The Application of Principal Component Analysis and the Wilson Model in Urban Economics
Abstract
:1. Introduction to the Concept of Spatial Information Diffusion and the Theoretical Framework of Urban Spatial Information Diffusion
2. Introduction to the Theory of Wilson Model
3. Measurement of Spatial Information Diffusion in Chinese Prefecture-Level Cities
4. Empirical Results and Analysis
4.1. Descriptive Statistical Analysis
4.2. Benchmark Regression Analysis
5. Further Discussion
6. Conclusions and Suggestions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baldwin, R.E.; Forslid, R. The Core-Periphery Model and Endogenous Growth: Stabilizing and Destabilizing Integration. Economica 1999, 67, 307–324. [Google Scholar] [CrossRef]
- Ottaviano, G.I.P.; Tabuchi, T.; Thisse, J.F. Agglomeration and trade revisited. Int. Econ. Rev. 2002, 43, 409–436. [Google Scholar] [CrossRef]
- Fujita, M.; Krugman, P.; Venables, A.J. The Spatial Economy; MIT Press: Cambridge, MA, USA, 1999; pp. 61–78. [Google Scholar]
- Marshall, A. Principles of Economics; MacMillan: London, UK, 1920. [Google Scholar]
- Liang, L.; Li, Y. Inter Industry Agglomeration, Externalities, and Financial Services Agglomeration; Tongji University: Shanghai, China, 2014. [Google Scholar]
- Xia, Y.; Lu, M. Cross century urban human capital footprint: Historical heritage, policy shocks, and labor mobility. Econ. Res. 2019, 1, 132–149. [Google Scholar]
Infrastructure | Number of local telephone users in the city at the end of the year/person |
Number of mobile phone users in urban areas at the end of the year/person | |
Number of urban Internet users/person | |
Number of post offices in cities at the end of the year/10,000 people | |
Scale of Information Industry Development | The total amount of postal services in the city in that year/GDP |
Scale of Information Industry Development | |
Proportion of added value of urban tertiary industry to GDP | |
Proportion of urban tertiary industry employees | |
Information subject | Employment situation in urban information transmission, computer and software industries/10,000 people |
Number of students in urban regular higher education institutions/person |
KMO and Bartlett’s Test | ||
---|---|---|
The Kaiser–Meyer–Olkin measure of sampling adequacy | 0.807 | |
Bartlett’s sphericity test | Approximate chi square | 17,911.836 |
df | 45 | |
Sig. | 0.000 |
Total Variance Explained | |||||||||
---|---|---|---|---|---|---|---|---|---|
Ingredients | Initial Eigenvalue | Extract the Sum of Squares and Load It | Rotating Sum of Squares Loading | ||||||
Amount to | % of Variance | Accumulated% | Amount to | % of Variance | Accumulated% | Amount to | % of Variance | Accumulated% | |
1 | 4.364 | 43.638 | 43.638 | 4.364 | 43.638 | 43.638 | 4.037 | 40.368 | 40.368 |
2 | 1.576 | 15.759 | 59.397 | 1.576 | 15.759 | 59.397 | 1.903 | 19.029 | 59.397 |
3 | 0.857 | 8.566 | 67.964 | ||||||
4 | 0.761 | 7.609 | 75.572 | ||||||
5 | 0.716 | 7.156 | 82.729 | ||||||
6 | 0.534 | 5.336 | 88.065 | ||||||
7 | 0.482 | 4.825 | 92.890 | ||||||
8 | 0.290 | 2.903 | 95.793 | ||||||
9 | 0.223 | 2.232 | 98.025 | ||||||
10 | 0.197 | 1.975 | 100.000 |
Component Matrix a | ||
---|---|---|
Ingredients | ||
1 | 2 | |
Number of local telephone users in the city at the end of the year/person | 0.795 | 0.086 |
Number of mobile phone users in urban areas at the end of the year/person | 0.149 | 0.581 |
Number of urban Internet users/person | 0.285 | 0.705 |
Number of post offices in cities at the end of the year/10,000 people | 0.741 | −0.464 |
The total amount of postal services in the city in that year | 0.752 | −0.259 |
The total amount of telecommunications services in the city that year | 0.798 | 0.305 |
Proportion of urban tertiary industry employees | 0.694 | −0.505 |
Proportion of added value of urban tertiary industry to GDP | 0.617 | 0.115 |
Employment situation in urban information transmission, computer and software industries/10,000 people | 0.744 | 0.019 |
Number of students in urban regular higher education institutions/person | 0.679 | 0.299 |
Main factor | 1 | 2 |
Variance contribution rate | 4.364 | 1.576 |
Maximum load index | X1, X2, X3, X4, X9, X10 | X5, X6, X7, X8 |
Factor Naming | Scale factor of information supply | Information demand intensity factor |
Component Score Coefficient Matrix | ||
---|---|---|
Ingredients | ||
1 | 2 | |
Number of local telephone users in the city at the end of the year/person | 0.152 | 0.114 |
Number of mobile phone users in urban areas at the end of the year/person | −0.094 | 0.358 |
Number of urban Internet users/person | −0.092 | 0.443 |
Number of post offices in cities at the end of the year/10,000 people | 0.260 | −0.218 |
The total amount of postal services in the city in that year | 0.218 | −0.095 |
The total amount of telecommunications services in the city that year | 0.105 | 0.245 |
Proportion of urban tertiary industry employees | 0.259 | −0.246 |
Proportion of added value of urban tertiary industry to GDP | 0.108 | 0.117 |
Employment situation in urban information transmission, computer and software industries/10,000 people | 0.156 | 0.070 |
Number of students in urban regular higher education institutions/person | 0.081 | 0.232 |
Ranking | City | Province/Municipality Directly Under the Central Government | Score |
---|---|---|---|
1 | Shanghai | Shanghai | 98.3 |
2 | Beijing | Beijing | 73.09 |
3 | Guangzhou | Guangdong | 61.73 |
4 | Chongqing | Chongqing | 51.89 |
5 | Chengdu | Sichuan | 46.38 |
6 | Hangzhou | Zhejiang | 40.3 |
7 | Xiamen | Fujian | 36.8 |
8 | Tianjin | Tianjin | 33.61 |
9 | Wuhan | Hubei | 33.12 |
10 | Suzhou | Jiangsu | 32.57 |
11 | Zhanjiang | Jiangsu | 29.43 |
12 | Nanjing | Jiangsu | 28.95 |
13 | Zhengzhou | Henan | 27.88 |
14 | Xi’an | Shaanxi | 26.56 |
15 | Nantong | Jiangsu | 24.94 |
16 | Dongguan | Guangdong | 24.08 |
17 | Fuzhou | Fujian | 23.5 |
18 | Ningbo | Zhejiang | 22.65 |
19 | Wenzhou | Zhejiang | 22.6 |
20 | Jiangmen | Guangdong | 22.41 |
Ranking | Town | Province/Municipality | Score |
---|---|---|---|
1 | Shanghai | Shanghai | 175.21 |
2 | Beijing | Beijing | 157.77 |
3 | Guangzhou | Guangdong | 147.84 |
4 | Chongqing | Chongqing | 137.62 |
5 | Chengdu | Sichuan | 131.02 |
6 | Hangzhou | Zhejiang | 122.75 |
7 | Xiamen | Fujian | 117.43 |
8 | Tianjin | Tianjin | 112.08 |
9 | Wuhan | Hubei | 111.21 |
10 | Suzhou | Jiangsu | 110.23 |
11 | Zhanjiang | Jiangsu | 104.26 |
12 | Nanjing | Jiangsu | 103.30 |
13 | Zhengzhou | Henan | 101.08 |
14 | Xi’an | Shaanxi | 98.23 |
15 | Nantong | Jiangsu | 94.53 |
16 | Dongguan | Guangdong | 92.46 |
17 | Fuzhou | Fujian | 91.03 |
18 | Ningbo | Zhejiang | 88.86 |
19 | Wenzhou | Zhejiang | 88.73 |
20 | Jiangmen | Guangdong | 88.23 |
Variable | Sample Size | Mean Value | Standard Deviation | Minimum Value | Maximum Value |
---|---|---|---|---|---|
resilience | 3960 | 3.65 | 4.85 | −27.4 | 17.6 |
resiliencet−1 | 3960 | 3.63 | 5.28 | −17.8 | 17.4 |
nonagr | 3960 | 464.27 | 553.47 | 6.11 | 5305 |
ifo | 3960 | −3.05 | 56.25 | −145.7 | 175.21 |
The proportion of the primary industry to GDP | 3960 | 0.138 | 9.05 | 0.03 | 49.89 |
The proportion of the tertiary industry to GDP | 3960 | 37.02 | 9.3 | 8.58 | 85.33 |
FDI as a percentage of GDP | 3960 | 1.94 | 2.36 | 0 | 36.46 |
Proportion of fixed assets investment in GDP | 3960 | 55.63 | 28.92 | 0 | 231.66 |
National | East | Central Section | West | |
---|---|---|---|---|
resiliencet−1 | 0.935 *** (125.16) | 0.953 *** (85.76) | 0.983 *** (90.98) | 0.712 *** (29.30) |
nonagr | 1585.307 *** (3.99) | 1000.05 ** (2.25) | 6881.75 ** (0.02) | 46,678.79 *** (5.21) |
ifo | 0.0732 ** (3.17) | 0.012 *** (4.32) | 0.0369 *** (5.08) | −0.194 ** (−2.40) |
nonagr × ifo | −0.0022 (−1.32) | −0.0043 ** (−2.5) | −0.138 ** (−3.32) | 0.011 (0.19) |
The proportion of the primary industry to GDP | −17.60 (−1.05) | −57.31 (36.93) | 23.76 (1.13) | −46.91 (−1.34) |
The proportion of the tertiary industry to GDP | 55.32 *** (0.000) | 66.39 ** (2.22) | 40.466 * (1.78) | 124.89 *** (3.87) |
FDI as a percentage of GDP | −41.988 (0.432) | −288.54 *** (−3.60) | 111.61 (1.43) | 159.96 (1.36) |
Proportion of fixed assets investment in GDP | 37.25 *** (0.000) | 64.83 *** (7.72) | 27.53 *** (4.04) | 34.42 *** (3.93) |
R2 | 0.8592 | 0.9036 | 0.9038 | 0.6642 |
Adj R2 | 0.8589 | 0.9031 | 0.9033 | 0.6619 |
LogL | −40,350.05 | −14,851.71 | −14,201.07 | −11,079.36 |
DW | 2.606799 | 2.739276 | 2.71212 | 2.377197 |
LM Lag | 23.961 *** | 0.20961 | 0.32595 | 24.48 *** |
Robust LMLAG | 206.53 *** | 79.401 *** | 84.029 *** | 32.862 *** |
LM Error | 3148.2 *** | 800.5 *** | 380.22 *** | 226.81 *** |
Robust LMEER | 3330.8 *** | 879.69 *** | 463.93 *** | 235.19 *** |
Joint significance test of individual fixed and period fixed | ||||
Individual fixed | 9.08 | p = 0.0000 | ||
Fixed period | 24.45 | p = 0.0000 |
National | East | |||
---|---|---|---|---|
Plem | Psem | Plem | Psem | |
resiliencet−1 | 0.181 *** (11.13) | 0.1628 *** (10.56) | 0.274 *** (12.19) | 0.203 *** (8.96) |
nonagr | 3036.73 *** (3.65) | 3407.01 *** (4.17) | 2428.18 ** (3.11) | 1226.294 * (3.7) |
ifo | 0.0432 *** (20.12) | 0.046 *** (23.20) | 0.039 *** (16.35) | 0.071 *** (12.41) |
nonagr × ifo | −0.015 *** (−10.97) | −0.015 *** (−11.19) | −0.1407 *** (−10.46) | 0.1503 *** (4.66) |
The proportion of the primary industry to GDP | 22.56 (0.65) | 124.34 *** (4.33) | 60.37 (0.94) | 174.66 *** (0.00) |
The proportion of the tertiary industry to GDP | 46.47 * (1.93) | 0.7832 (0.04) | 31.27 (0.7) | −27.126 (−1.07) |
FDI as a percentage of GDP | −58.36 (−1.33) | 2.518 (0.06) | −228.58 *** (−3.59) | 126.03 ** (2.15) |
Proportion of fixed assets investment in GDP | −11.344 * (−1.86) | 52.17 *** (12.73) | −18.15 * (−1.69) | 38.06 *** (6.79) |
Spatial | ||||
rho | 0.698 *** (16.041) | 0.702 *** (7.943) | ||
lambda | 0.901 *** (29.687) | 1.257 *** (13.418) | ||
Variance | ||||
sigma2_e | 3.2 × 107 *** (44.023) | 3.1 × 107 *** (43.959) | 2.6 × 107 *** (26.810) | 2.5 × 107 *** (26.674) |
LogL | −3.910 × 104 | −3.907 × 104 | −1.435 × 104 | −1.433 × 104 |
N | 3885 | 3885 | 1440 | 1440 |
r2 | 0.473 | 0.730 | 0.701 | 0.830 |
Central Section | West | |||
---|---|---|---|---|
Plem | Psem | Plem | Psem | |
resiliencet−1 | 0.2073 *** (8.87) | 0.201 *** (8.96) | −0.118 *** (−3.06) | −0.117 *** (−3.08) |
nonagr | 8183.24 ** (2.33) | 1226.294 * (3.7) | 22,923.14 ** (0.021) | 12,395.95 ** (7.3) |
ifo | 0.094 *** (14.43) | 0.0707 *** (12.41) | 0.0414 *** (5.72) | 0.0428 *** (6.01) |
nonagr × ifo | 0.0835 ** (2.56) | 0.1503 *** (4.66) | −0.12 *** (−2.58) | −0.122 ** (−2.54) |
The proportion of the primary industry to GDP | 108.38 *** (2.84) | 174.66 *** (5.04) | −51.26 (−0.61) | 76.76 * (11.6) |
The proportion of the tertiary industry to GDP | 42.61 (1.28) | −27.13 ** (−10.7) | 125.31 ** (2.51) | −62.32 (−1.49) |
FDI as a percentage of GDP | 54.76 (0.91) | 126.03 ** (2.15) | 2.026 (0.02) | −57.34 (−0.57) |
Proportion of fixed assets investment in GDP | −11.35 (−1.08) | 38.07 *** (6.79) | −7.73 (−0.72) | 36.71 *** (4.44) |
Spatial | ||||
rho | 0.387 ** (2.670) | 1.229 *** (8.973) | ||
lambda | 1.455 *** (15.487) | 1.370 *** (10.523) | ||
Variance | ||||
sigma2_e | 1.9 × 107 *** (26.401) | 1.8 × 107 *** (26.239) | 4.7 × 107 *** (22.819) | 4.7 × 107 *** (22.788) |
LogL | −1.369 × 104 | −1.363 × 104 | −1.077 × 104 | −1.077 × 104 |
N | 1395 | 1395 | 1050 | 1050 |
r2 | 0.576 | 0.619 | 0.165 | 0.082 |
National | East | |||
---|---|---|---|---|
Tlem | Tsem | Tlem | Tsem | |
resiliencet−1 | 0.154 *** (10.63) | 0.179 *** (11.57) | 0.2267 *** (11.27) | 0.2664 *** (12.49) |
nonagr | 2276.74 *** (2.95) | 3023.89 *** (3.68) | 1868.25 *** (2.63) | 2300.07 *** (2.93) |
ifo | 0.038 **** (19.75) | 0.0438 *** (21.20) | 0.038 *** (17.12) | 0.042 *** (18.33) |
nonagr × ifo | −0.0132 *** (−10.01) | −0.0153 *** (−11.56) | −0.0136 *** (−10.36) | −0.015 *** (−11.64) |
The proportion of the primary industry to GDP | 180.57 *** (6.62) | 36.47 (0.280) | 224.36 *** (4.11) | 99.75 * (1.64) |
The proportion of the tertiary industry to GDP | −31.03 * (−1.65) | 46.77 ** (1.96) | −9.26 (−0.26) | 69.58 * (1.71) |
FDI as a percentage of GDP | −0.138 (−0.00) | −64.76 (−1.48) | −109.92 * (−1.95) | −241.79 *** (−3.72) |
Proportion of fixed assets investment in GDP | 8.907 * (1.83) | −6.99 (−1.17) | 45.51 *** (5.52) | 16.33 (1.5) |
Spatial | ||||
rho | 0.041 | −0.067 (−0.95) | ||
lambda | 0.143 | −0.5334 *** (−2.74) | ||
Variance | ||||
sigma2_e | 5.15 × 107 *** | 5.15 × 107 *** | 3.97 × 107 *** | 3.94 × 107 *** |
LogL | −4.001 × 104 | −4.001 × 104 | −1.464 × 104 | −1.464 × 104 |
N | 3885 | 3885 | 1440 | 1440 |
r2 | 0.996 | 0.996 | 0.997 | 0.997 |
Central Section | West | |||
---|---|---|---|---|
Tlem | Tsem | Tlem | Tsem | |
resiliencet−1 | 0.1952 *** (8.95) | 0.20 (8.99) | −0.1078 *** (−3.06) | −0.116 *** (−3.15) |
nonagr | 228.99 * (0.7) | 8788.71 ** (2.46) | 9147.428 * (5.8) | 18,634.48 (1.00) |
ifo | 0.066 *** (11.90) | 0.0938 *** (15.2) | 0.0379 *** (5.74) | 0.0413 *** (6.00) |
nonagr × ifo | 0.162 *** (5.2) | 0.0942 ** (2.98) | −0.1068 ** (−2.41) | −0.113 ** (−0.21) |
The proportion of the primary industry to GDP | 189.09 *** (5.65) | 115.005 *** (2.96) | 58.25 (0.95) | −16.28 (−0.21) |
The proportion of the tertiary industry to GDP | −35.16 (−1.44) | 2.539 (0.08) | 3.733 (0.924) | 92.93 * (1.95) |
FDI as a percentage of GDP | 123.63 ** (2.2) | 69.39 (1.15) | 25.06 (0.27) | 36.53 (0.35) |
Proportion of fixed assets investment in GDP | 20.43 *** (2.69) | −5.81 (−0.64) | 13.09 (1.62) | 6.595 (0.68) |
Spatial | ||||
rho | −0.167 | −0.519 ** | ||
lambda | −0.4583 * | −0.791 *** | ||
Variance | ||||
sigma2_e | 3.38 × 107 *** | 3.38 × 107 *** | 7.18 × 107 *** | 7.17 × 107 *** |
LogL | −1.407 × 104 | −1.407 × 104 | −1.099 × 104 | −1.099 × 104 |
N | 1395 | 1395 | 1050 | 1050 |
r2 | 0.998 | 0.998 | 0.998 | 0.981 |
Export Resilience (2019–2022) | |||
---|---|---|---|
(1) | (2) | (3) | |
Industrial agglomeration | 0.0272 *** | 0.0275 *** | 0.0278 *** |
(0.00699) | (0.00721) | (0.00722) | |
information spillover | 0.00221 *** | 0.00218 *** | 0.00217 *** |
(0.000543) | (0.000581) | (0.000582) | |
X1 | −0.0000117 * | −0.0000118 * | |
(0.00000704) | (0.00000704) | ||
X2 | 0.102 | 0.111 | |
(0.231) | (0.232) | ||
X3 | −0.0000537 | −0.0000596 | |
(0.000746) | (0.000747) | ||
X4 | −0.0366 * | −0.0366 * | |
(0.0194) | (0.0194) | ||
X5 | −4.89 × 10−8 | ||
(5.62 × 10−8) | |||
Constant term | 0.707 *** | 1.086 ** | 1.135 *** |
(0.232) | (0.433) | (0.437) | |
N | 1041 | 1041 | 1041 |
R2 | 0.035 | 0.040 | 0.040 |
Expansion factor | 1.02 | 1.14 | 1.12 |
Model selection | OLS | OLS | OLS |
Urban Economic Resilience (2019–2022) | |||
---|---|---|---|
(1) Total Sample | (2) Leaving the Port < 520 km | (3) Leaving the Port > 520 km | |
nonoagrz,t | 0.0278 *** | 0.0468 * | 0.00240 *** |
(0.00722) | (0.0245) | (0.000585) | |
IFOz,t | 0.00217 *** | 0.00550 ** | 0.000130 *** |
(0.000582) | (0.00226) | (0.0000438) | |
X1 | −0.0000118 * | −0.0000774 ** | −0.00000104 ** |
(0.00000704) | (0.0000353) | (0.000000481) | |
X2 | 0.111 | −0.255 | −0.00258 |
(0.232) | (1.139) | (0.0151) | |
X3 | −0.0000596 | −0.000194 | −0.00248 ** |
(0.000747) | (0.00163) | (0.00108) | |
X4 | −0.0366 * | −0.247 ** | −0.00387 *** |
(0.0194) | (0.114) | (0.00123) | |
X5 | −4.89 × 10−8 | −0.00000879 * | −3.72 × 10−9 |
(5.62 × 10−8) | (0.00000477) | (3.30 × 10−9) | |
Constant term | 1.135 *** | 7.539 *** | 0.493 *** |
(0.437) | (2.647) | (0.0549) | |
N | 1041 | 213 | 828 |
R2 | 0.040 | 0.110 | 0.054 |
Expansion factor | 1.12 | 1.20 | 1.22 |
Model selection | OLS | OLS | OLS |
Benchmark Regression | |||
---|---|---|---|
IFO (2019–2022) | |||
(1) | (2) | (3) | |
nonoagrz,t | 2.385 *** | 2.731 *** | 2.742 *** |
(0.383) | (0.376) | (0.376) | |
X1 | 0.00333 *** | 0.00237 *** | 0.00236 *** |
(0.000349) | (0.000369) | (0.000369) | |
X2 | −6.798 | −6.281 | |
(12.38) | (12.39) | ||
X3 | −0.0205 | −0.0208 | |
(0.0399) | (0.0399) | ||
X4 | −7.557 *** | −7.553 *** | |
(1.009) | (1.009) | ||
X5 | −0.00000281 | ||
(0.00000301) | |||
Constant term | 213.9 *** | 312.9 *** | 315.4 *** |
(10.84) | (21.02) | (21.20) | |
N | 1041 | 1041 | 1041 |
R2 | 0.100 | 0.148 | 0.149 |
Expansion factor | 1.02 | 1.10 | 1.09 |
Model selection | OLS | OLS | OLS |
Robustness Test (Using Light Data Instead of Nonogr) | ||
---|---|---|
Information Spillover (2019–2022) | ||
(1) | (2) | (3) |
0.0213 *** | 0.0150 ** | 0.0151 ** |
(0.00655) | (0.00659) | (0.00660) |
0.00223 *** | 0.00164 *** | 0.00163 *** |
(0.000428) | (0.000439) | (0.000439) |
−3.512 | −3.088 | |
(12.65) | (12.66) | |
−0.0299 | −0.0302 | |
(0.0411) | (0.0411) | |
−6.315 *** | −6.307 *** | |
(1.041) | (1.041) | |
−0.00000225 | ||
(0.00000307) | ||
153.1 *** | 233.3 *** | 235.0 *** |
(9.482) | (20.47) | (20.61) |
1041 | 1041 | 1041 |
0.076 | 0.109 | 0.110 |
1.50 | 1.30 | 1.25 |
OLS | OLS | OLS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Guo, C.; Fu, J. The Application of Principal Component Analysis and the Wilson Model in Urban Economics. Mathematics 2025, 13, 1617. https://doi.org/10.3390/math13101617
Chen Y, Guo C, Fu J. The Application of Principal Component Analysis and the Wilson Model in Urban Economics. Mathematics. 2025; 13(10):1617. https://doi.org/10.3390/math13101617
Chicago/Turabian StyleChen, Yiwei, Congbin Guo, and Junhao Fu. 2025. "The Application of Principal Component Analysis and the Wilson Model in Urban Economics" Mathematics 13, no. 10: 1617. https://doi.org/10.3390/math13101617
APA StyleChen, Y., Guo, C., & Fu, J. (2025). The Application of Principal Component Analysis and the Wilson Model in Urban Economics. Mathematics, 13(10), 1617. https://doi.org/10.3390/math13101617