorless Induction Motor Drives in the High-Speed Range. IEEE Trans. Power Electron. 2023, 38, 5777–5790. [Google Scholar] [CrossRef]
- Nurettin, A.; İnanç, N. Sensorless Vector Control for Induction Motor Drive at Very Low and Zero Speeds Based on an Adaptive-Gain Super-Twisting Sliding Mode Observer. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 4332–4339. [Google Scholar] [CrossRef]
- Wróbel, K.; Tarchała, G.; Szabat, K.; Katsura, S. Improving Regenerating Mode Operation of MRAS-Based Induction Motor Speed Estimation Using the Multilayer Technique. IEEE Access 2024, 12, 153063–153073. [Google Scholar] [CrossRef]
- Tir, Z.; Orlowska-Kowalska, T.; Ahmed, H.; Houari, A. Adaptive High Gain Observer Based MRAS for Sensorless Induction Motor Drives. IEEE Trans. Ind. Electron. 2024, 71, 271–281. [Google Scholar] [CrossRef]
- Wang, T.; Yu, Y.; Wang, B.; Xu, D. Wide-Speed Range Stability Improvement of Speed-Sensorless Induction Motor Drives Based on Orthogonality Voltage-Model Observer. IEEE Trans. Power Electron. 2024, 39, 16521–16539. [Google Scholar] [CrossRef]
- Chen, H.; Li, J.; Lu, Y.; Yang, K.; Wu, L.; Liu, Z. Stability Improvement of Adaptive Full-Order Observer for Sensorless Induction Motor Drives in Low-Speed Regenerating Mode. IEEE Trans. Transp. Electrif. 2024, 10, 8–18. [Google Scholar] [CrossRef]
- Wang, T.; Wang, B.; Yu, Y.; Xu, D. A Closed-Loop Voltage Model Observer for Sensorless Induction Motor Drives Based on the Orthogonality and Sliding-Mode Technique. IEEE Trans. Ind. Electron. 2024, 71, 13693–13707. [Google Scholar] [CrossRef]
- Wang, T.; Yu, Y.; Zhang, Z.; Jin, S.; Wang, B.; Xu, D. An Auxiliary Variable-Based MRAS Speed Observer for Stable Wide-Speed Operation in Sensorless Induction Motor Drives. IEEE J. Emerg. Sel. Top. Power Electron. 2024, 12, 4926–4940. [Google Scholar] [CrossRef]
- Wang, B.; Huang, X.; Du, P.; Xu, D. Speed-Adaptive Observer Design for Sensorless Induction Motor Drives in Ultra-Low Speed Region with Graphical Method. IEEE Trans. Ind. Electron. 2024, 1–11. [Google Scholar] [CrossRef]
- Gadoue, S.M.; Giaouris, D.; Finch, J.W. Stator Current Model Reference Adaptive Systems Speed Estimator for Regenerating-Mode Low-Speed Operation of Sensorless Induction Motor Drives. IET Electr. Power Appl. 2013, 7, 597–606. [Google Scholar] [CrossRef]
- Maiti, S.; Verma, V.; Chakraborty, C.; Hori, Y. An Adaptive Speed Sensorless Induction Motor Drive with Artificial Neural Network for Stability Enhancement. IEEE Trans. Ind. Inform. 2012, 8, 757–766. [Google Scholar] [CrossRef]
- Cirrincione, M.; Accetta, A.; Pucci, M.; Vitale, G. MRAS Speed Observer for High Performance Linear Induction Motor Drives Based on Linear Neural Networks. IEEE Trans. Power Electron. 2013, 28, 123–134. [Google Scholar] [CrossRef]
- Benlaloui, I.; Drid, S.; Chrifi-Alaoui, L.; Ouriagli, M. Implementation of a New MRAS Speed Sensorless Vector Control of Induction Machine. IEEE Trans. Energy Convers. 2015, 30, 588–595. [Google Scholar] [CrossRef]
- Zaky, M.S.; Shaaban, S.M.; Fetouh, T.; Azazi, H.Z.; Mesalam, Y.I. Optimization of Observer Feedback Gains for Stable Sensorless IM Drives at Very Low Frequencies: A Comparative Study Between GA and PSO. Mathematics 2022, 10, 1710. [Google Scholar] [CrossRef]
- Abdullah, Q.; Farah, N.; Ahmed, M.S.; Shah, N.S.M.; Aydoğdu, Ö.; Talib, M.H.N.; Al-Moliki, Y.M.; Uğurenver, A.; Al-Mekhalfi, M.A.A.; Aihsan, M.Z.; et al. Sensorless Speed Control of Induction Motor Drives Using Reinforcement Learning and Self-Tuning Simplified Fuzzy Logic Controller. IEEE Access 2024, 12, 136485–136501. [Google Scholar] [CrossRef]
- Rashed, M.; Stronach, A.F. A Stable Back-EMF MRAS-Based Sensorless Low Speed Induction Motor Drive Insensitive to Stator Resistance Variation. IEE Proc. Electr. Power Appl. 2004, 151, 685–693. [Google Scholar] [CrossRef]
- Maiti, S.; Chakraborty, C. A New Instantaneous Reactive Power Based MRAS for Sensorless Induction Motor Drive. Simul. Model. Pract. Theory 2010, 18, 1314–1326. [Google Scholar] [CrossRef]
- Orlowska-Kowalska, T.; Korzonek, M.; Tarchala, G. Performance Analysis of Speed-Sensorless Induction Motor Drive Using Discrete Current-Error Based MRAS Estimators. Energies 2020, 13, 2595. [Google Scholar] [CrossRef]
- Zaky, M.S.; Metwaly, M.K. Sensorless Torque/Speed Control of Induction Motor Drives at Zero and Low Frequencies with Stator and Rotor Resistance Estimations. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 1416–1429. [Google Scholar] [CrossRef]
- Maksoud, H.A.; Shaaban, S.M.; Zaky, M.S.; Azazi, H.Z. Performance and Stability Improvement of AFO for Sensorless IM Drives in Low Speeds Regenerating Mode. IEEE Trans. Power Electron. 2019, 34, 7812–7825. [Google Scholar] [CrossRef]
Hyperparameter | Tested Values | Selected Value |
---|---|---|
Learning Rate | 0.1, 0.01, 0.001 | 0.01 |
Number of Hidden Layers | 1, 2, 3 | 2 |
Neurons per Hidden Layer | 16, 32, 64, 128 | 64 |
Activation Function | ReLU, Tanh, Sigmoid | ReLU |
Optimizer | SGD, Adam, RMSProp | Adam |
Batch Size | 16, 32, 64 | 32 |
Epochs | 50, 100, 200 | 100 |
Early Stopping | Enabled (patience = 10) | Yes |
Cross-Validation | 5-fold | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaky, M.S.; Tawfiq, K.B.; Metwaly, M.K. Mathematical Modelling and Performance Assessment of Neural Network-Based Adaptive Law of Model Reference Adaptive System Estimator at Zero and Very Low Speeds in the Regenerating Mode. Mathematics 2025, 13, 1715. https://doi.org/10.3390/math13111715
Zaky MS, Tawfiq KB, Metwaly MK. Mathematical Modelling and Performance Assessment of Neural Network-Based Adaptive Law of Model Reference Adaptive System Estimator at Zero and Very Low Speeds in the Regenerating Mode. Mathematics. 2025; 13(11):1715. https://doi.org/10.3390/math13111715
Chicago/Turabian StyleZaky, Mohamed S., Kotb B. Tawfiq, and Mohamed K. Metwaly. 2025. "Mathematical Modelling and Performance Assessment of Neural Network-Based Adaptive Law of Model Reference Adaptive System Estimator at Zero and Very Low Speeds in the Regenerating Mode" Mathematics 13, no. 11: 1715. https://doi.org/10.3390/math13111715
APA StyleZaky, M. S., Tawfiq, K. B., & Metwaly, M. K. (2025). Mathematical Modelling and Performance Assessment of Neural Network-Based Adaptive Law of Model Reference Adaptive System Estimator at Zero and Very Low Speeds in the Regenerating Mode. Mathematics, 13(11), 1715. https://doi.org/10.3390/math13111715