Fault-Tolerant Path Embedding in Folded Hypercubes Under Conditional Vertex Constraints
Abstract
:1. Introduction
2. Preliminaries
3. Path Embedding Strategies Under Conditional Fault Constraints
4. Conclusions
- For odd , the path length in is at least (or, ) when ;
- For even , the path length in is at least in when .
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bose, J.; Saini, P. Hypercube-based parallel architectures. IEEE Trans. Parallel Distrib. Systems 1992, 3, 676–685. [Google Scholar]
- El-Amawy, A.; Latifi, S. Properties and performance of folded hypercubes. IEEE Trans. Parallel Distrib. Syst. 1991, 2, 31–42. [Google Scholar] [CrossRef]
- Kim, J.; Shin, K.G. Operationally enhanced folded hypercubes. IEEE Trans. Parallel Distrib. Syst. 1994, 5, 1310–1316. [Google Scholar] [CrossRef]
- Hsieh, S.-Y.; Tsai, C.-Y.; Chen, C.-A. Strong diagnosability and conditional diagnosability of multiprocessor systems and folded hypercubes. IEEE Trans. Comput. 2012, 62, 1472–1477. [Google Scholar] [CrossRef]
- Zhu, Q.; Xu, J.-M.; Hou, X.; Xu, M. On reliability of the folded hypercubes. Inf. Sci. 2007, 177, 1782–1788. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, L.; Feng, X. Reliability measures in relation to the h-extra edge-connectivity of folded hypercubes. Theor. Comput. Sci. 2016, 615, 71–77. [Google Scholar] [CrossRef]
- Cheng, Q.; Li, P.; Xu, M. Conditional (edge-) fault-tolerant strong Menger (edge) connectivity of folded hypercubes. Theor. Comput. Sci. 2018, 728, 1–8. [Google Scholar] [CrossRef]
- Robledo, F.; Romero, P.; Sartor, P.; Stabile, L.; Viera, O. A survivable and reliable network topological design model. In Reliability and Maintenance—An Overview of Cases; IntechOpen: London, UK, 2019; pp. 1–23. [Google Scholar]
- Latifi, S.; Hegde, M.; Naraghi-Pour, M. Conditional connectivity measures for large multiprocessor systems. IEEE Trans. Comput. 1994, 43, 218–222. [Google Scholar] [CrossRef]
- Chen, X.-B. Some results on topological properties of folded hypercubes. Inf. Process. Lett. 2009, 109, 395–399. [Google Scholar] [CrossRef]
- Hsieh, S.Y. Some edge-fault-tolerant properties of the folded hypercube. Netw. Int. J. 2008, 51, 92–101. [Google Scholar] [CrossRef]
- Kuo, C.-N.; Cheng, Y.-H. Every edge lies on cycles of folded hypercubes with a pair of faulty adjacent vertices. Discret. Appl. Math. 2021, 294, 1–9. [Google Scholar] [CrossRef]
- Lai, C.-N. Optimal construction of node-disjoint shortest paths in folded hypercubes. J. Parallel Distrib. Comput. 2017, 102, 37–41. [Google Scholar] [CrossRef]
- Lü, H.; Wu, T. On the conjecture of bijection between perfect matching and sub-hypercube in folded hypercubes. Discret. Appl. Math. 2020, 279, 192–194. [Google Scholar] [CrossRef]
- Kueng, T.-L.; Liang, T.; Hsu, L.-H.; Tan, J.J. Long paths in hypercubes with conditional node-faults. Inf. Sci. 2009, 179, 667–681. [Google Scholar] [CrossRef]
- Hsu, L.-H.; Lin, C.-K. Graph Theory and Interconnection Networks; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Hsieh, S.-Y.; Kuo, C.-N. Hamiltonian-connectivity and strongly Hamiltonian-laceability of folded hypercubes. Comput. Math. Appl. 2007, 53, 1040–1044. [Google Scholar] [CrossRef]
- Fu, J. Longest fault-free paths in hypercubes with vertex faults. Inf. Sci. 2006, 176, 759–771. [Google Scholar] [CrossRef]
- Kuo, C.-N.; Chou, H.-H.; Chang, N.-W.; Hsieh, S.-Y. Fault-tolerant path embedding in folded hypercubes with both node and edge faults. Theor. Comput. Sci. 2013, 475, 82–91. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, C.-N.; Cheng, Y.-H. Fault-Tolerant Path Embedding in Folded Hypercubes Under Conditional Vertex Constraints. Mathematics 2025, 13, 1648. https://doi.org/10.3390/math13101648
Kuo C-N, Cheng Y-H. Fault-Tolerant Path Embedding in Folded Hypercubes Under Conditional Vertex Constraints. Mathematics. 2025; 13(10):1648. https://doi.org/10.3390/math13101648
Chicago/Turabian StyleKuo, Che-Nan, and Yu-Huei Cheng. 2025. "Fault-Tolerant Path Embedding in Folded Hypercubes Under Conditional Vertex Constraints" Mathematics 13, no. 10: 1648. https://doi.org/10.3390/math13101648
APA StyleKuo, C.-N., & Cheng, Y.-H. (2025). Fault-Tolerant Path Embedding in Folded Hypercubes Under Conditional Vertex Constraints. Mathematics, 13(10), 1648. https://doi.org/10.3390/math13101648