Local Well-Posedness of Classical Solutions to the Time-Dependent Ginzburg–Landau Model for Superconductivity in
Abstract
1. Introduction
2. Local Well-Posedness Analysis
3. A Regularity Criterion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, B.; Yuan, G. Cauchy problem for the Ginzburg-Landau equation for the superconductivity model. Proc. R. Soc. Edinb. Sect. A Math. 1997, 127, 1181–1192. [Google Scholar] [CrossRef]
- Akiyama, T.; Kasai, H.; Tsutsumi, M. On the existence of the solution of the time dependent Ginzburg-Landau equations in . Funkc. Ekvacioj 2000, 43, 255–270. [Google Scholar]
- Kato, T. Strong Lp-solutions of the Navier-Stokes equation in with applications to weak solutions. Math. Z. 1984, 187, 481–490. [Google Scholar] [CrossRef]
- Fan, J.; Jiang, S. Global existence of weak solutions of a time-dependent 3-D Ginzburg-Landau model for superconductivity. Appl. Math. Lett. 2003, 16, 435–440. [Google Scholar] [CrossRef]
- Chen, Z.M.; Elliott, C.; Tang, Q. Justification of a two-dimensional evolutionary Ginzburg-Landau superconductivity model. RAIRO Model Math. Anal. Numer. 1998, 32, 25–50. [Google Scholar] [CrossRef]
- Chen, Z.M.; Hoffmann, K.H.; Liang, J. On a nonstationary Ginzburg-Landau superconductivity model. Math. Meth. Appl. Sci. 1993, 16, 855–875. [Google Scholar] [CrossRef]
- Du, Q. Global existence and uniqueness of solutions of the time dependent Ginzburg-Landau model for superconductivity. Appl. Anal. 1994, 52, 1–17. [Google Scholar] [CrossRef]
- Tang, Q. On an evolutionary system of Ginzburg-Landau equations with fixed total magnetic flux. Comm. Partial. Differ. Equ. 1995, 20, 1–36. [Google Scholar]
- Tang, Q.; Wang, S. Time dependent Ginzburg-Landau equation of superconductivity. Phys. D 1995, 88, 139–166. [Google Scholar] [CrossRef]
- Fan, J.; Ozawa, T. Global well-posedness of weak solutions to the time-dependent Ginzburg-Landau model for superconductivity. Taiwan. J. Math. 2018, 22, 851–858. [Google Scholar] [CrossRef]
- Fan, J.; Samet, B.; Zhou, Y. Uniform regularity for a 3D time-dependent Ginzburg-Landau model in superconductivity. Comput. Math. Appl. 2018, 75, 3244–3248. [Google Scholar] [CrossRef]
- Fan, J.; Gao, H.; Guo, B. Uniqueness of weak solutions to the 3D Ginzburg-Landau superconductivity model. Int. Math. Res. Not. 2015, 2015, 1239–1246. [Google Scholar] [CrossRef]
- Fan, J.; Gao, H. Uniqueness of weak solutions in critical spaces of the 3-D time-dependent Ginzburg-Landau equations for superconductivity. Math. Nachr. 2010, 283, 1134–1143. [Google Scholar] [CrossRef]
- Gao, H.; Fan, J.; Nakamura, G. Weak-very weak uniqueness to the time-dependent Ginzburg-Landau model for superconductivity in . Results Appl. Math. 2021, 12, 100183. [Google Scholar] [CrossRef]
- Fan, J.; Zhou, Y. A regularity criterion to the time-dependent Ginzburg-Landau model for superconductivity in . J. Math. Anal. Appl. 2020, 483, 123653. [Google Scholar] [CrossRef]
- Fan, J.; Zhou, Y. A note on the time-dependent Ginzburg-Landau model for superconductivity in . Appl. Math. Lett. 2020, 103, 106208. [Google Scholar] [CrossRef]
- Kato, T.; Ponce, G. Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math. 1988, 41, 891–907. [Google Scholar] [CrossRef]
- Caffarelli, L.; Silrestre, L. An extension problem related to the fractional Laplacian, Comm. Partial. Differ. Equ. 2007, 32, 1245–1260. [Google Scholar] [CrossRef]
- Caffarelli, L.; Vasseur, A. Drift diffusion equations with fractional diffusion and the quasigeostrophic equation. Ann. Math. 2010, 171, 1903–1930. [Google Scholar] [CrossRef]
- Kozono, H.; Ogawa, T.; Taniuchi, Y. The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math. Z. 2002, 242, 251–278. [Google Scholar] [CrossRef]
- Friedman, A. Partial Differential Equations of Parabolic Type; Prentice Hall: Hoboken, NJ, USA, 1964. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Zhou, Y.
Local Well-Posedness of Classical Solutions to the Time-Dependent Ginzburg–Landau Model for Superconductivity in
Fan J, Zhou Y.
Local Well-Posedness of Classical Solutions to the Time-Dependent Ginzburg–Landau Model for Superconductivity in
Fan, Jishan, and Yong Zhou.
2025. "Local Well-Posedness of Classical Solutions to the Time-Dependent Ginzburg–Landau Model for Superconductivity in
Fan, J., & Zhou, Y.
(2025). Local Well-Posedness of Classical Solutions to the Time-Dependent Ginzburg–Landau Model for Superconductivity in