Numerical Analysis of Damage in Composites: From Intra-Layer to Delamination and Data-Assisted Methods
Abstract
:1. Introduction
2. General Overview of Modeling Schemes
2.1. Mathematical Approaches
2.2. Simulation Methods
3. Damage Modeling in Composites
3.1. Intra-Layer Damage Modeling
3.1.1. Micro-Mechanical Models
3.1.2. Macromechanical Models
3.1.3. Multiscale Models
- Define an RVE of the microstructure, where the constitutive behavior of each individual constituent is known.
- Apply the macroscopic strain as displacement boundary conditions on the RVE, establishing the macro-to-micro transition.
- Compute the macroscopic stress by analyzing the deformed microstructural RVE, enabling the micro-to-macro transition.
- Derive the numerical relationship between the macroscopic input and output variables, effectively linking the microscale and macroscale behaviors.
- No explicit assumptions about the macroscopic local constitutive response are required, as it is naturally accounted for by the resolution of the microscale boundary value problem (BVP).
- The macroscopic constitutive tangent operator is directly obtained from the microscopic stiffness matrix via static condensation.
- The scale transition ensures consistency throughout the analysis and in terms of energy dissipation.
- The method seamlessly accommodates large strains and large rotations, provided that the microstructural constituents can be modeled with a geometrically nonlinear framework.
3.2. Inter-Layer (Delamination) Damage Modeling
4. Data-Assisted Composite Modeling
4.1. Minimal Overview of Machine Learning
4.2. ML-Based Methodologies for Analyzing Composite Materials
- Database construction
- −
- Design complete and representative strain history cases.
- −
- Run the RVE subjected to a large number of strain history cases and retrieve a homogenized stress measure.
- −
- Gather and assemble all the information to build an efficient database.
- Macroscale model training (ANN, phenomenological constitutive law, etc.)
- −
- Preprocess the data.
- −
- For ANNs, design the network structure; in phenomenological models, one should choose the macro constitutive law to be used in the macro scale and define the key material parameters to be optimized.
- −
- Train the model conveniently.
- −
- Make use of a testing database to ensure that the predictive capacity of the trained model is acceptable.
- Model Prediction:
- −
- Apply the trained model to different macroscale geometries, loading and boundary conditions.
- −
- Compare the efficiency and accuracy of the trained model with respect to conventional approaches.
4.3. Integrating Experimental Data into Data-Assisted Composite Models
- Data acquisition and calibration. Perform targeted tests, e.g., off-axis tension or compression, shear, and impact, to capture composite response. Use these data to fit simulation parameters or phenomenological constitutive models. For instance, Haj-Ali and Kim [282] trained an ANN constitutive model on off-axis tension/compression and shear data of thick glass/epoxy laminates. The ANN was integrated into an FE solver, which successfully predicted the nonlinear response of a notched composite plate in agreement with independent tests.In this area, digital image correlation (DIC) is considered to be one of the most efficient data acquisition methods. In this method, surface deformations are measured by comparing high-contrast images of a specimen before and after loading. The displacement maps are then differentiated to yield full-field strain fields, thus providing spatially detailed strain and displacement distributions across the entire sample [283]. The resulting rich, high-dimensional datasets, e.g., synchronized displacement and strain maps under varying loads, are ideal for data-driven materials modeling. For example, Tie and Wu [284] used DIC-assisted high-speed photography in conjunction with data augmentation and convolutional neural networks (CNNs) to detect dynamic crack tip propagation in brittle materials. Their method demonstrated high prediction accuracy even with lower-frame-rate cameras, showcasing how DIC-enhanced image data can be leveraged to overcome experimental limitations while generating precise, labeled datasets for ML training. Such applications directly support the development of ML-enhanced constitutive models and inverse analysis tools, reducing the need for extensive physical testing while improving model generalization.
- Simulation validation and augmentation. Validate the numerical model against the experiments, ensuring it reproduces observed stiffness, strength, and failure modes. Once validated, run parametric simulations (varying layup, volume fraction, geometry, etc.) to generate additional data. Hu et al. [285] describe this approach; they built an FE model of hybrid steel/CFRP laminates that matched tensile and bending test results, then used FE runs to populate a “high-precision dataset” for ML.
- Surrogate model training. Train ML models (ANNs, tree ensembles, Gaussian processes, etc.) on the pooled experimental and simulated data. These models learn the mapping from input features, i.e., material properties, layer angles, and loads, to outputs, i.e., stress–strain curves, failure loads, and damage indices. For instance, Artero-Guerrero et al. [286] used a combination of FE and experimental data to train an ANN that rapidly predicts the ballistic limit of CFRP laminates with arbitrary stacking sequences. Additionally, a recent study by Cornejo et al. [281] developed a ML-based homogenization technique for in-plane loaded masonry walls. By generating microscale simulations in a virtual laboratory, ML models were trained to predict macroscale constitutive laws, effectively capturing the anisotropic and nonlinear behavior of masonry materials. This approach significantly reduces computational costs while maintaining high accuracy in simulating structural responses under various loading conditions.
- Physics-informed and hybrid methods. Wherever possible, embed physics constraints into the ML model to improve generality. Physics-informed neural networks (PINNs) incorporate governing equations, e.g., elasticity and plate theory, into the loss function so that the model respects mechanics laws. Wang et al. [287,288] developed a PINN for the bending of laminated plates by embedding classical plate theory, achieving accurate results with far less data than a purely data-driven network. In another strategy, Chen et al. [289] used an RVE-based micromechanical simulation (which itself encodes physics) to generate training data for an ANN. In their method, interface strengths were calibrated from biaxial tests, and then a “hybrid loading” strategy on the RVE produced numerous failure points for ANN training. Such hybrid approaches leverage both experimental insights and analytical laws to reduce the need for large test datasets.
5. Conclusions and Future Works
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shirinbayan, M.; Nouira, S.; Imaddahen, M.A.; Fitoussi, J. Microstructure-sensitive investigation on the plastic deformation and damage initiation of fiber-reinforced polypropylene composite. Compos. Part B Eng. 2024, 286, 111790. [Google Scholar] [CrossRef]
- Xue, F.; Wang, J.; Xia, X.; Gou, X. A nonlocal macro-meso-scale damage model based modeling for crack propagation in ferroelectric materials. Eng. Fract. Mech. 2025, 314, 110712. [Google Scholar] [CrossRef]
- Stoll, M.M.; Weidenmann, K.A. Fatigue of fiber-metal-laminates with aluminum core, CFRP face sheets and elastomer interlayers (FMEL). Int. J. Fatigue 2018, 107, 110–118. [Google Scholar] [CrossRef]
- Heidari-Rarani, M.; Sayedain, M. Finite element modeling strategies for 2D and 3D delamination propagation in composite DCB specimens using VCCT, CZM and XFEM approaches. Theor. Appl. Fract. Mech. 2019, 103, 102246. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, J.; Rui, X.; Liu, S. Delamination damage imaging method of CFRP composite laminate plates based on the sensitive guided wave mode. Compos. Struct. 2023, 306, 116571. [Google Scholar] [CrossRef]
- Hu, P.; Pulungan, D.; Lubineau, G. An enriched cohesive law using plane-part of interfacial strains to model intra/inter laminar coupling in laminated composites. Compos. Sci. Technol. 2020, 200, 108460. [Google Scholar] [CrossRef]
- Kumar, A.; Sain, T. Modeling the interaction between intra and interlaminar cracking in FRP composites using phase-field regularized interface fracture. Theor. Appl. Fract. Mech. 2024, 129, 104177. [Google Scholar] [CrossRef]
- Du, J.; Wang, H.; Chen, C.; Ni, M.; Guo, C.; Zhang, S.; Ding, H.; Wang, H.; Bi, Y. Damage classification and evolution in composite under low-velocity impact using acoustic emission, machine learning and wavelet packet decomposition. Eng. Fract. Mech. 2024, 306, 110238. [Google Scholar] [CrossRef]
- Azad, M.M.; Jung, J.; Elahi, M.U.; Sohail, M.; Kumar, P.; Kim, H.S. Failure modes and non-destructive testing techniques for fiber-reinforced polymer composites. J. Mater. Res. Technol. 2024, 33, 9519–9537. [Google Scholar] [CrossRef]
- Garg, N.; Prusty, B.G.; Ooi, E.T.; Song, C.; Pearce, G.; Phillips, A.W. Application of scaled boundary finite element method for delamination analysis of composite laminates using cohesive zone modelling. Compos. Struct. 2020, 253, 112773. [Google Scholar] [CrossRef]
- Hu, P.; Li, X.; Lubineau, G. Prediction of a complex delamination front using a general cohesive model. Compos. Sci. Technol. 2023, 233, 109911. [Google Scholar] [CrossRef]
- Zhu, M.; Gorbatikh, L.; Lomov, S.V. An incremental-onset model for fatigue delamination propagation in composite laminates. Compos. Sci. Technol. 2020, 200, 108394. [Google Scholar] [CrossRef]
- Knopp, A.; Funck, E.; Holtz, A.; Scharr, G. Delamination and compression-after-impact properties of z-pinned composite laminates reinforced with circumferentially notched z-pins. Compos. Struct. 2022, 285, 115188. [Google Scholar] [CrossRef]
- Ye, Q.; Chen, P. Prediction of the cohesive strength for numerically simulating composite delamination via CZM-based FEM. Compos. Part B Eng. 2011, 42, 1076–1083. [Google Scholar] [CrossRef]
- Chava, S.; Namilae, S. Continuous evolution of processing induced residual stresses in composites: An in-situ approach. Compos. Part A Appl. Sci. Manuf. 2021, 145, 106368. [Google Scholar] [CrossRef]
- Mehdikhani, M.; Gorbatikh, L.; Verpoest, I.; Lomov, S.V. Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance. J. Compos. Mater. 2019, 53, 1579–1669. [Google Scholar] [CrossRef]
- Lin, F.; Ye, M.; Min, X.; Huang, Z.; Cheng, F.; Hu, X. Micro-buckling resistant unidirectional glass fiber composites with excellent transverse and longitudinal flexural properties from cross-linking by nano-/micro-aramid fibers. Compos. Sci. Technol. 2024, 258, 110841. [Google Scholar] [CrossRef]
- Quintanas-Corominas, A.; Turon, A.; Reinoso, J.; Casoni, E.; Paggi, M.; Mayugo, J. A phase field approach enhanced with a cohesive zone model for modeling delamination induced by matrix cracking. Comput. Methods Appl. Mech. Eng. 2020, 358, 112618. [Google Scholar] [CrossRef]
- Paggi, M.; Reinoso, J. Revisiting the problem of a crack impinging on an interface:A modeling framework for the interaction between the phase field approach for brittle fracture and the interface cohesive zone model. Comput. Methods Appl. Mech. Eng. 2017, 321, 145–172. [Google Scholar] [CrossRef]
- Carollo, V.; Reinoso, J.; Paggi, M. A 3D finite strain model for intralayer and interlayer crack simulation coupling the phase field approach and cohesive zone model. Compos. Struct. 2017, 182, 636–651. [Google Scholar] [CrossRef]
- Carollo, V.; Reinoso, J.; Paggi, M. Modeling complex crack paths in ceramic laminates: A novel variational framework combining the phase field method of fracture and the cohesive zone model. J. Eur. Ceram. Soc. 2018, 38, 2994–3003. [Google Scholar] [CrossRef]
- Paggi, M.; Corrado, M.; Reinoso, J. Fracture of solar-grade anisotropic polycrystalline Silicon: A combined phase field–cohesive zone model approach. Comput. Methods Appl. Mech. Eng. 2018, 330, 123–148. [Google Scholar] [CrossRef]
- Guillén-Hernández, T.; García, I.; Reinoso, J.; Paggi, M. A micromechanical analysis of inter-fiber failure in long reinforced composites based on the phase field approach of fracture combined with the cohesive zone model. Int. J. Fract. 2019, 220, 181–203. [Google Scholar] [CrossRef]
- Maimí, P.; Camanho, P.; Mayugo, J.; Dávila, C. A continuum damage model for composite laminates: Part I—Constitutive model. Mech. Mater. 2007, 39, 897–908. [Google Scholar] [CrossRef]
- Maimí, P.; Camanho, P.; Mayugo, J.; Dávila, C. A continuum damage model for composite laminates: Part II—Computational implementation and validation. Mech. Mater. 2007, 39, 909–919. [Google Scholar] [CrossRef]
- Reinoso, J.; Catalanotti, G.; Blázquez, A.; Areias, P.; Camanho, P.; París, F. A consistent anisotropic damage model for laminated fiber-reinforced composites using the 3D-version of the Puck failure criterion. Int. J. Solids Struct. 2017, 126-127, 37–53. [Google Scholar] [CrossRef]
- Quintanas-Corominas, A.; Maimí, P.; Casoni, E.; Turon, A.; Mayugo, J.A.; Guillamet, G.; Vázquez, M. A 3D transversally isotropic constitutive model for advanced composites implemented in a high performance computing code. Eur. J. Mech.-A/Solids 2018, 71, 278–291. [Google Scholar] [CrossRef]
- Ortiz, M.; Pandolfi, A. Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int. J. Numer. Methods Eng. 1999, 44, 1267–1282. [Google Scholar] [CrossRef]
- Turon, A.; Camanho, P.P.; Costa, J.; Dávila, C. A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech. Mater. 2006, 38, 1072–1089. [Google Scholar] [CrossRef]
- Camanho, P.P.; Davila, C.G.; De Moura, M. Numerical simulation of mixed-mode progressive delamination in composite materials. J. Compos. Mater. 2003, 37, 1415–1438. [Google Scholar] [CrossRef]
- Reinoso, J.; Arteiro, A.; Paggi, M.; Camanho, P. Strength prediction of notched thin ply laminates using finite fracture mechanics and the phase field approach. Compos. Sci. Technol. 2017, 150, 205–216. [Google Scholar] [CrossRef]
- Martulli, L.; Bernasconi, A. An efficient and versatile use of the VCCT for composites delamination growth under fatigue loadings in 3D numerical analysis: The Sequential Static Fatigue algorithm. Int. J. Fatigue 2023, 170, 107493. [Google Scholar] [CrossRef]
- Wu, M.; Wang, H.; Xu, W. A finite crack growth energy release rate for interlaminar fracture analysis of composite material at different temperatures. Eng. Fract. Mech. 2024, 303, 110095. [Google Scholar] [CrossRef]
- Gdoutos, E.E. 1.24 Fracture Mechanics Analysis of Composite Materials. In Comprehensive Composite Materials II; Beaumont, P.W., Zweben, C.H., Eds.; Elsevier: Oxford, UK, 2018; pp. 601–612. [Google Scholar] [CrossRef]
- Balzani, C.; Wagner, W. An interface element for the simulation of delamination in unidirectional fiber-reinforced composite laminates. Eng. Fract. Mech. 2008, 75, 2597–2615. [Google Scholar] [CrossRef]
- Selvaraj, J.; Kawashita, L.F.; Melro, A.R.; Hallett, S.R. Efficient sublaminate-scale impact damage modelling with higher-order elements in explicit integration. Compos. Part A Appl. Sci. Manuf. 2023, 172, 107560. [Google Scholar] [CrossRef]
- Ochoa, O.O.; Reddy, J.N.; Ochoa, O.; Reddy, J. Finite Element Analysis of Composite Laminates; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Thai, H.T.; Choi, D.H. A simple first-order shear deformation theory for laminated composite plates. Compos. Struct. 2013, 106, 754–763. [Google Scholar] [CrossRef]
- Khandan, R.; Noroozi, S.; Sewell, P.; Vinney, J. The development of laminated composite plate theories: A review. J. Mater. Sci. 2012, 47, 5901–5910. [Google Scholar] [CrossRef]
- Reissner, E. The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 1945, 12, A69–A77. [Google Scholar] [CrossRef]
- Reddy, J.N. Energy and Variational Methods in Applied Mechanics: With an Introduction to the Finite Element Method; Wiley: New York, NY, USA, 1984. [Google Scholar]
- Cosentino, E.; Weaver, P. An enhanced single-layer variational formulation for the effect of transverse shear on laminated orthotropic plates. Eur. J. Mech.-A/Solids 2010, 29, 567–590. [Google Scholar] [CrossRef]
- Aydogdu, M. Comparison of various shear deformation theories for bending, buckling, and vibration of rectangular symmetric cross-ply plate with simply supported edges. J. Compos. Mater. 2006, 40, 2143–2155. [Google Scholar] [CrossRef]
- Aydogdu, M. A new shear deformation theory for laminated composite plates. Compos. Struct. 2009, 89, 94–101. [Google Scholar] [CrossRef]
- Noor, A.K. Stability of multilayered composite plates. Fibre Sci. Technol. 1975, 8, 81–89. [Google Scholar] [CrossRef]
- Roufaeil, O.L.; Tran-Cong, T. Finite strip elements for laminated composite plates with transverse shear strain discontinuities. Compos. Struct. 2002, 56, 249–258. [Google Scholar] [CrossRef]
- Mindlin, R. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech. 1951, 18, 31–38. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, R.; Chen, W. Refined laminated composite plate element based on global–local higher-order shear deformation theory. Compos. Struct. 2005, 70, 135–152. [Google Scholar] [CrossRef]
- Levinson, M. An accurate, simple theory of the statics and dynamics of elastic plates. Mech. Res. Commun. 1980, 7, 343–350. [Google Scholar] [CrossRef]
- Murthy, M. An Improved Transverse Shear Deformation Theory for Laminated Antisotropic Plates; Technical report; NASA: Washington, DC, USA, 1981. [Google Scholar]
- Bhaskar, K.; Varadan, T. Interlaminar stresses in composite cylindrical shells under transient loads. J. Sound Vib. 1993, 168, 469–477. [Google Scholar] [CrossRef]
- Kant, T.; Swaminathan, K. Estimation of transverse/interlaminar stresses in laminated composites—A selective review and survey of current developments. Compos. Struct. 2000, 49, 65–75. [Google Scholar] [CrossRef]
- Karama, M.; Abou Harb, B.; Mistou, S.; Caperaa, S. Bending, buckling and free vibration of laminated composite with a transverse shear stress continuity model. Compos. Part B Eng. 1998, 29, 223–234. [Google Scholar] [CrossRef]
- Whitney, J.; Sun, C. A higher order theory for extensional motion of laminated composites. J. Sound Vib. 1973, 30, 85–97. [Google Scholar] [CrossRef]
- Pagano, N.J. On the calculation of interlaminar normal stress in composite laminate. J. Compos. Mater. 1974, 8, 65–81. [Google Scholar] [CrossRef]
- Tang, S. A boundary layer theory-Part I: Laminated composites in plane stress. J. Compos. Mater. 1975, 9, 33–41. [Google Scholar] [CrossRef]
- Tang, S.; Levy, A. A boundary layer theory-part II: Extension of laminated finite strip. J. Compos. Mater. 1975, 9, 42–52. [Google Scholar] [CrossRef]
- Pipes, R.B.; Pagano, N. Interlaminar stresses in composite laminates—An approximate elasticity solution. J. Appl. Mech. 1974, 41, 668–672. [Google Scholar] [CrossRef]
- Wang, S.; Choi, I. Boundary-layer effects in composite laminates: Part 2—Free-edge stress solutions and basic characteristics. J. Appl. Mech. 1982, 49, 549–560. [Google Scholar] [CrossRef]
- Ghugal, Y.; Shimpi, R. A review of refined shear deformation theories of isotropic and anisotropic laminated plates. J. Reinf. Plast. Compos. 2002, 21, 775–813. [Google Scholar] [CrossRef]
- Mau, S. A refined laminated plate theory. J. Appl. Mech. 1973, 40, 606–607. [Google Scholar] [CrossRef]
- Chou, P.C.; Carleone, J. Transverse shear in laminated plate theories. AIAA J. 1973, 11, 1333–1336. [Google Scholar] [CrossRef]
- Durocher, L.L.; Solecki, R. Bending and vibration of transversely isotropic two-layer plates. AIAA J. 1975, 13, 1522–1524. [Google Scholar] [CrossRef]
- Di Sciuva, M. Bending, vibration and buckling of simply supported thick multilayered orthotropic plates: An evaluation of a new displacement model. J. Sound Vib. 1986, 105, 425–442. [Google Scholar] [CrossRef]
- Pagano, N. Exact solutions for composite laminates in cylindrical bending. J. Compos. Mater. 1969, 3, 398–411. [Google Scholar] [CrossRef]
- Pagano, N.J. Exact solutions for rectangular bidirectional composites and sandwich plates. J. Compos. Mater. 1970, 4, 20–34. [Google Scholar] [CrossRef]
- Vuong, C.D.; Vo, T.T.; Bui, T.Q. Mixed-mode crack growth simulation in rock-like materials with the smoothing gradient-enhanced damage model associated with a novel equivalent strain. Theor. Appl. Fract. Mech. 2025, 135, 104768. [Google Scholar] [CrossRef]
- Ghadimi, S.; Zamani-Ahari, G.; Kourehli, S.S. A novel approach to crack modeling using extended finite element and substructures methods. Structures 2024, 68, 107219. [Google Scholar] [CrossRef]
- Jočić, E.; Marjanović, M. Progressive failure analysis of laminar composites under compression using smeared crack-band damage model and full layerwise theory. Theor. Appl. Fract. Mech. 2024, 133, 104635. [Google Scholar] [CrossRef]
- Hwang, W.; Sun, C. Failure analysis of laminated composites by using iterative three-dimensional finite element method. Comput. Struct. 1989, 33, 41–47. [Google Scholar] [CrossRef]
- Tolson, S.; Zabaras, N. Finite element analysis of progressive failure in laminated composite plates. Comput. Struct. 1991, 38, 361–376. [Google Scholar] [CrossRef]
- Tan, S.; Nuismer, R. A theory for progressive matrix cracking in composite laminates. J. Compos. Mater. 1989, 23, 1029–1047. [Google Scholar] [CrossRef]
- Tan, S.C. A progressive failure model for composite laminates containing openings. J. Compos. Mater. 1991, 25, 556–577. [Google Scholar] [CrossRef]
- Tan, S.C.; Perez, J. Progressive failure of laminated composites with a hole under compressive loading. J. Reinf. Plast. Compos. 1993, 12, 1043–1057. [Google Scholar] [CrossRef]
- Camanho, P.P.; Matthews, F. A progressive damage model for mechanically fastened joints in composite laminates. J. Compos. Mater. 1999, 33, 2248–2280. [Google Scholar] [CrossRef]
- Santiuste, C.; Sánchez-Sáez, S.; Barbero, E. A comparison of progressive-failure criteria in the prediction of the dynamic bending failure of composite laminated beams. Compos. Struct. 2010, 92, 2406–2414. [Google Scholar] [CrossRef]
- LSTC. LS-DYNA R11.0 Theory Manual; Livermore Software Technology Corporation (LSTC): Livermore, CA, USA, 2020; Available online: https://www.lstc.com (accessed on 1 February 2025).
- Lin, W.P.; Hu, H.T. Nonlinear analysis of fiber-reinforced composite laminates subjected to uniaxial tensile load. J. Compos. Mater. 2002, 36, 1429–1450. [Google Scholar] [CrossRef]
- Lin, W.P.; Hu, H.T. Parametric study on the failure of fiber-reinforced composite laminates under biaxial tensile load. J. Compos. Mater. 2002, 36, 1481–1503. [Google Scholar] [CrossRef]
- Reddy, Y.; Moorthy, C.; Reddy, J. Non-linear progressive failure analysis of laminated composite plates. Int. J. Non-Linear Mech. 1995, 30, 629–649. [Google Scholar] [CrossRef]
- McGregor, C.; Zobeiry, N.; Vaziri, R.; Poursartip, A. A constitutive model for progressive compressive failure of composites. J. Compos. Mater. 2008, 42, 2687–2716. [Google Scholar] [CrossRef]
- Jiménez, S.; Cornejo, A.; Barbu, L.G.; Oller, S.; Barbat, A. Analysis of the mock-up of a reactor containment building: Comparison with experimental results. Nucl. Eng. Des. 2020, 359, 110454. [Google Scholar] [CrossRef]
- Jiménez, S.; Barbu, L.G.; Oller, S.; Cornejo, A. On the numerical study of fatigue process in rail heads by means of an isotropic damage based high-cycle fatigue constitutive law. Eng. Fail. Anal. 2022, 131, 105915. [Google Scholar] [CrossRef]
- Cornejo, A.; Jiménez, S.; Barbu, L.G.; Oller, S.; Oñate, E. A unified non-linear energy dissipation-based plastic-damage model for cyclic loading. Comput. Methods Appl. Mech. Eng. 2022, 400, 115543. [Google Scholar] [CrossRef]
- Gonçalves, L.A.; Jiménez, S.; Cornejo, A.; Barbu, L.G.; Parareda, S.; Casellas, D. Numerical simulation of a rapid fatigue test of high Mn-TWIP steel via a high cycle fatigue constitutive law. Int. J. Fatigue 2023, 168, 107444. [Google Scholar] [CrossRef]
- Barbu, L.G.; Oller, S.; Martinez, X.; Barbat, A. High cycle fatigue simulation: A new stepwise load-advancing strategy. Eng. Struct. 2015, 97, 118–129. [Google Scholar] [CrossRef]
- Bažant, Z.P.; Belytschko, T.B. Wave propagation in a strain-softening bar: Exact solution. J. Eng. Mech. 1985, 111, 381–389. [Google Scholar] [CrossRef]
- Karimi-Nobandegani, A.; Gharib, M.; Valipour, H. A nonlocal continuum damage model for timber: Development, implementation, and application. Eng. Fract. Mech. 2023, 277, 109009. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Niiranen, J. Nonlocal continuum damage modeling for functionally graded plates of third-order shear deformation theory. Thin-Walled Struct. 2021, 164, 107876. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, X.; Bui, T.Q.; Yao, W. Phase field modeling of fracture in fiber reinforced composite laminate. Int. J. Mech. Sci. 2019, 161–162, 105008. [Google Scholar] [CrossRef]
- Msekh, M.A.; Cuong, N.; Zi, G.; Areias, P.; Zhuang, X.; Rabczuk, T. Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model. Eng. Fract. Mech. 2018, 188, 287–299. [Google Scholar] [CrossRef]
- Hirshikesh; Natarajan, S.; Annabattula, R.K. Modeling crack propagation in variable stiffness composite laminates using the phase field method. Compos. Struct. 2019, 209, 424–433. [Google Scholar] [CrossRef]
- Cervera, M.; Barbat, G.; Chiumenti, M.; Wu, J.Y. A comparative review of XFEM, mixed FEM and phase-field models for quasi-brittle cracking. Arch. Comput. Methods Eng. 2022, 29, 1009–1083. [Google Scholar] [CrossRef]
- Zhuang, X.; Zhou, S.; Huynh, G.; Areias, P.; Rabczuk, T. Phase field modeling and computer implementation: A review. Eng. Fract. Mech. 2022, 262, 108234. [Google Scholar] [CrossRef]
- Bui, T.Q.; Hu, X. A review of phase-field models, fundamentals and their applications to composite laminates. Eng. Fract. Mech. 2021, 248, 107705. [Google Scholar] [CrossRef]
- Lammen, H.; Conti, S.; Mosler, J. A finite deformation phase field model suitable for cohesive fracture. J. Mech. Phys. Solids 2023, 178, 105349. [Google Scholar] [CrossRef]
- Francfort, G.; Marigo, J.J. Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 1998, 46, 1319–1342. [Google Scholar] [CrossRef]
- Zhang, P.; Yao, W.; Hu, X.; Bui, T.Q. 3D micromechanical progressive failure simulation for fiber-reinforced composites. Compos. Struct. 2020, 249, 112534. [Google Scholar] [CrossRef]
- Roy, P.; Deepu, S.; Pathrikar, A.; Roy, D.; Reddy, J. Phase field based peridynamics damage model for delamination of composite structures. Compos. Struct. 2017, 180, 972–993. [Google Scholar] [CrossRef]
- Kim, G.; Lee, P.S. Mesh coarsening using the phantom-node method in the phase field model. Finite Elem. Anal. Des. 2024, 228, 104048. [Google Scholar] [CrossRef]
- Kim, H.Y.; Kim, H.G. An adaptive continuous–discontinuous approach for the analysis of phase field fracture using mesh refinement and coarsening schemes and octree-based trimmed hexahedral meshes. Comput. Mech. 2024, 74, 1171–1196. [Google Scholar] [CrossRef]
- Freddi, F.; Mingazzi, L. Mesh refinement procedures for the phase field approach to brittle fracture. Comput. Methods Appl. Mech. Eng. 2022, 388, 114214. [Google Scholar] [CrossRef]
- Muixí, A.; Fernández-Méndez, S.; Rodríguez-Ferran, A. Adaptive refinement for phase-field models of brittle fracture based on Nitsche’s method. Comput. Mech. 2020, 66, 69–85. [Google Scholar] [CrossRef]
- Bird, R.E.; Augarde, C.E.; Coombs, W.M.; Duddu, R.; Giani, S.; Huynh, P.T.; Sims, B. An hp-adaptive discontinuous Galerkin method for phase field fracture. Comput. Methods Appl. Mech. Eng. 2023, 416, 116336. [Google Scholar] [CrossRef]
- Tian, D.L.; Zhou, X.P. A continuum-kinematics-inspired peridynamic model of anisotropic continua: Elasticity, damage, and fracture. Int. J. Mech. Sci. 2021, 199, 106413. [Google Scholar] [CrossRef]
- Silling, S.A. Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 2000, 48, 175–209. [Google Scholar] [CrossRef]
- Kang, J.; Li, K.; Zhu, P.; Cheng, Z. Peridynamic study of ECC dynamic failure considering the influence of fiber–matrix interface. Theor. Appl. Fract. Mech. 2025, 136, 104783. [Google Scholar] [CrossRef]
- Abdoh, D. Three-dimensional peridynamic modeling of damage and penetration in composite plates exposed to localized explosive blasts. Comput. Math. Appl. 2024, 175, 399–415. [Google Scholar] [CrossRef]
- Tian, F.; Liu, Z.; Li, H.; Zhang, E.; Zhou, J.; fu Shao, J. Advances in peridynamics modeling of deformation and fracturing of brittle geomaterials. Deep. Resour. Eng. 2024, 1, 100110. [Google Scholar] [CrossRef]
- Tian, F.; Liu, Z.; Zhou, J.; Chen, L.; Feng, X.T. Quantifying Post-peak Behavior of Rocks with Type-I, Type-II, and Mixed Fractures by Developing a Quasi-State-Based Peridynamics. Rock Mech. Rock Eng. 2024, 57, 4835–4871. [Google Scholar] [CrossRef]
- Dong, W.; Liu, H.; Du, J.; Zhang, X.; Huang, M.; Li, Z.; Chen, Z.; Bobaru, F. A peridynamic approach to solving general discrete dislocation dynamics problems in plasticity and fracture: Part I. Model description and verification. Int. J. Plast. 2022, 157, 103401. [Google Scholar] [CrossRef]
- Dong, W.; Liu, H.; Du, J.; Zhang, X.; Huang, M.; Li, Z.; Chen, Z.; Bobaru, F. A peridynamic approach to solving general discrete dislocation dynamics problems in plasticity and fracture: Part II. Applications. Int. J. Plast. 2022, 159, 103462. [Google Scholar] [CrossRef]
- Wang, L.; Yin, Z.Y. Peridynamic modelling of time-dependent behaviour and creep damage in hyper-viscoelastic solids with pre-cracks. Comput. Methods Appl. Mech. Eng. 2025, 433, 117512. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Dong, W.; Ma, S.; An, B.; He, Q.; Wang, P.; Wang, W. Peridynamic study on thermomechanical damage of the rail during wheel idling. Eng. Fail. Anal. 2024, 165, 108791. [Google Scholar] [CrossRef]
- Silling, S.A.; Epton, M.; Weckner, O.; Xu, J.; Askari, E. Peridynamic states and constitutive modeling. J. Elast. 2007, 88, 151–184. [Google Scholar] [CrossRef]
- Cao, X.; Qin, X.; Li, H.; Shang, S.; Li, S.; Liu, H. Non-ordinary state-based peridynamic fatigue modelling of composite laminates with arbitrary fibre orientation. Theor. Appl. Fract. Mech. 2022, 120, 103393. [Google Scholar] [CrossRef]
- Silling, S.A. Stability of peridynamic correspondence material models and their particle discretizations. Comput. Methods Appl. Mech. Eng. 2017, 322, 42–57. [Google Scholar] [CrossRef]
- Khoei, A.R. Extended Finite Element Method: Theory and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Zhao, L.; Zhi, J.; Zhang, J.; Liu, Z.; Hu, N. XFEM simulation of delamination in composite laminates. Compos. Part A Appl. Sci. Manuf. 2016, 80, 61–71. [Google Scholar] [CrossRef]
- Hong, R.C.; Higuchi, R.; Lu, X.; Yokozeki, T. Numerical analysis of fatigue evolution of laminated composites using cohesive zone model and extended finite element method. Compos. Part A Appl. Sci. Manuf. 2024, 190, 108653. [Google Scholar] [CrossRef]
- Feng, Z.; Duan, Q.; Chen, S. Adaptive phantom node method: An efficient and robust approach towards complex engineering cracks. Eng. Anal. Bound. Elem. 2023, 156, 356–371. [Google Scholar] [CrossRef]
- Hansbo, A.; Hansbo, P. A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput. Methods Appl. Mech. Eng. 2004, 193, 3523–3540. [Google Scholar] [CrossRef]
- Chau-Dinh, T.; Zi, G.; Lee, P.S.; Rabczuk, T.; Song, J.H. Phantom-node method for shell models with arbitrary cracks. Comput. Struct. 2012, 92, 242–256. [Google Scholar] [CrossRef]
- Chen, B.; Wang, L.; Ma, X.; Wu, X.; Yang, Q. Fracture modeling of curved composite shell structures using augmented finite element method. Eng. Fract. Mech. 2024, 307, 110332. [Google Scholar] [CrossRef]
- Ling, D.; Yang, Q.; Cox, B. An augmented finite element method for modeling arbitrary discontinuities in composite materials. Int. J. Fract. 2009, 156, 53–73. [Google Scholar] [CrossRef]
- De Carvalho, N.V.; Chen, B.Y.; Pinho, S.T.; Ratcliffe, J.G.; Baiz, P.M.; Tay, T.E. Modeling delamination migration in cross-ply tape laminates. Compos. Part A Appl. Sci. Manuf. 2015, 71, 192–203. [Google Scholar] [CrossRef]
- Chen, B.; Pinho, S.; De Carvalho, N.; Baiz, P.; Tay, T. A floating node method for the modelling of discontinuities in composites. Eng. Fract. Mech. 2014, 127, 104–134. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Y.; Zhang, J.; Gong, Y.; Hu, N.; Li, N. XFEM-based model for simulating zigzag delamination growth in laminated composites under mode I loading. Compos. Struct. 2017, 160, 1155–1162. [Google Scholar] [CrossRef]
- Uribe-Suárez, D.; Bouchard, P.O.; Delbo, M.; Pino-Muñoz, D. Numerical modeling of crack propagation with dynamic insertion of cohesive elements. Eng. Fract. Mech. 2020, 227, 106918. [Google Scholar] [CrossRef]
- Nguyen, T.; Yvonnet, J.; Zhu, Q.Z.; Bornert, M.; Chateau, C. A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Eng. Fract. Mech. 2015, 139, 18–39. [Google Scholar] [CrossRef]
- Shor, O.; Vaziri, R. Adaptive insertion of cohesive elements for simulation of delamination in laminated composite materials. Eng. Fract. Mech. 2015, 146, 121–138. [Google Scholar] [CrossRef]
- Falcó, O.; Ávila, R.; Tijs, B.; Lopes, C. Modelling and simulation methodology for unidirectional composite laminates in a Virtual Test Lab framework. Compos. Struct. 2018, 190, 137–159. [Google Scholar] [CrossRef]
- Settgast, R.R.; Rashid, M.M. Continuum coupled cohesive zone elements for analysis of fracture in solid bodies. Eng. Fract. Mech. 2009, 76, 1614–1635. [Google Scholar] [CrossRef]
- Reinoso, J.; Blázquez, A.; Távara, L.; París, F.; Arellano, C. Damage tolerance of composite runout panels under tensile loading. Compos. Part B Eng. 2016, 96, 79–93. [Google Scholar] [CrossRef]
- MATLAB R2013a, version 8.1.0.604; The MathWorks, Inc.: Natick, MA, USA, 2013.
- ABAQUS Documentation; Dassault Systèmes: Vélizy-Villacoublay, France, 2023.
- Camanho, P.P.; Dávila, C.G. Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials; Technical report; NASA: Washington, DC, USA, 2002. [Google Scholar]
- Hallquist, J.O. LS-DYNA keyword user’s manual. Livermore Softw. Technol. Corp. 2007, 970, 299–800. [Google Scholar]
- Bessa, M.A.; Bostanabad, R.; Liu, Z.; Hu, A.; Apley, D.W.; Brinson, C.; Chen, W.; Liu, W.K. A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality. Comput. Methods Appl. Mech. Eng. 2017, 320, 633–667. [Google Scholar] [CrossRef]
- Costa, S.; Herráez, M.; Chen, X. UniDam: An Abaqus Plugin to break down verification of a damage model for composites. SoftwareX 2025, 30, 102134. [Google Scholar] [CrossRef]
- Li, A.; Remmers, J.J.; van Dommelen, J.A.; Massart, T.J.; Geers, M.G. A mean-field homogenization model for fiber reinforced composite materials in large deformation with plasticity. Int. J. Solids Struct. 2025, 310, 113200. [Google Scholar] [CrossRef]
- Miranda, M.; Cini, A.; Raimondo, A.; Tita, V. Crashworthiness assessment of a composite fuselage stanchion employing a strain rate dependent damage model. Compos. Struct. 2025, 352, 118674. [Google Scholar] [CrossRef]
- Daniel, I.M.; Lee, J.W. Damage development in composite laminates under monotonic loading. Compos. Technol. Res. 1990, 12, 98–102. [Google Scholar]
- Kaminski, M.; Laurin, F.; Maire, J.; Rakotoarisoa, C.; Hémon, E. Fatigue Damage Modeling of Composite Structures: The Onera Viewpoint; Aerospace Lab: Mont-Saint-Guibert, France, 2015; pp. 1–12. [Google Scholar]
- Khan, S.A.; Rahimian Koloor, S.S.; King Jye, W.; Siebert, G.; Tamin, M.N. A fatigue model to predict interlaminar damage of frp composite laminates subjected to mode i load. Polymers 2023, 15, 527. [Google Scholar] [CrossRef]
- Stinchcomb, W.; Reifsnider, K. Fatigue damage mechanisms in composite materials: A review. In Fatigue Mechanisms; ASTM International: Conshohocken, PA, USA, 1979. [Google Scholar]
- Koch, I.; Just, G.; Brod, M.; Chen, J.; Doblies, A.; Dean, A.; Gude, M.; Rolfes, R.; Hopmann, C.; Fiedler, B. Evaluation and modeling of the fatigue damage behavior of polymer composites at reversed cyclic loading. Materials 2019, 12, 1727. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Qi, H.; Yang, J.; Chu, F.; Lin, C.; Liu, P.; Zhang, Q. Study on the low-velocity impact response and damage mechanisms of thermoplastic composites. Polymers 2024, 16, 791. [Google Scholar] [CrossRef]
- Duan, M.; Yue, Z.; Song, Q. Investigation of damage to thick composite laminates under low-velocity impact and frequency-sweep vibration loading conditions. Adv. Mech. Eng. 2020, 12, 1687814020965042. [Google Scholar] [CrossRef]
- Meng, Q.; Wang, Z. Micromechanical modeling of impact damage mechanisms in unidirectional composite laminates. Appl. Compos. Mater. 2016, 23, 1099–1116. [Google Scholar] [CrossRef]
- Zou, X.; Gao, W.; Xi, W. Influence of various damage mechanisms on the low-velocity impact response of composite laminates. Polym. Compos. 2024, 45, 722–737. [Google Scholar] [CrossRef]
- Duodu, E.; Gu, J.; Shang, Z.; Ding, W.; Tang, S. Damage induced by high-velocity impact on composite structures using finite element simulation. Iran. J. Sci. Technol. Trans. Mech. Eng. 2017, 41, 97–107. [Google Scholar] [CrossRef]
- Zarezadeh-mehrizi, M.A.; Liaghat, G.; Ahmadi, H.; Taherzadeh-Fard, A.; Khodadadi, A. Numerical and experimental investigation of fiber metal laminates with elastomeric layers under low-velocity impact. Polym. Compos. 2022, 43, 1936–1947. [Google Scholar] [CrossRef]
- Taherzadeh-Fard, A.; Liaghat, G.; Ahmadi, H.; Razmkhah, O.; Charandabi, S.C.; Zarezadeh-mehrizi, M.A.; Khodadadi, A. Experimental and numerical investigation of the impact response of elastomer layered fiber metal laminates (EFMLs). Compos. Struct. 2020, 245, 112264. [Google Scholar] [CrossRef]
- Guo, Y.E.; Shang, D.G.; Zuo, L.X.; Qu, L.F.; Chen, C.L. Fatigue-creep damage model for carbon fibre reinforced composites under high temperature cyclic loading. Compos. Sci. Technol. 2024, 258, 110909. [Google Scholar] [CrossRef]
- Kovačević, D.; Hofman, P.; Rocha, I.B.; van der Meer, F.P. Unifying creep and fatigue modeling of composites: A time-homogenized micromechanical framework with viscoplasticity and cohesive damage. J. Mech. Phys. Solids 2024, 193, 105904. [Google Scholar] [CrossRef]
- Tayyebati, M.; Sarhadi, A.; Fraisse, A.; Almdal, K.; Eder, M.A. Effects of high-cycle fatigue on the viscoelastic properties of epoxy resin. Eur. J. Mech.-A/Solids 2025, 112, 105641. [Google Scholar] [CrossRef]
- Chen, Q.; He, Z. Finite-volume micromechanics-based multiscale analysis of composite structural model accounting for elastoplastic and ductile damage mechanisms. Compos. Commun. 2024, 45, 101801. [Google Scholar] [CrossRef]
- Larsson, R.; Singh, V.; Olsson, R.; Marklund, E. A micromechanically based model for dynamic damage evolution in unidirectional composites. Int. J. Solids Struct. 2022, 238, 111368. [Google Scholar] [CrossRef]
- Singh, V.; Larsson, R.; Olsson, R.; Marklund, E. A micromechanics based model for rate dependent compression loaded unidirectional composites. Compos. Sci. Technol. 2023, 232, 109821. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, J.; Madenci, E.; Mu, Z.; Yu, Y. Peridynamic micromechanical model for damage mechanisms in composites. Compos. Struct. 2022, 301, 116182. [Google Scholar] [CrossRef]
- Hessman, P.A.; Welschinger, F.; Hornberger, K.; Böhlke, T. A micromechanical cyclic damage model for high cycle fatigue failure of short fiber reinforced composites. Compos. Part B Eng. 2023, 264, 110855. [Google Scholar] [CrossRef]
- Naderi, M.; Iyyer, N. Micromechanical analysis of damage mechanisms under tension of 0°–90° thin-ply composite laminates. Compos. Struct. 2020, 234, 111659. [Google Scholar] [CrossRef]
- Mehri Khansari, N.; Fakoor, M.; Berto, F. Probabilistic micromechanical damage model for mixed mode I/II fracture investigation of composite materials. Theor. Appl. Fract. Mech. 2019, 99, 177–193. [Google Scholar] [CrossRef]
- Zheng, T.; Guo, L.; Ding, J.; Li, Z. An innovative micromechanics-based multiscale damage model of 3D woven composites incorporating probabilistic fiber strength distribution. Compos. Struct. 2022, 287, 115345. [Google Scholar] [CrossRef]
- Meshi, I.; Breiman, U.; Haj-Ali, R. The Parametric High-Fidelity-Generalized-Method-of-Cells with phase-field damage micromechanical model for heterogeneous composites. Compos. Struct. 2023, 320, 117199. [Google Scholar] [CrossRef]
- Wu, H.; Xu, W.; Shan, D.; Wang, X.; Guo, B.; Jin, B.C. Micromechanical modeling of damage evolution and fracture behavior in particle reinforced metal matrix composites based on the conventional theory of mechanism-based strain gradient plasticity. J. Mater. Res. Technol. 2023, 22, 625–641. [Google Scholar] [CrossRef]
- Qu, Z.; Zhao, C.; An, L. A micromechanics perspective on the intralaminar and interlaminar damage mechanisms of composite laminates considering ply orientation and loading condition. Compos. Struct. 2024, 347, 118454. [Google Scholar] [CrossRef]
- Varandas, L.; Dalli, D.; Catalanotti, G.; Falzon, B. Estimating the mode I through-thickness intralaminar R-curve of unidirectional carbon fibre-reinforced polymers using a micromechanics framework combined with the size effect method. Compos. Part A Appl. Sci. Manuf. 2022, 162, 107141. [Google Scholar] [CrossRef]
- Wani, B.; Daggumati, S. Concurrent experimental testing and computational micromechanical modeling of a UD NCF GFRP composite ply. Compos. Struct. 2025, 352, 118664. [Google Scholar] [CrossRef]
- Sagar, S.; Tiwari, A.K.; Roy Chowdhury, S. Thermodynamically consistent elastoplastic phase-field fracture model for micromechanical analysis of fibre-reinforced polymer composites. Compos. Struct. 2025, 357, 118908. [Google Scholar] [CrossRef]
- Suquet, P.M. Averages, boundary conditions. In Proceedings of the Homogenization Techniques for Composite Media, Udine, Italy, 1–5 July 1985; Springer: Berlin/Heidelberg, Germany, 1987; pp. 199–208. [Google Scholar] [CrossRef]
- Compston, P.; Jar, P. The Influence of Fibre Volume Fraction on the Mode I Interlaminar Fracture Toughness of a Glass-Fibre/Vinyl Ester Composite. Appl. Compos. Mater. 1999, 6, 353–368. [Google Scholar] [CrossRef]
- Cohen, D.; Mantell, S.C.; Zhao, L. The effect of fiber volume fraction on filament wound composite pressure vessel strength. Compos. Part B Eng. 2001, 32, 413–429. [Google Scholar] [CrossRef]
- ASTM D3039/D3039M-17; Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D3518/D3518M-13; Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a ±45° Laminate. ASTM International: West Conshohocken, PA, USA, 2013.
- ASTM D5379/D5379M-19; Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method. ASTM International: West Conshohocken, PA, USA, 2019.
- Martin-Santos, E.; Barbu, L.G.; Cruz, P. Damage and Failure Modeling of Composite Material Structures Using the Pam-Crash Code. Mathematics 2024, 12, 3847. [Google Scholar] [CrossRef]
- Andriß, C.; Kenf, A.; Schmeer, S. Experimental characterization and phenomenological modeling of nonlinear viscoelasticity, plasticity and damage of continuous carbon fiber-reinforced thermoplastics. Compos. Part B Eng. 2023, 259, 110734. [Google Scholar] [CrossRef]
- Zscheyge, M.; Böhm, R.; Hornig, A.; Gerritzen, J.; Gude, M. Rate dependent non-linear mechanical behaviour of continuous fibre-reinforced thermoplastic composites—Experimental characterisation and viscoelastic-plastic damage modelling. Mater. Des. 2020, 193, 108827. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, Z.; Zhang, B.; Zhao, S. A phenomenological fatigue life prediction model of glass fiber reinforced polymer composites. Mater. Des. 2015, 66, 77–81. [Google Scholar] [CrossRef]
- Kawai, M.; Kato, K. Effects of R-ratio on the off-axis fatigue behavior of unidirectional hybrid GFRP/Al laminates at room temperature. Int. J. Fatigue 2006, 28, 1226–1238. [Google Scholar] [CrossRef]
- Barbero, E.J.; Lonetti, P. Damage Model for Composites Defined in Terms of Available Data. Mech. Compos. Mater. Struct. 2001, 8, 299–315. [Google Scholar] [CrossRef]
- Llobet, J.; Maimí, P.; Turon, A.; Bak, B.; Lindgaard, E.; Carreras, L.; Essa, Y.; Martin de la Escalera, F. A continuum damage model for composite laminates: Part IV—Experimental and numerical tests. Mech. Mater. 2021, 154, 103686. [Google Scholar] [CrossRef]
- Rai, S.; Patel, B.P. A thermodynamically consistent failure mode dependent continuum damage model with selective damage hardening and deactivation for brittle fiber reinforced composites. Compos. Struct. 2025, 357, 118875. [Google Scholar] [CrossRef]
- Truesdell, C.; Toupin, R. The classical field theories. In Principles of Classical Mechanics and Field Theory/Prinzipien der Klassischen Mechanik und Feldtheorie; Springer: Berlin/Heidelberg, Germany, 1960; pp. 226–858. [Google Scholar]
- Kim, H.S.; Hong, S.I.; Kim, S.J. On the rule of mixtures for predicting the mechanical properties of composites with homogeneously distributed soft and hard particles. J. Mater. Process. Technol. 2001, 112, 109–113. [Google Scholar] [CrossRef]
- Taherzadeh-Fard, A.; Cornejo, A.; Jiménez, S.; Barbu, L.G. A rule of mixtures approach for delamination damage analysis in composite materials. Compos. Sci. Technol. 2023, 242, 110160. [Google Scholar] [CrossRef]
- Alcayde, B.; Merzkirch, M.; Cornejo, A.; Jiménez, S.; Marklund, E.; Barbu, L. Fatigue behaviour of glass-fibre-reinforced polymers: Numerical and experimental characterisation. Compos. Struct. 2024, 337, 118057. [Google Scholar] [CrossRef]
- Jiménez, S.; Cornejo, A.; Barbu, L.G.; Barbat, A.; Oller, S. Failure pressure analysis of a nuclear reactor prestressed concrete containment building. Eng. Struct. 2021, 236, 112052. [Google Scholar] [CrossRef]
- Barbu, L.G.; Cornejo, A.; Martínez, X.; Oller, S.; Barbat, A. Methodology for the analysis of post-tensioned structures using a constitutive serial-parallel rule of mixtures: Large scale non-linear analysis. Compos. Struct. 2019, 216, 315–330. [Google Scholar] [CrossRef]
- Granados, J.J.; Martinez, X.; Barbu, L.G.; Di Capua, D. Fatigue prediction of composite materials, based on serial/parallel mixing theory. Compos. Struct. 2022, 291, 115516. [Google Scholar] [CrossRef]
- Barbu, L.G.; Oller, S.; Martinez, X.; Barbat, A.H. High-cycle fatigue constitutive model and a load-advance strategy for the analysis of unidirectional fiber reinforced composites subjected to longitudinal loads. Compos. Struct. 2019, 220, 622–641. [Google Scholar] [CrossRef]
- Oller, S. Simulación Numérica del Comportamiento Mecánico de los Materiales Compuestos; Centro Internacional de Métodos Numéricos en Ingeniería: Barcelona, Spain, 2003. [Google Scholar]
- Serpieri, R. A Novel Constitutive Model of Composite Materials with Unidirectional Long Fibers: Theoretical Aspects and Computational Issues. Doctoral Thesis, Università degli Studi di Napoli “Federico II”, Naples, Italy, 2005. [Google Scholar]
- Antin, K.N.; Laukkanen, A.; Andersson, T.; Smyl, D.; Vilaça, P. A Multiscale Modelling Approach for Estimating the Effect of Defects in Unidirectional Carbon Fiber Reinforced Polymer Composites. Materials 2019, 12, 1885. [Google Scholar] [CrossRef]
- Růžička, M.; Had, J.; Kulíšek, V.; Uher, O. Multiscale Modeling of Hybrid Composite Structures. Key Eng. Mater. 2011, 471–472, 916–921. [Google Scholar] [CrossRef]
- Guo, F.L.; Huang, P.; Li, Y.Q.; Hu, N.; Fu, S.Y. Multiscale Modeling of Mechanical Behaviors of Carbon Fiber Reinforced Epoxy Composites Subjected to Hygrothermal Aging. Compos. Struct. 2021, 256. [Google Scholar] [CrossRef]
- Greminger, M.; Haghiashtiani, G. Multiscale Modeling of PVDF Matrix Carbon Fiber Composites. Model. Simul. Mater. Sci. Eng. 2017, 25, 045007. [Google Scholar] [CrossRef]
- Gao, J.; Shakoor, M.; Domel, G.; Merzkirch, M.; Zhou, G.; Zeng, D.; Su, X.; Liu, W.K. Predictive Multiscale Modeling for Unidirectional Carbon Fiber Reinforced Polymers. Compos. Sci. Technol. 2020, 186, 107922. [Google Scholar] [CrossRef]
- Moheimani, R.; Sarayloo, R.; Dalir, H. Failure study of fiber/epoxy composite laminate interface using cohesive multiscale model. Adv. Compos. Lett. 2020, 29, 1–19. [Google Scholar] [CrossRef]
- Medina, C.; Fernandez, E.; Salas, A.; Naya, F.; Molina-Aldereguía, J.; Melendrez, M.F.; Flores, P. Multiscale Characterization of Nanoengineered Fiber-Reinforced Composites: Effect of Carbon Nanotubes on the Out-of-Plane Mechanical Behavior. J. Nanomater. 2017, 2017, 9809702. [Google Scholar] [CrossRef]
- Ammendolea, D.; Fabbrocino, F.; Greco, F.; Leonetti, L.; Lonetti, P.; Pascuzzo, A.; Sgambitterra, G. An effective multiscale modeling approach for the failure analysis of masonry structures. Procedia Struct. Integr. 2024, 66, 350–361. [Google Scholar] [CrossRef]
- Salinier, A.; Dagréou, S.; Léonardi, F.; Derail, C.; Navascués, N. Electrical, rheological and mechanical characterization of multiscale composite materials based on poly(etherimide)/short glass fibers/multiwalled carbon nanotubes. Compos. Struct. 2013, 102, 81–89. [Google Scholar] [CrossRef]
- Roustazadeh, D.; Aghadavoudi, F.; Khandan, A. A synergic effect of CNT/Al2O3 reinforcements on multiscale epoxy-based glass fiber composite: Fabrication and molecular dynamics modeling. Mol. Simul. 2020, 46, 1308–1319. [Google Scholar] [CrossRef]
- Li, X.N.; Zuo, X.B.; Li, L.; Liu, J.H. Multiscale modeling and simulation on mechanical behavior of fiber reinforced concrete. Int. J. Solids Struct. 2024, 286-287, 112569. [Google Scholar] [CrossRef]
- Petracca, M. Computational Multiscale Analysis of Masonry Structures. Ph.D. Thesis, UPC, Departament d’Enginyeria Civil i Ambiental, Barcelona, Spain, 2016. [Google Scholar] [CrossRef]
- Petracca, M.; Pela, L.; Rossi, R.; Oller, S.; Camata, G.; Spacone, E. Multiscale computational first order homogenization of thick shells for the analysis of out-of-plane loaded masonry walls. Comput. Methods Appl. Mech. Eng. 2017, 315, 273–301. [Google Scholar] [CrossRef]
- Addessi, D.; Di Re, P.; Gatta, C.; Sacco, E. Multiscale analysis of out-of-plane masonry elements using different structural models at macro and microscale. Comput. Struct. 2021, 247, 106477. [Google Scholar] [CrossRef]
- Rivet, I.; Dialami, N.; Cervera, M.; Chiumenti, M. Mechanism-Based damage and failure of Fused Filament Fabrication components. Compos. Part B Eng. 2024, 270, 111119. [Google Scholar] [CrossRef]
- Rivet, I.; Dialami, N.; Cervera, M.; Chiumenti, M.; Reyes, G.; Pérez, M.A. Experimental, Computational, and Dimensional Analysis of the Mechanical Performance of Fused Filament Fabrication Parts. Polymers 2021, 13, 1766. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, M.; Bertolino, G.; Roiné, T. A general multi-scale topology optimisation method for lightweight lattice structures obtained through additive manufacturing technology. Compos. Struct. 2021, 258, 113360. [Google Scholar] [CrossRef]
- Hernández, J.; Oliver, J.; Huespe, A.; Caicedo-Silva, M.; Cante, J. High-performance model reduction techniques in computational multiscale homogenization. Comput. Methods Appl. Mech. Eng. 2014, 276, 149–189. [Google Scholar] [CrossRef]
- Otero, F. Multiscale Numerical Modelling of Microstructured Reinforced Composites. Ph.D. Thesis, UPC, Departament d’Enginyeria Civil i Ambiental, Barcelona, Spain, 2016. [Google Scholar]
- Otero, F.; Martinez, X.; Oller, S.; Salomon, O. Study and prediction of the mechanical performance of a nanotube-reinforced composite. Compos. Struct. 2012, 94, 2920–2930. [Google Scholar] [CrossRef]
- Otero, F.; Oller, S.; Martinez, X.; Salomon, O. Numerical homogenization for composite materials analysis. Comparison with other micro mechanical formulations. Compos. Struct. 2015, 122, 405–416. [Google Scholar] [CrossRef]
- Nallim, L.G.; Quinteros, R.D.; Oller, S. Nonlinear homogenization techniques to solve masonry structures problems. Compos. Struct. 2012, 94, 724–730. [Google Scholar]
- Oller, S.; Canet, J.M.; Zalamea, F. Composite material behavior using a homogenization double scale method. J. Eng. Mech.-ASCE 2005, 131, 65–79. [Google Scholar] [CrossRef]
- Car, E.; Zalamea, F.; Oller, S.; Miquel, J.; Oñate, E. Numerical simulation of fiber reinforced composite materials - two procedures. Int. J. Solids Struct. 2002, 39, 1967–1986. [Google Scholar] [CrossRef]
- Coenen, E.W.C.; Kouznetsova, V.G.; Bosco, E.; Geers, M.G.D. A multi-scale approach to bridge microscale damage and macroscale failure: A nested computational homogenization-localization framework. Int. J. Fract. 2012, 178, 157–178. [Google Scholar] [CrossRef]
- Feyel, F. Multiscale FE2 elastoviscoplastic analysis of composite structures. Comput. Mater. Sci. 1999, 16, 344–354. [Google Scholar] [CrossRef]
- Fleischhauer, R.; Thomas, T.; Kato, J.; Terada, K.; Kaliske, M. Finite thermo-elastic decoupled two-scale analysis. Int. J. Numer. Methods Eng. 2020, 121, 355–392. [Google Scholar] [CrossRef]
- Martínez, X.; Pons-Prats, J.; Turon, F.; Coma, M.; Barbu, L.G.; Bugeda, G. Multi-Objective Multi-Scale Optimization of Composite Structures, Application to an Aircraft Overhead Locker Made with Bio-Composites. Mathematics 2023, 11, 165. [Google Scholar] [CrossRef]
- Hui, Y.; Xu, R.; Giunta, G.; De Pietro, G.; Hu, H.; Belouettar, S.; Carrera, E. Multiscale CUF-FE2 nonlinear analysis of composite beam structures. Comput. Struct. 2019, 221, 28–43. [Google Scholar] [CrossRef]
- Zaghi, S. Multiscale Multiphysics Simulation in Composite Materials. Ph.D. Thesis, UPC, Departament d’Enginyeria Civil i Ambiental, Barcelona, Spain, 2019. [Google Scholar] [CrossRef]
- Hernández, J.A.; Caicedo, M.A.; Ferrer, A. Dimensional hyper-reduction of nonlinear finite element models via empirical cubature. Comput. Methods Appl. Mech. Eng. 2017, 313, 687–722. [Google Scholar] [CrossRef]
- Yvonnet, J.; He, Q.C. The reduced model multiscale method (r3m) for the non-linear homogenization of hyperelastic media at finite strains. J. Comput. Phys. 2007, 223, 341–368. [Google Scholar] [CrossRef]
- El Halabi, F.; González, D.; Chico, A.; Doblaré, M. FE2 multiscale in linear elasticity based on parametrized microscale models using proper generalized decomposition. Comput. Methods Appl. Mech. Eng. 2013, 257, 183–202. [Google Scholar] [CrossRef]
- Temizer, I.; Wriggers, P. An adaptive method for homogenization in orthotropic nonlinear elasticity. Comput. Methods Appl. Mech. Eng. 2007, 196, 3409–3423. [Google Scholar] [CrossRef]
- Otero, F.; Martinez, X.; Oller, S.; Salomón, O. An efficient multi-scale method for non-linear analysis of composite structures. Compos. Struct. 2015, 131, 707–719. [Google Scholar] [CrossRef]
- Kouznetsova, V.; Geers, M.G.D.; Brekelmans, W.A.M. Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Methods Eng. 2002, 54, 1235–1260. [Google Scholar] [CrossRef]
- Kouznetsova, V.G.; Geers, M.G.D.; Brekelmans, W.A.M. Multi-scale second-order computational homogenization of multi-phase materials: A nested finite element solution strategy. Comput. Methods Appl. Mech. Eng. 2004, 193, 5525–5550. [Google Scholar] [CrossRef]
- Otero, F.; Oller, S.; Martinez, X. Multiscale computational homogenization: Review and proposal of a new enhanced-first-order method. Arch. Comput. Methods Eng. 2018, 25, 479–505. [Google Scholar] [CrossRef]
- Shakoor, M.; Trejo Navas, V.M.; Pino Munõz, D.; Bernacki, M.; Bouchard, P.O. Computational methods for ductile fracture modeling at the microscale. Arch. Comput. Methods Eng. 2019, 26, 1153–1192. [Google Scholar] [CrossRef]
- Wulf, J.; Steinkopff, T.; Fischmeister, H. Fe-simulation of crack paths in the real microstructure of an Al(6061)/SiC composite. Acta Mater. 1996, 44, 1765–1779. [Google Scholar] [CrossRef]
- Higuchi, R.; Okabe, T.; Nagashima, T. Numerical simulation of progressive damage and failure in composite laminates using XFEM/CZM coupled approach. Compos. Part A Appl. Sci. Manuf. 2017, 95, 197–207. [Google Scholar] [CrossRef]
- van Dongen, B.; van Oostrum, A.; Zarouchas, D. A blended continuum damage and fracture mechanics method for progressive damage analysis of composite structures using XFEM. Compos. Struct. 2018, 184, 512–522. [Google Scholar] [CrossRef]
- Sosa, J.C.; Karapurath, N. Delamination modelling of GLARE using the extended finite element method. Compos. Sci. Technol. 2012, 72, 788–791. [Google Scholar] [CrossRef]
- Karmakov, S.; Cepero-Mejías, F.; Curiel-Sosa, J. Numerical analysis of the delamination in CFRP laminates: VCCT and XFEM assessment. Compos. Part C Open Access 2020, 2, 100014. [Google Scholar] [CrossRef]
- Wong, L.; Wang, J.; Yang, R.C.; Zhang, Y. Slow-growth damage of bonded composite-metal joints subjected to fatigue loading. Int. J. Adhes. Adhes. 2025, 139, 103979. [Google Scholar] [CrossRef]
- Hofman, P.; van der Meer, F.; Sluys, L. Modeling of progressive high-cycle fatigue in composite laminates accounting for local stress ratios. Compos. Part A Appl. Sci. Manuf. 2024, 183, 108219. [Google Scholar] [CrossRef]
- Hofman, P.; van der Meer, F.P.; Sluys, L.J. A numerical framework for simulating progressive failure in composite laminates under high-cycle fatigue loading. Eng. Fract. Mech. 2024, 295, 109786. [Google Scholar] [CrossRef]
- Rashnooie, R.; Zeinoddini, M.; Ahmadpour, F.; Aval, S.B.; Chen, T. A coupled XFEM fatigue modelling of crack growth, delamination and bridging in FRP strengthened metallic plates. Eng. Fract. Mech. 2023, 279, 109017. [Google Scholar] [CrossRef]
- Teimouri, F.; Heidari-Rarani, M.; Aboutalebi, F.H. An XFEM-VCCT coupled approach for modeling mode I fatigue delamination in composite laminates under high cycle loading. Eng. Fract. Mech. 2021, 249, 107760. [Google Scholar] [CrossRef]
- Quintanas-Corominas, A.; Reinoso, J.; Casoni, E.; Turon, A.; Mayugo, J. A phase field approach to simulate intralaminar and translaminar fracture in long fiber composite materials. Compos. Struct. 2019, 220, 899–911. [Google Scholar] [CrossRef]
- Mrunmayee, S.; Rajagopal, A.; Rakesh, K.; Basant, K.; Reddy, J. Phase field approach to predict mixed-mode delamination and delamination migration in composites. Compos. Struct. 2024, 337, 118074. [Google Scholar] [CrossRef]
- Kumar, A.; Sain, T. Phase field-based cohesive zone approach to model delamination in fiber-reinforced polymer composites. Compos. Struct. 2024, 329, 117751. [Google Scholar] [CrossRef]
- Shafei, E.; Faroughi, S.; Reali, A. Phase-field simulation of delamination in laminated composite plates: Isogeometric formulation. Compos. Struct. 2023, 321, 117307. [Google Scholar] [CrossRef]
- McElroy, M. Use of an enriched shell finite element to simulate delamination-migration in a composite laminate. Compos. Struct. 2017, 167, 88–95. [Google Scholar] [CrossRef]
- Hu, X.; Lu, X.; Tay, T. Modelling delamination migration using virtual embedded cohesive elements formed through floating nodes. Compos. Struct. 2018, 204, 500–512. [Google Scholar] [CrossRef]
- Lu, X.; Chen, B.Y.; Tan, V.B.; Tay, T.E. Adaptive floating node method for modelling cohesive fracture of composite materials. Eng. Fract. Mech. 2018, 194, 240–261. [Google Scholar] [CrossRef]
- Trabal, G.G.; Bak, B.L.V.; Chen, B.; Lindgaard, E. An adaptive floating node based formulation for the analysis of multiple delaminations under quasi-static loading. Compos. Part A Appl. Sci. Manuf. 2022, 156, 106846. [Google Scholar] [CrossRef]
- McElroy, M.; André, A.; Goode, T.; Costa, S.; Olsson, R.; Pankow, M. Use of enriched shell elements compared to solid elements for modelling delamination growth during impact on composites. Compos. Struct. 2021, 269, 113945. [Google Scholar] [CrossRef]
- Hartlen, D.C.; Montesano, J.; Cronin, D.S. Modelling of Mode I delamination using a stress intensity factor enhanced cohesive zone model. Compos. Struct. 2024, 331, 117928. [Google Scholar] [CrossRef]
- Zani, M.; Fanteria, D.; Catapano, A.; Montemurro, M. A consistent energy-based cohesive zone model to simulate delamination between differently oriented plies. Compos. Struct. 2022, 282, 115042. [Google Scholar] [CrossRef]
- Al-Azzawi, A.S.; Kawashita, L.; Featherston, C. A modified cohesive zone model for fatigue delamination in adhesive joints: Numerical and experimental investigations. Compos. Struct. 2019, 225, 111114. [Google Scholar] [CrossRef]
- Fu, C.; Wang, X. Simulating delamination in composite laminates involving large scale fiber bridging based on the mixed-mode three-linear cohesive zone model. Theor. Appl. Fract. Mech. 2022, 117, 103164. [Google Scholar] [CrossRef]
- Turon, A.; Costa, J.; Camanho, P.; Dávila, C. Simulation of delamination in composites under high-cycle fatigue. Compos. Part A Appl. Sci. Manuf. 2007, 38, 2270–2282. [Google Scholar] [CrossRef]
- Kawashita, L.F.; Hallett, S.R. A crack tip tracking algorithm for cohesive interface element analysis of fatigue delamination propagation in composite materials. Int. J. Solids Struct. 2012, 49, 2898–2913. [Google Scholar] [CrossRef]
- Teimouri, F.; Heidari-Rarani, M.; Aboutalebi, F.H.; Karimi, S.; Lessard, L. Experimental characterization and cyclic cohesive zone modeling of mode I delamination growth in glass/epoxy composite laminates under high cycle fatigue. Eng. Fract. Mech. 2024, 296, 109853. [Google Scholar] [CrossRef]
- Shirzadeh, Z.; Fakoor, M.; Daneshjoo, Z. Simulating delamination in composite laminates with fracture process zone effects: A novel cohesive zone modeling approach. Eng. Fract. Mech. 2025, 315, 110834. [Google Scholar] [CrossRef]
- Oller, S. Nonlinear Dynamics of Structures; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Taherzadeh-Fard, A.; Jiménez, S.; Cornejo, A.; Oñate, E.; Barbu, L.G. Fatigue delamination damage analysis in composite materials through a rule of mixtures approach. Compos. Struct. 2025, 351, 118613. [Google Scholar] [CrossRef]
- Sorour, S.S.; Saleh, C.A.; Shazly, M. A review on machine learning implementation for predicting and optimizing the mechanical behaviour of laminated fiber-reinforced polymer composites. Heliyon 2024, 10, e33681. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, Y.; Wu, J. Advanced Composite Materials Modeling: A Data-Driven Approach. Compos. Sci. Technol. 2021, 204, 108567. [Google Scholar] [CrossRef]
- Kar, M.; Chatterjee, P.; Singh, R. Machine Learning for Predictive Modeling of Composite Materials. Mater. Sci. Eng. R Rep. 2021, 141, 100561. [Google Scholar] [CrossRef]
- Asa, S.; Nakamura, H.; Hirano, T. Data-Assisted Machine Learning for Multi-Scale Modeling of Polymer Matrix Composites. Comput. Mater. Sci. 2023, 200, 110876. [Google Scholar] [CrossRef]
- Kal, P.; Bhat, A.; Reddy, J.N. Integration of Neural Networks and Finite Element Analysis for Composite Material Failure Prediction. Int. J. Numer. Methods Eng. 2023, 124, 2345–2368. [Google Scholar] [CrossRef]
- Lin, C.; Xu, L.; Chen, W. A Hybrid Machine Learning and Finite Element Method for Damage Prediction in Fiber-Reinforced Composites. Comput. Mater. Contin. 2023, 70, 3055–3074. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Vaidya, S.; Ruehle, F.; Halverson, J.; Soljacic, M.; Hou, T.Y.; Tegmark, M. KAN: Kolmogorov–Arnold Networks. arXiv 2024, arXiv:2404.19756. [Google Scholar]
- Thakolkaran, P.; Guo, Y.; Saini, S.; Peirlinck, M.; Alheit, B.; Kumar, S. Can KAN CANs? Input-convex Kolmogorov-Arnold Networks (KANs) as hyperelastic constitutive artificial neural networks (CANs). arXiv 2025, arXiv:2503.05617. [Google Scholar]
- Amezquita-Sanchez, J.; Valtierra, M.; Adeli, H. Machine learning in structural engineering. Sci. Iran. A Civ. Eng. 2020, 27, 2645–2656. [Google Scholar]
- Liu, Z.; Wei, H.; Huang, T.; Wu, C. Intelligent Multiscale Simulation Based on Process-Guided Composite Database. arXiv 2020, arXiv:2003.09491. [Google Scholar]
- Ding, X.; Hou, X.; Xia, M.; Ismail, Y.; Ye, J. Predictions of macroscopic mechanical properties and microscopic cracks of unidirectional fibre-reinforced polymer composites using deep neural network (DNN). Compos. Struct. 2022, 302, 116248. [Google Scholar] [CrossRef]
- Zhang, K.; Ma, L.-h.; Song, Z.-z.; Gao, H.; Zhou, W.; Liu, J.; Tao, R. Strength prediction and progressive damage analysis of carbon fiber reinforced polymer-laminate with circular holes by an efficient Artificial Neural Network. Composite Structures 2022, 296, 115835. [Google Scholar] [CrossRef]
- Reiner, J.; Linden, N.; Vaziri, R.; Zobeiry, N.; Kramer, B. Bayesian parameter estimation for the inclusion of uncertainty in progressive damage simulation of composites. Compos. Struct. 2023, 321, 117257. [Google Scholar] [CrossRef]
- Cornejo, A.; Kalkbrenner, P.; Rossi, R.; Pelà, L. A machine learning based material homogenization technique for in-plane loaded masonry walls. Comput. Struct. 2025, 314, 107754. [Google Scholar] [CrossRef]
- Haj-Ali, R.; Kim, H.K. Nonlinear constitutive models for FRP composites using artificial neural networks. Mech. Mater. 2007, 39, 1035–1042. [Google Scholar] [CrossRef]
- Amraish, N.; Reisinger, A.; Pahr, D. A novel specimen shape for measurement of linear strain fields by means of digital image correlation. Sci. Rep. 2021, 11, 17515. [Google Scholar] [CrossRef]
- Tie, J.; Wu, W. Intelligent detection of dynamic cracking along an interface of brittle material using high-speed photography assisted by data augmentation and machine learning. Int. J. Rock Mech. Min. Sci. 2024, 179, 105784. [Google Scholar] [CrossRef]
- Hu, H.; Wei, Q.; Wang, T.; Ma, Q.; Jin, P.; Pan, S.; Li, F.; Wang, S.; Yang, Y.; Li, Y. Experimental and numerical investigation integrated with machine learning (ML) for the prediction strategy of DP590/CFRP composite laminates. Polymers 2024, 16, 1589. [Google Scholar] [CrossRef] [PubMed]
- Artero-Guerrero, J.A.; Pernas-Sánchez, J.; Martín-Montal, J.; Varas, D.; López-Puente, J. The influence of laminate stacking sequence on ballistic limit using a combined Experimental/FEM/Artificial Neural Networks (ANN) methodology. Compos. Struct. 2018, 183, 299–308. [Google Scholar] [CrossRef]
- Wang, W.; Thai, H.T. A Physics-Informed Neural Network Framework for Clamped Laminated Composite Plates Under Bending. In Proceedings of the Ninth International Conference on Thin-Walled Structures—ICTWS2023, Sydney, Australia, 29 November–1 December 2023; Volume 29. [Google Scholar]
- Khalid, S.; Yazdani, M.H.; Azad, M.M.; Elahi, M.U.; Raouf, I.; Kim, H.S. Advancements in Physics-Informed Neural Networks for Laminated Composites: A Comprehensive Review. Mathematics 2024, 13, 17. [Google Scholar] [CrossRef]
- Chen, J.; Wan, L.; Ismail, Y.; Ye, J.; Yang, D. A micromechanics and machine learning coupled approach for failure prediction of unidirectional CFRP composites under triaxial loading: A preliminary study. Compos. Struct. 2021, 267, 113876. [Google Scholar] [CrossRef]
Method | Strengths | Limitations |
---|---|---|
Continuum Damage Mechanics (CDM) | Efficient for intra-layer damage; avoids explicit crack tracking; easily implemented in commercial codes, e.g., LS-DYNA MAT_22. | Mesh-dependent; limited in simulating crack interaction; requires regularization to address localization. |
Cohesive Zone Model (CZM) | Accurate for delamination and crack interaction; models nonlinear interface behavior; supported in FEM codes like ABAQUS. | Requires predefined crack paths and cohesive elements; may introduce artificial stiffness reductions. |
Extended Finite Element Method (XFEM) | Captures arbitrary crack paths without re-meshing; suitable for crack initiation and growth. | Limited for crack branching and merging; computationally intensive due to convergence issues and enrichment functions. |
Phase Field Model (PFM) | High accuracy for crack initiation and propagation; no explicit crack tracking; based on energy minimization. | Requires extremely fine meshes; less efficient for large-scale and complex crack interaction problems. |
Peridynamics (PD) | Captures crack initiation, propagation, and complex interactions, e.g., branching; no re-meshing or crack tracking required. | Very high computational cost due to nonlocal interactions over a finite horizon. |
Homogenization Method | Efficient for large-scale simulations; incorporates delamination effects without explicit interface modeling; handles cyclic loading and intra-layer damage; reduced pre-processing effort; validated against standard tests (DCB, ENF, MMB). | Less-detailed representation of individual crack paths; relies on the calibration of fatigue parameters. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taherzadeh-Fard, A.; Cornejo, A.; Jiménez, S.; Barbu, L.G. Numerical Analysis of Damage in Composites: From Intra-Layer to Delamination and Data-Assisted Methods. Mathematics 2025, 13, 1578. https://doi.org/10.3390/math13101578
Taherzadeh-Fard A, Cornejo A, Jiménez S, Barbu LG. Numerical Analysis of Damage in Composites: From Intra-Layer to Delamination and Data-Assisted Methods. Mathematics. 2025; 13(10):1578. https://doi.org/10.3390/math13101578
Chicago/Turabian StyleTaherzadeh-Fard, Alireza, Alejandro Cornejo, Sergio Jiménez, and Lucia G. Barbu. 2025. "Numerical Analysis of Damage in Composites: From Intra-Layer to Delamination and Data-Assisted Methods" Mathematics 13, no. 10: 1578. https://doi.org/10.3390/math13101578
APA StyleTaherzadeh-Fard, A., Cornejo, A., Jiménez, S., & Barbu, L. G. (2025). Numerical Analysis of Damage in Composites: From Intra-Layer to Delamination and Data-Assisted Methods. Mathematics, 13(10), 1578. https://doi.org/10.3390/math13101578