Stability and Performance Analysis of Single-Step FCS-MPC System Based on Regional ISS Theory
Abstract
:1. Introduction
2. Mathematical Model of Single-Step FCS-MPC System
2.1. Mathematical Model of the Controlled Plant
2.2. Control Law of Single-Step FCS-MPC
- (1)
- The dynamic Equation (6);
- (2)
- The state constraint (2) and the discrete control constraints (3).
2.3. Closed-Loop System Model in Positively Invariant Set
- (1)
- Compute the set :
- (2)
- Calculate the upper bound of on :
3. Regional ISS Theory
- (1)
- For system (33), the origin is an equilibrium point.
- (2)
- The disturbance satisfies for , where is a compact set containing the origin.
4. Analysis of System Stability and Performance
4.1. ISS Proof
4.2. Performance Estimation
Algorithm 1 Calculation of Domain of Attraction and Ultimate Bounded Region | |
1: | Input the parameters and the number of iterations . Let . |
2: | Extend . |
3: | Set the partial derivative of Equation (20) with respect to the auxiliary control vari- |
4: | able to zero, and solve the system of equations to obtain Equation (21). |
5: | Obtain according to Equation (23). |
6: | for i = 1: n |
7: | For each in , according to (25). |
8: | Use the optimization tool to calculate the maximum value of on |
9: | all . |
10: | if |
11: | |
12: | else |
13: | Record the value of that last satisfies . |
14: | Break the loop. |
15: | end if |
16: | end for |
17: | |
18: | if i = 1 |
19: | The system is unstable on . |
20: | else |
21: | The system is stable on and ultimately converges to . |
22: | end if |
5. Simulation Experiment
5.1. Illustrative Mathematical Example
5.2. Two-Level Inverter Simulation Model
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rodriguez, J.; Garcia, C.; Mora, A.; Flores-Bahamonde, F.; Acuna, P.; Novak, M.; Zhang, Y.; Tarisciotti, L.; Davari, S.A.; Zhang, Z.; et al. Latest Advances of Model Predictive Control in Electrical Drives—Part I: Basic Concepts and Advanced Strategies. IEEE Trans. Power Electron. 2022, 37, 3927–3942. [Google Scholar] [CrossRef]
- Rodriguez, J.; Garcia, C.; Mora, A.; Davari, S.A.; Rodas, J.; Valencia, D.F.; Elmorshedy, M.; Wang, F.; Zuo, K.; Tarisciotti, L.; et al. Latest Advances of Model Predictive Control in Electrical Drives—Part II: Applications and Benchmarking with Classical Control Methods. IEEE Trans. Power Electron. 2022, 37, 5047–5061. [Google Scholar] [CrossRef]
- Karamanakos, P.; Geyer, T. Guidelines for the Design of Finite Control Set Model Predictive Controllers. IEEE Trans. Power Electron. 2020, 35, 7434–7450. [Google Scholar] [CrossRef]
- Gulbudak, O.; Gokdag, M. Finite Control Set Model Predictive Control Approach of Nine Switch Inverter-Based Drive Systems: Design, Analysis, and Validation. ISA Trans. 2021, 110, 283–304. [Google Scholar] [CrossRef] [PubMed]
- Saberi, S.; Rezaie, B. Robust Adaptive Direct Speed Control of PMSG-Based Airborne Wind Energy System Using FCS-MPC Method. ISA Trans. 2022, 131, 43–60. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Wang, D.; Peng, Z.; Liu, X. Model Predictive Direct Power Control for Modular Multilevel Converter under Unbalanced Conditions with Power Compensation and Circulating Current Reduction. ISA Trans. 2020, 106, 318–329. [Google Scholar] [CrossRef]
- Ayala, M.; Doval-Gandoy, J.; Rodas, J.; Gonzalez, O.; Gregor, R. Current Control Designed with Model Based Predictive Control for Six-Phase Motor Drives. ISA Trans. 2020, 98, 496–504. [Google Scholar] [CrossRef]
- Vazquez, S.; Rodriguez, J.; Rivera, M.; Franquelo, L.G.; Norambuena, M. Model Predictive Control for Power Converters and Drives: Advances and Trends. IEEE Trans. Ind. Electron. 2017, 64, 935–947. [Google Scholar] [CrossRef]
- Quevedo, D.E.; Aguilera, R.P.; Geyer, T. Predictive Control in Power Electronics and Drives: Basic Concepts, Theory, and Methods. In Advanced and Intelligent Control in Power Electronics and Drives; Orłowska-Kowalska, T., Blaabjerg, F., Rodríguez, J., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 181–226. ISBN 978-3-319-03401-0. [Google Scholar] [CrossRef]
- Karamanakos, P.; Liegmann, E.; Geyer, T.; Kennel, R. Model Predictive Control of Power Electronic Systems: Methods, Results, and Challenges. IEEE Open J. Ind. Appl. 2020, 1, 95–114. [Google Scholar] [CrossRef]
- Akter, M.P.; Mekhilef, S.; Mei Lin Tan, N.; Akagi, H. Modified Model Predictive Control of a Bidirectional AC–DC Converter Based on Lyapunov Function for Energy Storage Systems. IEEE Trans. Ind. Electron. 2016, 63, 704–715. [Google Scholar] [CrossRef]
- Makhamreh, H.; Trabelsi, M.; Kükrer, O.; Abu-Rub, H. A Lyapunov-Based Model Predictive Control Design with Reduced Sensors for a PUC7 Rectifier. IEEE Trans. Ind. Electron. 2021, 68, 1139–1147. [Google Scholar] [CrossRef]
- Komurcugil, H.; Guler, N.; Bayhan, S. Weighting Factor Free Lyapunov-Function-Based Model Predictive Control Strategy for Single-Phase T-Type Rectifiers. In Proceedings of the IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18–21 October 2020; pp. 4200–4205. [Google Scholar] [CrossRef]
- Guler, N.; Komurcugil, H. Energy Function Based Finite Control Set Predictive Control Strategy for Single-Phase Split Source Inverters. IEEE Trans. Ind. Electron. 2022, 69, 5669–5679. [Google Scholar] [CrossRef]
- Quevedo, D.E.; Doná, J.A.D.; Goodwin, G.C. RECEDING HORIZON LINEAR QUADRATIC CONTROL WITH FINITE INPUT CONSTRAINT SETS. IFAC Proc. Vol. 2002, 35, 183–188. [Google Scholar] [CrossRef]
- Quevedo, D.E.; De Dona, J.A.; Goodwin, G.C. On the Dynamics of Receding Horizon Linear Quadratic Finite Alphabet Control Loops. In Proceedings of the 41st IEEE Conference on Decision and Control, 2002, Las Vegas, NV, USA, 10–13 December 2002; Volume 3, pp. 2929–2934. [Google Scholar] [CrossRef]
- Quevedo, D.E.; Goodwin, G.C.; De Doná, J.A. Finite Constraint Set Receding Horizon Quadratic Control. Int. J. Robust Nonlinear Control 2004, 14, 355–377. [Google Scholar] [CrossRef]
- Aguilera, R.P.; Quevedo, D.E. On the Stability of MPC with a Finite Input Alphabet. IFAC Proc. Vol. 2011, 44, 7975–7980. [Google Scholar] [CrossRef]
- Aguilera, R.P.; Quevedo, D.E. Stability Analysis of Quadratic MPC with a Discrete Input Alphabet. IEEE Trans. Autom. Control 2013, 58, 3190–3196. [Google Scholar] [CrossRef]
- Aguilera, R.P.; Quevedo, D.E. Predictive Control of Power Converters: Designs with Guaranteed Performance. IEEE Trans. Ind. Inform. 2015, 11, 53–63. [Google Scholar] [CrossRef]
- Xu, D.; Lazar, M. Finite Control Set Model Predictive Control with Limit Cycle Stability Guarantees. arXiv 2024, arXiv:2407.07615. Available online: http://arxiv.org/abs/2407.07615 (accessed on 22 April 2025).
- Xu, D.; Damsma, S.; Lazar, M. On the Steady-State Behavior of Finite-Control-Set MPC with an Application to High-Precision Power Amplifiers. In Proceedings of the 2022 European Control Conference (ECC), London, UK, 12–15 July 2022; pp. 820–825. Available online: https://ieeexplore.ieee.org/abstract/document/9838191 (accessed on 22 April 2025).
- Egidio, L.N.; Daiha, H.R.; Deaecto, G.S. Global Asymptotic Stability of Limit Cycle and H2/H∞ Performance of Discrete-Time Switched Affine Systems. Automatica 2020, 116, 108927. [Google Scholar] [CrossRef]
- Bemporad, A.; Morari, M.; Dua, V.; Pistikopoulos, E.N. The Explicit Linear Quadratic Regulator for Constrained Systems. Automatica 2002, 38, 3–20. [Google Scholar] [CrossRef]
- Sontag, E.D. Smooth Stabilization Implies Coprime Factorization. IEEE Trans. Autom. Control 1989, 34, 435–443. [Google Scholar] [CrossRef]
- Nesic, D.; Laila, D.S. A Note on Input-to-State Stabilization for Nonlinear Sampled-Data Systems. IEEE Trans. Autom. Control 2002, 47, 1153–1158. [Google Scholar] [CrossRef]
- Raimondo, D.M. Nonlinear Model Predictive Control: Stability, Robustness and Applications. Ph.D. Thesis, Università degli Studi di Pavia, Pavia, Italy, 2009. Available online: http://sisdin.unipv.it/labsisdin/raimondo/publications.php (accessed on 18 February 2025).
- Preindl, M. Robust Control Invariant Sets and Lyapunov-Based MPC for IPM Synchronous Motor Drives. IEEE Trans. Ind. Electron. 2016, 63, 3925–3933. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, W.; Chen, L.; Wang, Z. Stability and Performance Analysis of Single-Step FCS-MPC System Based on Regional ISS Theory. Mathematics 2025, 13, 1616. https://doi.org/10.3390/math13101616
Hu W, Chen L, Wang Z. Stability and Performance Analysis of Single-Step FCS-MPC System Based on Regional ISS Theory. Mathematics. 2025; 13(10):1616. https://doi.org/10.3390/math13101616
Chicago/Turabian StyleHu, Weiguang, Long Chen, and Zhangyi Wang. 2025. "Stability and Performance Analysis of Single-Step FCS-MPC System Based on Regional ISS Theory" Mathematics 13, no. 10: 1616. https://doi.org/10.3390/math13101616
APA StyleHu, W., Chen, L., & Wang, Z. (2025). Stability and Performance Analysis of Single-Step FCS-MPC System Based on Regional ISS Theory. Mathematics, 13(10), 1616. https://doi.org/10.3390/math13101616